Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,796)

Search Parameters:
Keywords = direct coefficient

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 7092 KiB  
Article
Slotted Circular-Patch MIMO Antenna for 5G Applications at Sub-6 GHz
by Heba Ahmed, Allam M. Ameen, Ahmed Magdy, Ahmed Nasser and Mohammed Abo-Zahhad
Telecom 2025, 6(3), 53; https://doi.org/10.3390/telecom6030053 - 28 Jul 2025
Abstract
The swift advancement of fifth-generation (5G) wireless technology brings forth a range of enhancements to address the increasing demand for data, the proliferation of smart devices, and the growth of the Internet of Things (IoT). This highly interconnected communication environment necessitates using multiple-input [...] Read more.
The swift advancement of fifth-generation (5G) wireless technology brings forth a range of enhancements to address the increasing demand for data, the proliferation of smart devices, and the growth of the Internet of Things (IoT). This highly interconnected communication environment necessitates using multiple-input multiple-output (MIMO) systems to achieve adequate channel capacity. In this article, a 2-port MIMO system using two flipped parallel 1 × 2 arrays and a 2-port MIMO system using two opposite 1 × 4 arrays designed and fabricated antennas for 5G wireless communication in the sub-6 GHz band, are presented, overcoming the limitations of previous designs in gain, radiation efficiency and MIMO performance. The designed and fabricated single-element antenna features a circular microstrip patch design based on ROGER 5880 (RT5880) substrate, which has a thickness of 1.57 mm, a permittivity of 2.2, and a tangential loss of 0.0009. The 2-port MIMO of two 1 × 2 arrays and the 2-port MIMO of two 1 × 4 arrays have overall dimensions of 132 × 66 × 1.57 mm3 and 140 × 132 × 1.57 mm3, respectively. The MIMO of two 1 × 2 arrays and MIMO of two 1 × 4 arrays encompass maximum gains of 8.3 dBi and 10.9 dBi, respectively, with maximum radiation efficiency reaching 95% and 97.46%. High MIMO performance outcomes are observed for both the MIMO of two 1 × 2 arrays and the MIMO of two 1 × 4 arrays, with the channel capacity loss (CCL) ˂ 0.4 bit/s/Hz and ˂0.3 bit/s/Hz, respectively, an envelope correlation coefficient (ECC) ˂ 0.006 and ˂0.003, respectively, directivity gain (DG) about 10 dB, and a total active reflection coefficient (TARC) under −10 dB, ensuring impedance matching and effective mutual coupling among neighboring parameters, which confirms their effectiveness for 5G applications. The three fabricated antennas were experimentally tested and implemented using the MIMO Application Framework version 19.5 for 5G systems, demonstrating operational effectiveness in 5G applications. Full article
Show Figures

Figure 1

14 pages, 4169 KiB  
Article
The Effects of Natural and Social Factors on Surface Temperature in a Typical Cold-Region City of the Northern Temperate Zone: A Case Study of Changchun, China
by Maosen Lin, Yifeng Liu, Wei Xu, Bihao Gao, Xiaoyi Wang, Cuirong Wang and Dali Guo
Sustainability 2025, 17(15), 6840; https://doi.org/10.3390/su17156840 - 28 Jul 2025
Abstract
Land cover, topography, precipitation, and socio-economic factors exert both direct and indirect influences on urban land surface temperatures. Within the broader context of global climate change, these influences are magnified by the escalating intensity of the urban heat island effect. However, the interplay [...] Read more.
Land cover, topography, precipitation, and socio-economic factors exert both direct and indirect influences on urban land surface temperatures. Within the broader context of global climate change, these influences are magnified by the escalating intensity of the urban heat island effect. However, the interplay and underlying mechanisms of natural and socio-economic determinants of land surface temperatures remain inadequately explored, particularly in the context of cold-region cities located in the northern temperate zone of China. This study focuses on Changchun City, employing multispectral remote sensing imagery to derive and spatially map the distribution of land surface temperatures and topographic attributes. Through comprehensive analysis, the research identifies the principal drivers of temperature variations and delineates their seasonal dynamics. The findings indicate that population density, night-time light intensity, land use, GDP (Gross Domestic Product), relief, and elevation exhibit positive correlations with land surface temperature, whereas slope demonstrates a negative correlation. Among natural factors, the correlations of slope, relief, and elevation with land surface temperature are comparatively weak, with determination coefficients (R2) consistently below 0.15. In contrast, socio-economic factors exert a more pronounced influence, ranked as follows: population density (R2 = 0.4316) > GDP (R2 = 0.2493) > night-time light intensity (R2 = 0.1626). The overall hierarchy of the impact of individual factors on the temperature model, from strongest to weakest, is as follows: population, night-time light intensity, land use, GDP, slope, relief, and elevation. In examining Changchun and analogous cold-region cities within the northern temperate zone, the research underscores that socio-economic factors substantially outweigh natural determinants in shaping urban land surface temperatures. Notably, human activities catalyzed by population growth emerge as the most influential factor, profoundly reshaping the urban thermal landscape. These activities not only directly escalate anthropogenic heat emissions, but also alter land cover compositions, thereby undermining natural cooling mechanisms and exacerbating the urban heat island phenomenon. Full article
Show Figures

Figure 1

29 pages, 17807 KiB  
Article
Low-Cost Microalgae Cell Concentration Estimation in Hydrochemistry Applications Using Computer Vision
by Julia Borisova, Ivan V. Morshchinin, Veronika I. Nazarova, Nelli Molodkina and Nikolay O. Nikitin
Sensors 2025, 25(15), 4651; https://doi.org/10.3390/s25154651 - 27 Jul 2025
Abstract
Accurate and efficient estimation of microalgae cell concentration is critical for applications in hydrochemical monitoring, biofuel production, pharmaceuticals, and ecological studies. Traditional methods, such as manual counting with a hemocytometer, are time-consuming and prone to human error, while automated systems are often costly [...] Read more.
Accurate and efficient estimation of microalgae cell concentration is critical for applications in hydrochemical monitoring, biofuel production, pharmaceuticals, and ecological studies. Traditional methods, such as manual counting with a hemocytometer, are time-consuming and prone to human error, while automated systems are often costly and require extensive training data. This paper presents a low-cost, automated approach for estimating cell concentration in Chlorella vulgaris suspensions using classical computer vision techniques. The proposed method eliminates the need for deep learning by leveraging the Hough circle transform to detect and count cells in microscope images, combined with a conversion factor to translate pixel measurements into metric units for direct concentration calculation (cells/mL). Validation against manual hemocytometer counts demonstrated strong agreement, with a Pearson correlation coefficient of 0.96 and a mean percentage difference of 17.96%. The system achieves rapid processing (under 30 s per image) and offers interpretability, allowing specialists to verify results visually. Key advantages include affordability, minimal hardware requirements, and adaptability to other microbiological applications. Limitations, such as sensitivity to cell clumping and impurities, are discussed. This work provides a practical, accessible solution for laboratories lacking expensive automated equipment, bridging the gap between manual methods and high-end technologies. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

16 pages, 7636 KiB  
Article
Rapid Prediction of High-Resolution 3D Ship Airwake in the Glide Path Based on CFD, BP Neural Network, and DWL
by Qingsong Liu, Gan Ren, Dingfu Zhou, Bo Liu and Zida Li
Appl. Sci. 2025, 15(15), 8336; https://doi.org/10.3390/app15158336 - 26 Jul 2025
Viewed by 47
Abstract
To meet the requirements of the high spatiotemporal three-dimensional (3D) airflow field within the glide path corridor during carrier-based aircraft/unmanned aerial vehicles (UAVs) landings, this paper proposes a prediction method for high spatiotemporal resolution 3D ship airwake along the glide path by integrating [...] Read more.
To meet the requirements of the high spatiotemporal three-dimensional (3D) airflow field within the glide path corridor during carrier-based aircraft/unmanned aerial vehicles (UAVs) landings, this paper proposes a prediction method for high spatiotemporal resolution 3D ship airwake along the glide path by integrating computational fluid dynamics (CFD), backpropagation (BP) neural network, and Doppler wind lidar (DWL). Firstly, taking the conceptual design aircraft carrier model as the research object, CFD numerical simulations of the ship airwake within the glide path region are carried out using the Poly-Hexcore grid and the detached eddy simulation (DES)/the Reynolds-averaged Navier–Stokes (RANS) turbulence models. Then, using the high spatial resolution ship airwake along the glide path obtained from steady RANS computations under different inflow conditions as a sample dataset, the BP neural network prediction models were trained and optimized. Along the ideal glide path within 200 m behind the stern, the correlation coefficients between the predicted results of the BP neural network and the headwind, crosswind, and vertical wind of the testing samples exceeded 0.95, 0.91, and 0.82, respectively. Finally, using the inflow speed and direction with high temporal resolution from the bow direction obtained by the shipborne DWL as input, the BP prediction models can achieve accurate prediction of the 3D ship airwake along the glide path with high spatiotemporal resolution (3 m, 3 Hz). Full article
Show Figures

Figure 1

19 pages, 2349 KiB  
Article
Coordinated Slip Ratio and Yaw Moment Control for Formula Student Electric Racing Car
by Yuxing Bai, Weiyi Kong, Liguo Zang, Weixin Zhang, Chong Zhou and Song Cui
World Electr. Veh. J. 2025, 16(8), 421; https://doi.org/10.3390/wevj16080421 - 26 Jul 2025
Viewed by 50
Abstract
The design and optimization of drive distribution strategies are critical for enhancing the performance of Formula Student electric racing cars, which face demanding operational conditions such as rapid acceleration, tight cornering, and variable track surfaces. Given the increasing complexity of racing environments and [...] Read more.
The design and optimization of drive distribution strategies are critical for enhancing the performance of Formula Student electric racing cars, which face demanding operational conditions such as rapid acceleration, tight cornering, and variable track surfaces. Given the increasing complexity of racing environments and the need for adaptive control solutions, a multi-mode adaptive drive distribution strategy for four-wheel-drive Formula Student electric racing cars is proposed in this study to meet specialized operational demands. Based on the dynamic characteristics of standardized test scenarios (e.g., straight-line acceleration and figure-eight loop), two control modes are designed: slip-ratio-based anti-slip control for longitudinal dynamics and direct yaw moment control for lateral stability. A CarSim–Simulink co-simulation platform is established, with test scenarios conforming to competition standards, including variable road adhesion coefficients (μ is 0.3–0.9) and composite curves. Simulation results indicate that, compared to conventional PID control, the proposed strategy reduces the peak slip ratio to the optimal range of 18% during acceleration and enhances lateral stability in the figure-eight loop, maintaining the sideslip angle around −0.3°. These findings demonstrate the potential for significant improvements in both performance and safety, offering a scalable framework for future developments in racing vehicle control systems. Full article
14 pages, 8086 KiB  
Article
Flexible FLIG-Based Temperature Sensor Enabled by Femtosecond Laser Direct Writing for Thermal Monitoring in Health Systems
by Huansheng Wu, Cong Wang, Linpeng Liu and Ji’an Duan
Sensors 2025, 25(15), 4643; https://doi.org/10.3390/s25154643 - 26 Jul 2025
Viewed by 56
Abstract
In this study, a facile and mask-free femtosecond laser direct writing (FLDW) approach is proposed to fabricate porous graphene (FLIG) patterns directly on polyimide (PI) substrates. By systematically adjusting the laser scanning spacing (10–25 μm), denser and more continuous microstructures are obtained, resulting [...] Read more.
In this study, a facile and mask-free femtosecond laser direct writing (FLDW) approach is proposed to fabricate porous graphene (FLIG) patterns directly on polyimide (PI) substrates. By systematically adjusting the laser scanning spacing (10–25 μm), denser and more continuous microstructures are obtained, resulting in significantly enhanced thermal sensitivity. The optimized sensor demonstrated a temperature coefficient of 0.698% °C−1 within the range of 40–120 °C, with response and recovery times of 10.3 s and 20.9 s, respectively. Furthermore, it exhibits remarkable signal stability across multiple thermal cycles, a testament to its reliability in extreme conditions. Moreover, the sensor was successfully integrated into a 3D-printed robotic platform, achieving both contact and non-contact temperature detection. These results underscore the sensor’s practical adaptability for real-time thermal sensing. This work presents a viable and scalable methodology for fabricating high-performance FLIG-based flexible temperature sensors, with extensive application prospects in wearable electronics, electronic skin, and intelligent human–machine interfaces. Full article
(This article belongs to the Special Issue State of the Art in Wearable Sensors for Health Monitoring)
Show Figures

Figure 1

15 pages, 5889 KiB  
Article
A Strong Misalignment Tolerance Wireless Power Transfer System for AUVs with Hybrid Magnetic Coupler
by Haibing Wen, Xiaolong Zhou, Yu Wang, Zhengchao Yan, Kehan Zhang, Jie Wen, Lei Yang, Yaopeng Zhao, Yang Liu and Xiangqian Tong
J. Mar. Sci. Eng. 2025, 13(8), 1423; https://doi.org/10.3390/jmse13081423 - 25 Jul 2025
Viewed by 85
Abstract
Wireless power transfer systems require not only strong coupling capabilities but also stable output under various misalignment conditions. This paper proposes a hybrid magnetic coupler for autonomous underwater vehicles (AUVs), featuring two identical arc-shaped rectangular transmitting coils and a combination of an arc-shaped [...] Read more.
Wireless power transfer systems require not only strong coupling capabilities but also stable output under various misalignment conditions. This paper proposes a hybrid magnetic coupler for autonomous underwater vehicles (AUVs), featuring two identical arc-shaped rectangular transmitting coils and a combination of an arc-shaped rectangular receiving coil and two anti-series connected solenoid coils. The arc-shaped rectangular receiving coil captures the magnetic flux generated by the transmitting coil, which is directed toward the center, while the solenoid coils capture the axial magnetic flux generated by the transmitting coil. The parameters of the proposed magnetic coupler have been optimized to enhance the coupling coefficient and improve the system’s tolerance to misalignments. To verify the feasibility of the proposed magnetic coupler, a 300 W prototype with LCC-S compensation topology is built. Within a 360° rotational misalignment range, the system’s output power maintains around 300 W, with a stable power transmission efficiency of over 92.14%. When axial misalignment of 40 mm occurs, the minimum output power is 282.8 W, and the minimum power transmission efficiency is 91.6%. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

27 pages, 30210 KiB  
Article
Research on a Rapid Three-Dimensional Compressor Flow Field Prediction Method Integrating U-Net and Physics-Informed Neural Networks
by Chen Wang and Hongbing Ma
Mathematics 2025, 13(15), 2396; https://doi.org/10.3390/math13152396 - 25 Jul 2025
Viewed by 78
Abstract
This paper presents a neural network model, PINN-AeroFlow-U, for reconstructing full-field aerodynamic quantities around three-dimensional compressor blades, including regions near the wall. This model is based on structured CFD training data and physics-informed loss functions and is proposed for direct 3D compressor flow [...] Read more.
This paper presents a neural network model, PINN-AeroFlow-U, for reconstructing full-field aerodynamic quantities around three-dimensional compressor blades, including regions near the wall. This model is based on structured CFD training data and physics-informed loss functions and is proposed for direct 3D compressor flow prediction. It maps flow data from the physical domain to a uniform computational domain and employs a U-Net-based neural network capable of capturing the sharp local transitions induced by fluid acceleration near the blade leading edge, as well as learning flow features associated with internal boundaries (e.g., the wall boundary). The inputs to PINN-AeroFlow-U are the flow-field coordinate data from high-fidelity multi-geometry blade solutions, the 3D blade geometry, and the first-order metric coefficients obtained via mesh transformation. Its outputs include the pressure field, temperature field, and velocity vector field within the blade passage. To enhance physical interpretability, the network’s loss function incorporates both the Euler equations and gradient constraints. PINN-AeroFlow-U achieves prediction errors of 1.063% for the pressure field and 2.02% for the velocity field, demonstrating high accuracy. Full article
Show Figures

Figure 1

23 pages, 1593 KiB  
Article
Natural Ventilation Technique of uNVeF in Urban Residential Unit Through a Case Study
by Ming-Lun Alan Fong and Wai-Kit Chan
Urban Sci. 2025, 9(8), 291; https://doi.org/10.3390/urbansci9080291 - 25 Jul 2025
Viewed by 322
Abstract
The present study was motivated by the need to enhance indoor air quality and reduce airborne disease transmission in dense urban environments where high-rise residential buildings face challenges in achieving effective natural ventilation. The problem lies in the lack of scalable and convenient [...] Read more.
The present study was motivated by the need to enhance indoor air quality and reduce airborne disease transmission in dense urban environments where high-rise residential buildings face challenges in achieving effective natural ventilation. The problem lies in the lack of scalable and convenient tools to optimize natural ventilation rate, particularly in urban settings with varying building heights. To address this, the scientific technique developed with an innovative metric, the urbanized natural ventilation effectiveness factor (uNVeF), integrates regression analysis of wind direction, velocity, air change rate per hour (ACH), window configurations, and building height to quantify ventilation efficiency. By employing a field measurement methodology, the measurements were conducted across 25 window-opening scenarios in a 13.9 m2 residential unit on the 35/F of a Hong Kong public housing building, supplemented by the Hellman Exponential Law with a site-specific friction coefficient (0.2907, R2 = 0.9232) to estimate the lower floor natural ventilation rate. The results confirm compliance with Hong Kong’s statutory 1.5 ACH requirement (Practice Note for Authorized Persons, Registered Structural Engineers, and Registered Geotechnical Engineers) and achieving a peak ACH at a uNVeF of 0.953 with 75% window opening. The results also revealed that lower floors can maintain 1.5 ACH with adjusted window configurations. Using the Wells–Riley model, the estimation results indicated significant airborne disease infection risk reductions of 96.1% at 35/F and 93.4% at 1/F compared to the 1.5 ACH baseline which demonstrates a strong correlation between ACH, uNVeF and infection risks. The uNVeF framework offers a practical approach to optimize natural ventilation and provides actionable guidelines, together with future research on the scope of validity to refine this technique for residents and developers. The implications in the building industry include setting up sustainable design standards, enhancing public health resilience, supporting policy frameworks for energy-efficient urban planning, and potentially driving innovation in high-rise residential construction and retrofitting globally. Full article
Show Figures

Figure 1

20 pages, 506 KiB  
Article
Efficient Numerical Methods for Time-Fractional Diffusion Equations with Caputo-Type Erdélyi–Kober Operators
by Ruilian Du and Jianhua Tang
Fractal Fract. 2025, 9(8), 486; https://doi.org/10.3390/fractalfract9080486 - 24 Jul 2025
Viewed by 96
Abstract
This study proposes an L1 discretization scheme (an accurate second-order finite difference method) for time-fractional diffusion equations involving the Caputo-type Erdélyi–Kober operator, which models anomalous diffusion. Our key contributions include the following: (i) reformulation of the original problem into an equivalent fractional integral [...] Read more.
This study proposes an L1 discretization scheme (an accurate second-order finite difference method) for time-fractional diffusion equations involving the Caputo-type Erdélyi–Kober operator, which models anomalous diffusion. Our key contributions include the following: (i) reformulation of the original problem into an equivalent fractional integral equation to facilitate analysis; (ii) development of a novel L1 scheme for temporal discretization, which is rigorously proven to realize second-order accuracy in time; (iii) derivation of positive definiteness properties for discrete kernel coefficients; (iv) discretization of the spatial derivative using the classical second-order centered difference scheme, for which its second-order spatial convergence is rigorously verified through numerical experiments (this results in a fully discrete scheme, enabling second-order accuracy in both temporal and spatial dimensions); (v) a fast algorithm leveraging sum-of-exponential approximation, reducing the computational complexity from O(N2) to O(NlogN) and memory requirements from O(N) to O(logN), where N is the number of grid points on a time scale. Our numerical experiments demonstrate the stability of the scheme across diverse parameter regimes and quantify significant gains in computational efficiency. Compared to the direct method, the fast algorithm substantially reduces both memory requirements and CPU time for large-scale simulations. Although a rigorous stability analysis is deferred to subsequent research, the proven properties of the coefficients and numerical validation confirm the scheme’s reliability. Full article
Show Figures

Figure 1

16 pages, 2199 KiB  
Article
Carbon Footprint and Energy Balance Analysis of Rice-Wheat Rotation System in East China
by Dingqian Wu, Yezi Shen, Yuxuan Zhang, Tianci Zhang and Li Zhang
Agronomy 2025, 15(8), 1778; https://doi.org/10.3390/agronomy15081778 - 24 Jul 2025
Viewed by 194
Abstract
The rice-wheat rotation is the main agricultural cropping system in Jiangsu Province, playing a vital role in ensuring food security and promoting economic development. However, current research on rice-wheat systems mainly focuses on in-situ controlled experiments at the point scale, with limited studies [...] Read more.
The rice-wheat rotation is the main agricultural cropping system in Jiangsu Province, playing a vital role in ensuring food security and promoting economic development. However, current research on rice-wheat systems mainly focuses on in-situ controlled experiments at the point scale, with limited studies addressing carbon footprint (CF) and energy balance (EB) at the regional scale and long time series. Therefore, we analyzed the evolution patterns of the CF and EB of the rice-wheat system in Jiangsu Province from 1980 to 2022, as well as their influencing factors. The results showed that the sown area and total yield of rice and wheat exhibited an increasing–decreasing–increasing trend during 1980–2022, while the yield per unit area increased continuously. The CF of rice and wheat increased by 4172.27 kg CO2 eq ha−1 and 2729.18 kg CO2 eq ha−1, respectively, with the greenhouse gas emissions intensity (GHGI) showing a fluctuating upward trend. Furthermore, CH4 emission, nitrogen (N) fertilizer, and irrigation were the main factors affecting the CF of rice, with proportions of 36%, 20.26%, and 17.34%, respectively. For wheat, N fertilizer, agricultural diesel, compound fertilizer, and total N2O emission were the primary contributors, accounting for 42.39%, 22.54%, 13.65%, and 13.14%, respectively. Among energy balances, the net energy (NE) of rice exhibited an increasing and then fluctuating trend, while that of wheat remained relatively stable. The energy utilization efficiency (EUE), energy productivity (EPD), and energy profitability (EPF) of rice showed an increasing and then decreasing trend, while wheat decreased by 46.31%, 46.31%, and 60.62% during 43 years, respectively. Additionally, N fertilizer, agricultural diesel, and compound fertilizer accounted for 43.91–45.37%, 21.63–25.81%, and 12.46–20.37% of energy input for rice and wheat, respectively. Moreover, emission factors and energy coefficients may vary over time, which is an important consideration in the analysis of long-term time series. This study analyzes the ecological and environmental effects of the rice-wheat system in Jiangsu Province, which helps to promote the development of agriculture in a green, low-carbon, and high-efficiency direction. It also offers a theoretical basis for constructing a low-carbon sustainable agricultural production system. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

17 pages, 3023 KiB  
Article
Slip-Resistance Performance of Basketball Shoes Tread Patterns on Common Courts
by Pramod Yadav, Shubham Gupta, Dishant Sharma and Arnab Chanda
Appl. Mech. 2025, 6(3), 54; https://doi.org/10.3390/applmech6030054 - 24 Jul 2025
Viewed by 245
Abstract
Basketball requires intense movements like jumping and sudden changes in direction, increasing the risk of slips and falls due to poor shoe–court traction. Therefore, a significant demand is for good traction performance in basketball shoes, particularly in the heel region on different court [...] Read more.
Basketball requires intense movements like jumping and sudden changes in direction, increasing the risk of slips and falls due to poor shoe–court traction. Therefore, a significant demand is for good traction performance in basketball shoes, particularly in the heel region on different court surfaces, to prevent slipping. This study examined the traction performance of fifteen common basketball shoe designs that were considered and developed using thermoplastic polyurethane to assess the available coefficient of friction (ACOF) on popular floorings (hardwood, synthetic, and polyurethane) under dry and wet conditions using a robotic slip tester. Results indicate that the hardwood flooring provided better traction, followed by the synthetic flooring, while the polyurethane flooring showed reduced friction. The study also examined the traction with apparent contact areas. Shoes with herringbone and circular tread patterns demonstrated the highest traction on all flooring in dry conditions. This research is anticipated to help basketball shoemakers choose safer shoes for player safety and performance, providing a foundation for future research on shoe flooring interaction in basketball. Full article
Show Figures

Graphical abstract

32 pages, 4241 KiB  
Review
Extended Reality Technologies: Transforming the Future of Crime Scene Investigation
by Xavier Chango, Omar Flor-Unda, Angélica Bustos-Estrella, Pedro Gil-Jiménez and Hilario Gómez-Moreno
Technologies 2025, 13(8), 315; https://doi.org/10.3390/technologies13080315 - 23 Jul 2025
Viewed by 277
Abstract
The integration of extended reality (XR) technologies, including virtual reality (VR), augmented reality (AR), and mixed reality (MR), is transforming forensic investigation by empowering processes such as crime scene reconstruction, evidence analysis, and professional training. This manuscript presents a systematic review of technological [...] Read more.
The integration of extended reality (XR) technologies, including virtual reality (VR), augmented reality (AR), and mixed reality (MR), is transforming forensic investigation by empowering processes such as crime scene reconstruction, evidence analysis, and professional training. This manuscript presents a systematic review of technological advances in XR technologies developed and employed for forensic investigation, their impacts, challenges, and prospects for the future. A systematic review was carried out based on the PRISMA® methodology and considering articles published in repositories and scientific databases such as SCOPUS, Science Direct, PubMed, Web of Science, Taylor and Francis, and IEEE Xplore. Two observers carried out the selection of articles and a Cohen’s Kappa coefficient of 0.7226 (substantial agreement) was evaluated. The results show that XR technologies contribute to improving accuracy, efficiency, and collaboration in forensic investigation processes. In addition, they facilitate the preservation of crime scene data and reduce training costs. Technological limitations, implementation costs, ethical aspects, and challenges persist in the acceptability of these devices. XR technologies have significant transformative potential in forensic investigations, although additional research is required to overcome current barriers and establish standardized protocols that enable their effective integration. Full article
Show Figures

Figure 1

16 pages, 13319 KiB  
Article
Research on Acoustic Field Correction Vector-Coherent Total Focusing Imaging Method Based on Coarse-Grained Elastic Anisotropic Material Properties
by Tianwei Zhao, Ziyu Liu, Donghui Zhang, Junlong Wang and Guowen Peng
Sensors 2025, 25(15), 4550; https://doi.org/10.3390/s25154550 - 23 Jul 2025
Viewed by 157
Abstract
This study aims to address the challenges posed by uneven energy amplitude and a low signal-to-noise ratio (SNR) in the total focus imaging of coarse-crystalline elastic anisotropic materials. A novel method for acoustic field correction vector-coherent total focus imaging, based on the materials’ [...] Read more.
This study aims to address the challenges posed by uneven energy amplitude and a low signal-to-noise ratio (SNR) in the total focus imaging of coarse-crystalline elastic anisotropic materials. A novel method for acoustic field correction vector-coherent total focus imaging, based on the materials’ properties, is proposed. To demonstrate the effectiveness of this method, a test specimen, an austenitic stainless steel nozzle weld, was employed. Seven side-drilled hole defects located at varying positions and depths, each with a diameter of 2 mm, were examined. An ultrasound simulation model was developed based on material backscatter diffraction results, and the scattering attenuation compensation factor was optimized. The acoustic field correction function was derived by combining acoustic field directivity with diffusion attenuation compensation. The phase coherence weighting coefficients were calculated, followed by image reconstruction. The results show that the proposed method significantly improves imaging amplitude uniformity and reduces the structural noise caused by the coarse crystal structure of austenitic stainless steel. Compared to conventional total focus imaging, the detection SNR of the seven defects increased by 2.34 dB to 10.95 dB. Additionally, the defect localization error was reduced from 0.1 mm to 0.05 mm, with a range of 0.70 mm to 0.88 mm. Full article
(This article belongs to the Special Issue Ultrasound Imaging and Sensing for Nondestructive Testing)
Show Figures

Figure 1

12 pages, 239 KiB  
Article
The Range and Direction of Changes in the Classification of the Body Mass Index in Children Measured Between the Ages of 6 and 10 in Gdansk, Poland (Longitudinal Studies)
by Marek Jankowski, Aleksandra Niedzielska, Jacek Sein Anand, Beata Wolska and Paulina Metelska
Nutrients 2025, 17(15), 2399; https://doi.org/10.3390/nu17152399 - 23 Jul 2025
Viewed by 189
Abstract
Background/Objectives: Body Mass Index (BMI) is a widely used indicator of children’s nutritional status and helps identify risks of being underweight and overweight during development. Understanding how BMI classifications evolve over time is crucial for early intervention and public health planning. This study [...] Read more.
Background/Objectives: Body Mass Index (BMI) is a widely used indicator of children’s nutritional status and helps identify risks of being underweight and overweight during development. Understanding how BMI classifications evolve over time is crucial for early intervention and public health planning. This study aimed to determine the scope and direction of changes in BMI classification among children between the ages of 6 and 10. Methods: This longitudinal study included 1026 children (497 boys and 529 girls) from Gdansk, Poland. Standardized anthropometric measurements were collected at ages 6 and 10. BMI was calculated and classified using international reference systems (IOTF and OLAF). BMI classification changes were analyzed using rank transformations and Pearson correlation coefficients (p < 0.05) to explore relationships between body measurements. Results: Most children (76.51%) retained their BMI classifications over the four-year period. However, 23.49% experienced changes, with boys more often moving to a higher BMI category (15.29%) and girls more frequently shifting to a lower category (14.03%). The prevalence of children classified as living with obesity declined between ages 6 and 10, while both overweight and underweight classifications slightly increased. Strong correlations were observed between somatic features and BMI at both ages. Conclusions: The stability of BMI classification over time underscores the importance of early identification and sustained monitoring of nutritional status. The sex-specific patterns observed highlight the importance of targeted health promotion strategies. In this context, incorporating dietary interventions—such as promoting balanced meals and reducing unhealthy food intake—could play a significant role in maintaining healthy BMI trajectories and preventing both obesity and undernutrition during childhood. Full article
Back to TopTop