Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = direct contact heat exchange

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4392 KiB  
Article
Visualization of Kinetic Parameters of a Droplet Nucleation Boiling on Smooth and Micro-Pillar Surfaces with Inclined Angles
by Yi-Nan Zhang, Guo-Qing Huang, Lu-Ming Zhao and Hong-Xia Chen
Energies 2025, 18(15), 4152; https://doi.org/10.3390/en18154152 - 5 Aug 2025
Abstract
The evaporation dynamics of droplets on smooth and inclined micro-pillar surfaces were experimentally investigated. The surface temperature was increased from 50 °C to 120 °C, with the inclination angles being 0°, 30°, 45°, and 60° respectively. The dynamic parameters, including contact area, nucleation [...] Read more.
The evaporation dynamics of droplets on smooth and inclined micro-pillar surfaces were experimentally investigated. The surface temperature was increased from 50 °C to 120 °C, with the inclination angles being 0°, 30°, 45°, and 60° respectively. The dynamic parameters, including contact area, nucleation density, bubble stable diameter, and droplet asymmetry, were recorded using two high-speed video cameras, and the corresponding evaporation performance was analyzed. Experimental results showed that the inclination angle had a significant influence on the evaporation of micro-pillar surfaces than smooth surfaces as well as a positive correlation between the enhancement performance of the micro-pillars and increasing inclination angles. This angular dependence arises from surface inclination-induced tail elongation and the corresponding asymmetry of droplets. With definition of the one-dimensional asymmetry factor (ε) and volume asymmetry factor (γ), it was proven that although the asymmetric thickness of the droplets reduces the nucleation density and bubble stable diameter, the droplet asymmetry significantly increased the heat exchange area, resulting in a 37% improvement in the evaporation rate of micro-pillar surfaces and about a 15% increase in its enhancement performance to smooth surfaces when the inclination angle increased from 0°to 60°. These results indicate that asymmetry causes changes in heat transfer conditions, specifically, a significant increase in the wetted area and deformation of the liquid film, which are the direct enhancement mechanisms of inclined micro-pillar surfaces. Full article
(This article belongs to the Special Issue Advancements in Heat Transfer and Fluid Flow for Energy Applications)
Show Figures

Figure 1

22 pages, 5036 KiB  
Article
Particle Motion and Gas–Solid Heat Exchange Enhancement in Rotary Drums with Aligned/Separated Flight
by Yewei He, Dianyu E and Zeyi Jiang
Processes 2025, 13(5), 1594; https://doi.org/10.3390/pr13051594 - 20 May 2025
Viewed by 418
Abstract
In a waste heat recovery rotary drum with flights (RDF), particle lifting enhances gas–solid contact but also increases the complexity of particle motion in both radial and axial directions. In this study, a long rotary drum model applicable to both aligned and separated [...] Read more.
In a waste heat recovery rotary drum with flights (RDF), particle lifting enhances gas–solid contact but also increases the complexity of particle motion in both radial and axial directions. In this study, a long rotary drum model applicable to both aligned and separated flights was developed. The discrete element method was employed to investigate the effects of the inclination angle, feed rate, and rotation speed on particle dynamics and heat exchange performance. Additionally, a gas–solid heat exchange model was formulated to quantitatively assess the system’s heat recovery efficiency, power recovery, and power consumption. The results indicated that particle motion exhibited greater randomness along the axial direction, and the proposed long-drum model effectively captured the key parameters influencing particle dynamics. The heat exchange capacity of the RDF was closely related to the filling degree, which was found to be most sensitive to the inclination angle. Although the separated flight formed a spiral-shaped particle curtain and significantly enhanced the uniformity of the particle distribution, its heat exchange capacity was lower than that of the aligned flight, and it increased the construction cost by more than 30%. Under all operating conditions, the total system power consumption remained below 20% of the recovered power output. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Graphical abstract

17 pages, 2863 KiB  
Article
General Response Modes of Cylindrical Thermal Contact Conductance to Bidirectional Heat Flux and Temperature Variations
by Fanli Liu, Mingyang Ma, Yang Zhang, Qilin Xie and Wenfeng Liang
Energies 2025, 18(10), 2454; https://doi.org/10.3390/en18102454 - 10 May 2025
Viewed by 353
Abstract
Cylindrical joints serve as critical pathways for heat flow in various applications, including heat pipes, electronic devices, and fin-tube heat exchangers. Despite their significance, research has predominantly focused on flat joints, with limited investigation into cylindrical joints, especially on how cylindrical thermal contact [...] Read more.
Cylindrical joints serve as critical pathways for heat flow in various applications, including heat pipes, electronic devices, and fin-tube heat exchangers. Despite their significance, research has predominantly focused on flat joints, with limited investigation into cylindrical joints, especially on how cylindrical thermal contact conductance (TCC) changes in response to temperature and heat flux, a feature distinctive to cylindrical joints. This study provides a comprehensive theoretical and numerical investigation of cylindrical TCC behavior across various material combinations and heat flux directions. We identified three response modes for outward heat flux and six for inward heat flux, classified by the relative thermal expansion coefficients and heat flux direction. Notably, under inward heat flux, we discovered a previously unreported phenomenon: two possible contact states occurring at identical interfacial temperature, heat flux, and material conditions, with TCC values differing by more than an order of magnitude. The study covers a wide range of conditions (temperatures from 293 K to 1400 K and heat fluxes from 104 to 106 W/m2), confirming that the identified response patterns are broadly applicable and governed by general principles rather than specific material properties or geometric parameters. These findings provide new insights into cylindrical joint behavior and offer valuable guidelines for optimizing the design and performance of thermal systems involving cylindrical interfaces. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

21 pages, 11237 KiB  
Article
Investigation of Heat Transfer Enhancement Mechanisms in Elastic Tube Bundles Subjected to Exogenous Self-Excited Fluid Oscillation
by Jing Hu, Lei Guo and Shusheng Zhang
Fluids 2025, 10(5), 122; https://doi.org/10.3390/fluids10050122 - 8 May 2025
Viewed by 439
Abstract
Flow-induced vibration (FIV) characteristics are key factors in enhancing heat transfer. However, challenges such as insufficient heat transfer enhancement and the fatigue strength of the tube bundle persist in the context of improving the heat transfer in elastic tube bundle heat exchangers. This [...] Read more.
Flow-induced vibration (FIV) characteristics are key factors in enhancing heat transfer. However, challenges such as insufficient heat transfer enhancement and the fatigue strength of the tube bundle persist in the context of improving the heat transfer in elastic tube bundle heat exchangers. This study proposes a novel passive heat transfer enhancement paradigm for elastic tube bundles based on externally induced self-excited oscillations of fluid. By constructing a non-contact energy transfer system, the external oscillation energy is directed into the elastic tube bundle heat exchanger, achieving dynamic stress buffering and breaking through the steady-state flow heat transfer boundary layer. A three-dimensional fluid–structure interaction numerical model is established using Star CCM+2021.3 (16.06.008) to conduct a comparative analysis of the flow characteristics and heat transfer performance between the original structure without an oscillator and the improved structure equipped with a fluid oscillator. The results indicate that the improved structure, through the periodic unsteady jet induced by the fluid oscillator, significantly enhances the turbulence intensity of the shell-side fluid, with the turbulent kinetic energy increasing by over 50%. The radial flow area is notably expanded, thereby reducing the thermal resistance of the boundary layer. At cooling fluid velocities of 6 to 9 m/s, the heat transfer capability of the improved structure is enhanced by more than 50%. Compared with the original structure, the new structure, due to the loading of an external oscillation structure, causes the cold air to present a periodic up and down jet phenomenon. This jet phenomenon, on the one hand, increases the heat exchange area between the cold air and the outer surface of the tube bundle, thereby enhancing the heat exchange capacity. On the other hand, the large-area impact of the fluid reduces the thickness of the boundary layer, lowers the thermal resistance and thereby enhances the heat exchange capacity. Furthermore, this improved structure buffers the mechanical vibrations through self-excited oscillations of the fluid medium, ensuring that the stress levels in the tube bundle remain below the fatigue threshold, effectively mitigating the failure risks associated with traditional active vibration strategies. Full article
Show Figures

Figure 1

22 pages, 2131 KiB  
Review
A Review of Quantitative Characterization of Phase Interface Dynamics and Optimization of Heat Transfer Modeling in Direct Contact Heat Transfer
by Mingjian Wang, Jianxin Xu, Shibo Wang and Hua Wang
Energies 2025, 18(9), 2318; https://doi.org/10.3390/en18092318 - 1 May 2025
Viewed by 534
Abstract
Direct contact heat transfer as an efficient heat recovery method. It is used in the fields of waste heat recovery, nuclear engineering, desalination, and metallurgy. This study examined two key issues of the direct contact heat transfer process: difficulty in accurately characterizing the [...] Read more.
Direct contact heat transfer as an efficient heat recovery method. It is used in the fields of waste heat recovery, nuclear engineering, desalination, and metallurgy. This study examined two key issues of the direct contact heat transfer process: difficulty in accurately characterizing the dynamics of the flow field–phase interface; and difficulty in coupling the complex multiphysics fields involved in direct contact heat transfer. This paper systematically reviews the spatio-temporal evolution characteristics and quantitative characterization methods of bubble dynamics in direct contact heat transfer processes, with an in-depth discussion on theoretical modeling approaches and experimental validation strategies for coupled heat and mass transfer mechanisms within multiphase flow systems. An interesting phenomenon was found in this study. Many scholars have focused their research on optimizing the working conditions and structure of direct contact heat transfer in order to improve heat transfer efficiency. The non-equilibrium phenomenon between the two phases of direct contact heat transfer has not been thoroughly studied. The non-equilibrium phase transition model can deepen the understanding of the microscopic mechanism of interfacial energy exchange and phase transition dynamics in direct contact heat transfer by revealing the transient characteristics and non-equilibrium effects of heat and mass transfer at dynamic interfaces. Based on the findings above, three key directions are proposed to guide future research to inform the exploration of direct contact heat transfer mechanisms in future work: 1 dynamic analysis of multi-scale spatio-temporal coupling mechanisms, 2 accurate quantification of unsteady interfacial heat transfer processes, and 3 synergistic integration of intelligent optimization algorithms with experimental datasets. Full article
(This article belongs to the Special Issue Advanced Analysis of Heat Transfer and Energy Conversion 2024)
Show Figures

Figure 1

18 pages, 8392 KiB  
Article
Analysis of Temperature and Stress Fields in the Process of Hot-Rolled Strip Coiling
by Meng Dai, Yuting Hu, Yanchao Hao, Ping Qiu and Hong Xiao
Metals 2025, 15(2), 111; https://doi.org/10.3390/met15020111 - 24 Jan 2025
Viewed by 943
Abstract
During the coiling process of a hot-rolled strip, with the increasing layers the temperature and stress distribution inside the coil constantly change and interact with each other. Due to the contact with the sleeve and the transition of the heat exchange state, it [...] Read more.
During the coiling process of a hot-rolled strip, with the increasing layers the temperature and stress distribution inside the coil constantly change and interact with each other. Due to the contact with the sleeve and the transition of the heat exchange state, it is inaccurate to consider the temperature of the whole coil as the coiling temperature set by the process requirement. Meanwhile, due to the periodic interlayer contact in the radial direction, the relation between stress and deformation is nonlinear. For the coiling process, it is difficult to consider the above factors using conventional methods. Therefore, an incremental model has been established to couple the temperature and stress of the coil. In order to obtain the mechanical properties of the strip and radial elastic modulus of the coil, tensile tests and laminated compression experiments are conducted at different temperatures. The effects of changes in strip thickness, coiling tension, and initial temperature of the sleeve on the stress and the temperature inside the coil are studied. Finally, by comparing the model results with measurements and analytical solutions, the effectiveness of the incremental coupled model is verified and the errors caused by the analytical method are analyzed. Full article
(This article belongs to the Special Issue Manufacturing Processes of Metallic Materials)
Show Figures

Graphical abstract

15 pages, 3899 KiB  
Article
Sustainability in Food Production: A High-Efficiency Offshore Greenhouse
by Francesco Barreca
Agronomy 2024, 14(3), 518; https://doi.org/10.3390/agronomy14030518 - 2 Mar 2024
Cited by 7 | Viewed by 2403
Abstract
The world’s population is expected to increase by nearly two billion in the next 30 years; the population will increase from 8 billion to 9.7 billion by 2050 and could peak at 10.4 billion by the mid-2080s. The extreme weather triggered by global [...] Read more.
The world’s population is expected to increase by nearly two billion in the next 30 years; the population will increase from 8 billion to 9.7 billion by 2050 and could peak at 10.4 billion by the mid-2080s. The extreme weather triggered by global climate change has severely hit crop yields in open-field cultivation and led to an increase in food prices. Furthermore, in the last few years, emergency events such as the COVID-19 pandemic, wars/conflicts, and economic downturns have conditioned agricultural production and food security around the world. Greenhouses could be efficient cultivation systems because they enable food production in a sustainable way, limiting contact between pollutants and plants and optimizing the use of water, energy, and soil. This paper proposes a novel dome-soilless greenhouse concept for tomato cultivation in the Mediterranean area. The proposed greenhouse is fixed on a sea platform to take advantage of the seawater cooling environment and to integrate water consumption into a hydroponic system. In order to evaluate the best covering solution material to adopt, a few thermal and photometric characteristics of greenhouse covering materials were evaluated using a simplified method. A dynamic simulation was carried out to compare the proposed seawater cooling system with a conventional cooling tower in terms of the electric energy spent to maintain the inside temperature range at 13–25 °C across all seasons in the year. The proposed heating, ventilation, and air conditioning (HVAC) system allowed a total annual energy saving of more than 10%. The energy saved was a result of the better cooling performance of the seawater heat exchange that allowed energy saving of about 14% on cooling. The comparison between the model characterised by a 6 mm polycarbonate coupled with UbiGro film and a seawater cooling system, and the model including a 6 mm polycarbonate coupled with a clarix blue film covering and a tower cooling system highlighted energy saving of about 20%. The obtained results indicate possible future directions for offshore greenhouses to carry out independent production together with the integration of photovoltaic modules, water treatment plants, and smart remote-control systems. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

29 pages, 1618 KiB  
Review
Heat Transfer Mechanisms and Contributions of Wearable Thermoelectrics to Personal Thermal Management
by Diana Enescu
Energies 2024, 17(2), 285; https://doi.org/10.3390/en17020285 - 5 Jan 2024
Cited by 6 | Viewed by 3503 | Correction
Abstract
Thermoelectricity can assist in creating comfortable thermal environments through wearable solutions and local applications that keep the temperature comfortable around individuals. In the analysis of an indoor environment, thermal comfort depends on the global characteristics of the indoor volume and on the local [...] Read more.
Thermoelectricity can assist in creating comfortable thermal environments through wearable solutions and local applications that keep the temperature comfortable around individuals. In the analysis of an indoor environment, thermal comfort depends on the global characteristics of the indoor volume and on the local thermal environment where the individuals develop their activity. This paper addresses the heat transfer mechanisms that refer to individuals, which operate in their working ambient when wearable thermoelectric solutions are used for enhancing heating or cooling within the local environment. After recalling the characteristics of the thermoelectric generators and illustrating the heat transfer mechanisms between the human body and the environment, the interactions between wearable thermoelectric generators and the human skin are discussed, considering the analytical representations of the thermal phenomena. The wearable solutions with thermoelectric generators for personal thermal management are then categorized by considering active and passive thermal management methods, natural and assisted heat exchange, autonomous and nonautonomous devices, and direct or indirect contact with the human body. Full article
(This article belongs to the Special Issue Advanced Studies of Thermoelectric Systems)
Show Figures

Figure 1

22 pages, 3338 KiB  
Review
Corrosion and Scaling in Geothermal Heat Exchangers
by Corentin Penot, David Martelo and Shiladitya Paul
Appl. Sci. 2023, 13(20), 11549; https://doi.org/10.3390/app132011549 - 21 Oct 2023
Cited by 11 | Viewed by 8102
Abstract
Geothermal power is an attractive and environmentally friendly energy source known for its reliability and efficiency. Unlike some renewables like solar and wind, geothermal energy is available consistently, making it valuable for mitigating climate change. Heat exchangers play a crucial role in geothermal [...] Read more.
Geothermal power is an attractive and environmentally friendly energy source known for its reliability and efficiency. Unlike some renewables like solar and wind, geothermal energy is available consistently, making it valuable for mitigating climate change. Heat exchangers play a crucial role in geothermal power plants, particularly in binary cycle plants, where they represent a significant portion of capital costs. Protecting these components from deterioration is essential for improving plant profitability. Corrosion is a common issue due to direct contact with geothermal fluid, which can lead to heat exchanger failure. Additionally, temperature changes within the heat exchanger can cause scaling, reduce heat transfer efficiency, or even block the tubes. This review critically examines the challenges posed by corrosion and scaling in geothermal heat exchangers, with a primary focus on three key mitigation strategies: the application of corrosion-resistant alloys, the utilization of protective coating systems, and the introduction of anti-scaling agents and corrosion inhibitors into the geothermal fluid. The paper discusses recent strides in these approaches, identifying promising advancements and highlighting impending obstacles. By bridging existing knowledge gaps, this review aims to offer valuable insights into material selection, heat exchanger design, and the progression of geothermal energy production. Ultimately, it contributes to the ongoing endeavor to harness geothermal energy as a sustainable and enduring solution to our energy needs. Full article
(This article belongs to the Section Surface Sciences and Technology)
Show Figures

Figure 1

28 pages, 3000 KiB  
Review
Review of Developments in Plate Heat Exchanger Heat Transfer Enhancement for Single-Phase Applications in Process Industries
by Olga Arsenyeva, Leonid Tovazhnyanskyy, Petro Kapustenko, Jiří Jaromír Klemeš and Petar Sabev Varbanov
Energies 2023, 16(13), 4976; https://doi.org/10.3390/en16134976 - 27 Jun 2023
Cited by 33 | Viewed by 9051
Abstract
A plate heat exchanger (PHE) is a modern, effective type of heat transfer equipment capable of increasing heat recuperation and energy efficiency. For PHEs, enhanced methods of heat transfer intensification can be further applied using the analysis and knowledge already available in the [...] Read more.
A plate heat exchanger (PHE) is a modern, effective type of heat transfer equipment capable of increasing heat recuperation and energy efficiency. For PHEs, enhanced methods of heat transfer intensification can be further applied using the analysis and knowledge already available in the literature. A review of the main developments in the construction and exploration of PHEs and in the methods of heat transfer intensification is presented in this paper with an analysis of the main construction modifications, such as plate-and-frame, brazed and welded PHEs. The differences between these construction modifications and their influences on the thermal and hydraulic performance of PHEs are discussed. Most modern PHEs have plates with inclined corrugations on their surface that create a strong, rigid construction with multiple contact points between the plates. The methods of PHE exploration are mostly experimental studies and/or CFD modelling. The main corrugation parameters influencing PHE performance are the corrugation inclination angle in relation to the main flow direction and the corrugation aspect ratio. Optimisation of these parameters is one way to enhance PHE performance. Other methods of heat transfer enhancement, including improving the form of the plate corrugations, use of nanofluids and active methods, are considered. Future research directions are proposed, such as improving fundamental understanding, developing new corrugation shapes and optimisation methods and area and cost estimations. Full article
(This article belongs to the Topic Advanced Heat and Mass Transfer Technologies)
Show Figures

Figure 1

15 pages, 2793 KiB  
Article
Using the Log Mean Temperature Difference (LMTD) and ε-NTU Methods to Analyze Heat and Mass Transfer in Direct Contact Membrane Distillation
by Mohammed A. Almeshaal and Karim Choubani
Membranes 2023, 13(6), 588; https://doi.org/10.3390/membranes13060588 - 7 Jun 2023
Cited by 5 | Viewed by 8080
Abstract
In direct contact membrane distillation (DCMD), heat and mass transfers occur through the porous membrane. Any model developed for the DCMD process should therefore be able to describe the mass transport mechanism through the membrane, the temperature and concentration effects on the surface [...] Read more.
In direct contact membrane distillation (DCMD), heat and mass transfers occur through the porous membrane. Any model developed for the DCMD process should therefore be able to describe the mass transport mechanism through the membrane, the temperature and concentration effects on the surface of the membrane, the permeate flux, and the selectivity of the membrane. In the present study, we developed a predictive mathematical model based on a counter flow heat exchanger analogy for the DCMD process. Two methods were used to analyze the water permeate flux across one hydrophobic membrane layer, namely the log mean temperature difference (LMTD) and the effectiveness-NTU methods. The set of equations was derived in a manner analogous to that employed for heat exchanger systems. The obtained results showed that the permeate flux increases by a factor of approximately 220% when increasing the log mean temperature difference by a factor of 80% or increasing the number of transfer units by a factor of 3%. A good level of agreement between this theoretical model and the experimental data at various feed temperatures confirmed that the model accurately predicts the permeate flux values for the DCMD process. Full article
(This article belongs to the Special Issue Membrane-Based Technologies for Water/Wastewater Treatment)
Show Figures

Figure 1

83 pages, 28634 KiB  
Review
Improved Performance of Latent Heat Energy Storage Systems in Response to Utilization of High Thermal Conductivity Fins
by Wenwen Ye, Dourna Jamshideasli and Jay M. Khodadadi
Energies 2023, 16(3), 1277; https://doi.org/10.3390/en16031277 - 25 Jan 2023
Cited by 25 | Viewed by 4480
Abstract
Analytical, computational and experimental investigations directed at improving the performance of latent heat thermal energy storage systems that utilize high thermal conductivity fins in direct contact with phase change materials are reviewed. Researchers have focused on waste heat recovery, thermal management of buildings/computing [...] Read more.
Analytical, computational and experimental investigations directed at improving the performance of latent heat thermal energy storage systems that utilize high thermal conductivity fins in direct contact with phase change materials are reviewed. Researchers have focused on waste heat recovery, thermal management of buildings/computing platforms/photovoltaics/satellites and energy storage for solar thermal applications. Aluminum (including various alloys), brass, bronze, copper, PVC, stainless steel and steel were the adopted fin materials. Capric-palmitic acid, chloride mixtures, dodecanoic acid, erythritol, fluorides, lauric acid, naphthalene, nitrite and nitrate mixtures, paraffins, potassium nitrate, salt hydrates, sodium hydrate, stearic acid, sulfur, water and xylitol have been the adopted fusible materials (melting or fusion temperature Tm range of −129.6 to 767 °C). Melting and solidification processes subject to different heat exchange operating conditions were investigated. Studies of thawing have highlighted the marked role of natural convection, exhibiting that realizing thermally unstable fluid layers promote mixing and expedited melting. Performance of the storage system in terms of the hastened charge/discharge time was strongly affected by the number of fins (or fin-pitch) and fin length, in comparison to fin thickness and fin orientation. Strength of natural convection, which is well-known to play an important role on thawing, is diminished by introduction of fins. Consequently, a designer must consider suppression of buoyancy and the extent of sacrificed PCM in selecting the optimum positions and orientation of the fins. Complex fin shapes featuring branching arrangements, crosses, Y-shapes, etc. are widely replacing simple planar fins, satisfying the challenge of forming short-distance conducting pathways linking the temperature extremes of the storage system. Full article
(This article belongs to the Topic Energy Storage and Conversion Systems)
Show Figures

Figure 1

22 pages, 80702 KiB  
Article
Design Enhancement of Eductor for Active Vapor Transport and Condensation during Two-Phase Single-Species Flow
by Ravi Koirala, Quoc Linh Ve, Eliza Rupakheti, Kiao Inthavong and Abhijit Date
Energies 2023, 16(3), 1265; https://doi.org/10.3390/en16031265 - 25 Jan 2023
Cited by 4 | Viewed by 3040
Abstract
This study is focused on enhancing secondary vapor entrainment and direct-contact condensation in a water jet eductor for the purpose of developing a compact, medium-scale desalination system. It encompasses an extended investigation of an eductor as a condenser, or heat exchanger, for the [...] Read more.
This study is focused on enhancing secondary vapor entrainment and direct-contact condensation in a water jet eductor for the purpose of developing a compact, medium-scale desalination system. It encompasses an extended investigation of an eductor as a condenser, or heat exchanger, for the entrained phase. Exergy study, experimental measurement, and computational analysis are the primary methodologies employed in this work. The target parameters of the optimization work were set through exergetic analysis to identify the region of maximum exergy destruction. In the case of water and water vapor as primary and secondary fluids, mixing and condensation initiates in the mixing chamber of the eductor and is where the maximum exergy destruction was calculated. Therefore, multi-jet primary nozzle eductors were studied to determine the effect of increased interphase interaction area on the exergy destruction and the maximum suction and cooling capacities. Increases in the entrainment ratio, condensation rate and heat transfer coefficient were noted for increasing numbers of nozzles when comparing one-, two- and three-jet eductors. Full article
(This article belongs to the Special Issue Heat and Mass Transfer)
Show Figures

Figure 1

31 pages, 2963 KiB  
Review
Direct Contact Condensers: A Comprehensive Review of Experimental and Numerical Investigations on Direct-Contact Condensation
by Paweł Madejski, Tomasz Kuś, Piotr Michalak, Michał Karch and Navaneethan Subramanian
Energies 2022, 15(24), 9312; https://doi.org/10.3390/en15249312 - 8 Dec 2022
Cited by 13 | Viewed by 11233
Abstract
Direct contact heat exchangers can be smaller, cheaper, and have simpler construction than the surface, shell, or tube heat exchangers of the same capacity and can operate in evaporation or condensation modes. For these reasons, they have many practical applications, such as water [...] Read more.
Direct contact heat exchangers can be smaller, cheaper, and have simpler construction than the surface, shell, or tube heat exchangers of the same capacity and can operate in evaporation or condensation modes. For these reasons, they have many practical applications, such as water desalination, heat exchangers in power plants, or chemical engineering devices. This paper presents a comprehensive review of experimental and numerical activities focused on the research about direct condensation processes and testing direct contact condensers on the laboratory scale. Computational Fluid Dynamics (CFD) methods and CFD solvers are the most popular tools in the numerical analysis of direct contact condensers because of the phenomenon’s complexity as multiphase turbulent flow with heat transfer and phase change. The presented and developed numerical models must be carefully calibrated and physically validated by experimental results. Results of the experimental campaign in the laboratory scale with the test rig and properly designed measuring apparatus can give detailed qualitative and quantitative results about direct contact condensation processes. In this case, the combination of these two approaches, numerical and experimental investigation, is the comprehensive method to deeply understand the direct contact condensation process. Full article
Show Figures

Figure 1

19 pages, 6320 KiB  
Review
Complex Mathematical Modeling of the Well Drilling Process
by Maria Churilova, Sergey Lupuleac and Nikita Shaposhnikov
Appl. Sci. 2022, 12(22), 11369; https://doi.org/10.3390/app122211369 - 9 Nov 2022
Cited by 2 | Viewed by 3811
Abstract
Recently, the technologies for the global modeling of the process of oil well drilling have become widespread. Mathematical modeling is used in well design, virtual testing of various drilling equipment, simulations of various emergency situations, and personnel training. Complex modeling of the well [...] Read more.
Recently, the technologies for the global modeling of the process of oil well drilling have become widespread. Mathematical modeling is used in well design, virtual testing of various drilling equipment, simulations of various emergency situations, and personnel training. Complex modeling of the well drilling process includes the simulation of such phenomena as the dynamics of the drill string and its contact interaction with walls, the flow of the drilling fluid and its interaction with the soil (considering influxes and leakages), soil crushing by the drill, the transfer of cuttings particles by the drilling fluid, heat exchange with the soil, and others. This paper provides a detailed review of the existing modeling approaches to solving such problems. Most of the studies included in the review focus on building a detailed mathematical model of one or several of the above processes. Moreover, all these processes mutually influence each other, which also needs to be considered in the analysis. It appears that further development of such a multiphysics approach will be the main direction of research in this area in the near future. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

Back to TopTop