Efficient Numerical Methods for Time-Fractional Diffusion Equations with Caputo-Type Erdélyi–Kober Operators
Abstract
1. Introduction
2. A Direct L1 Difference Scheme
The Derivation of the Difference Scheme
3. A Fast Difference Scheme
3.1. Fast Approximation of the Erdélyi–Kober Integral
3.2. The Fast Difference Scheme
4. Numerical Analysis
N | Direct Difference Scheme (17)–(19) | Fast Difference Scheme (29)–(33) | |||||
---|---|---|---|---|---|---|---|
CPU (s) | CPU (s) | ||||||
0.1 | 80 | 1.02 × 10−5 | 34.98 | 1.02 × 10−5 | 33.46 | ||
160 | 2.67 × 10−6 | 1.9323 | 78.63 | 2.67 × 10−6 | 1.9323 | 75.52 | |
320 | 6.60 × 10−7 | 2.0159 | 214.52 | 6.60 × 10−7 | 2.0159 | 161.22 | |
640 | 1.50 × 10−7 | 2.1320 | 325.09 | 1.50 × 10−7 | 2.1320 | 320.56 | |
0.5 | 80 | 2.78 × 10−5 | 34.74 | 2.78 × 10−5 | 38.59 | ||
160 | 6.97 × 10−6 | 1.9943 | 89.78 | 6.97 × 10−6 | 1.9943 | 78.55 | |
320 | 1.72 × 10−6 | 2.0195 | 155.16 | 1.72 × 10−6 | 2.0195 | 157.49 | |
640 | 3.97 × 10−7 | 2.1129 | 326.34 | 3.97 × 10−7 | 2.1129 | 316.44 | |
0.9 | 80 | 3.09 × 10−5 | 53.27 | 3.09 × 10−5 | 33.52 | ||
160 | 7.70 × 10−6 | 2.0035 | 141.53 | 7.70 × 10−6 | 2.0039 | 73.62 | |
320 | 1.91 × 10−6 | 2.0158 | 278.45 | 1.91 × 10−6 | 2.0147 | 154.67 | |
640 | 4.55 × 10−7 | 2.0661 | 468.05 | 4.46 × 10−7 | 2.0954 | 314.03 |
M | Direct Difference Scheme (17)–(19) | Fast Difference Scheme (29)–(33) | |||||
---|---|---|---|---|---|---|---|
CPU (s) | CPU (s) | ||||||
0.1 | 8 | 2.44 × 10−2 | 2315.75 | 2.44 × 10−2 | 0.85 | ||
6 | 6.09 × 10−3 | 2.0038 | 5880.66 | 6.09 × 10−3 | 2.0038 | 0.95 | |
32 | 1.52 × 10−3 | 2.0010 | 3411.01 | 1.52 × 10−3 | 2.0010 | 1.08 | |
64 | 3.80 × 10−4 | 2.0003 | 2217.43 | 3.80 × 10−4 | 2.0003 | 2.06 | |
0.5 | 8 | 1.78 × 10−2 | 2214.54 | 1.78 × 10−2 | 0.88 | ||
16 | 4.46 × 10−3 | 1.9968 | 5235.00 | 4.46 × 10−3 | 1.9968 | 0.99 | |
32 | 1.12 × 10−3 | 1.9992 | 2617.88 | 1.12 × 10−3 | 1.9992 | 1.14 | |
64 | 2.79 × 10−4 | 1.9998 | 5548.97 | 2.79 × 10−4 | 1.9998 | 2.02 | |
0.9 | 8 | 1.10 × 10−2 | 2791.54 | 1.10 × 10−2 | 1.25 | ||
16 | 2.78 × 10−3 | 1.9896 | 2885.54 | 2.78 × 10−3 | 1.9899 | 1.12 | |
32 | 6.95 × 10−4 | 1.9974 | 2475.10 | 6.94 × 10−4 | 1.9987 | 1.41 | |
64 | 1.74 × 10−4 | 1.9994 | 2438.99 | 1.73 × 10−4 | 2.0044 | 2.32 |
5. Concluding Remarks
- (i)
- Unified framework: It seamlessly addresses both generalized operators and classical Caputo cases enhancing applicability across scenarios requiring adaptive scaling in time or space.
- (ii)
- Computational efficiency: A fast sum-of-exponential algorithm reduces the complexity to and memory to For example, simulations with time steps have computation times reduced from 1 month (direct scheme) to day on a four-core CPU, enabling large-scale fractional PDE modeling.
- (a)
- Modeling HIV dynamics with fractional operators: The anomalous diffusion framework proposed here could be extended to analyze HIV infection models with logistic target-cell growth and cell-to-cell transmission [33]. By replacing classical derivatives with Caputo-type Erdélyi–Kober operators, one may capture memory effects in viral spread dynamics, such as delayed immune responses or heterogeneous infection rates. This aligns with the non-local nature of fractional calculus in biological systems.
- (b)
- (c)
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- de Pablo, A.; Quirós, F.; Rodríguez, A.; Vázquez, J.L. A fractional porous medium equation. Adv. Math. 2011, 226, 1378–1409. [Google Scholar] [CrossRef]
- Kiryakova, V.S. Generalized Fractional Calculus and Applications; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Li, C.P.; Cai, M. Theory and Numerical Approximations of Fractional Integrals and Derivatives; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 2020; pp. xiii+312. [Google Scholar]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 77. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity; Imperial College Press: London, UK, 2010; pp. xx+347. [Google Scholar]
- Metzler, R.; Klafter, J. Accelerating Brownian motion: A fractional dynamics approach to fast diffusion. Europhys. Lett. 2000, 51, 492–498. [Google Scholar] [CrossRef]
- Nigmatullin, R.R. To the theoretical explanation of the “Universal Response”. Phys. Status Solidi (B) 1984, 123, 739–745. [Google Scholar] [CrossRef]
- Erdélyi, A.; Kober, H. Some remarks on Hankel transforms. Q. J. Math. 1940, 11, 212–221. [Google Scholar] [CrossRef]
- Mura, A.; Taqqu, M.S.; Mainardi, F. Non-Markovian diffusion equations and processes: Analysis and simulations. Phys. A 2008, 387, 5033–5064. [Google Scholar] [CrossRef]
- Pagnini, G. Erdélyi-Kober fractional diffusion. Fract. Calc. Appl. Anal. 2012, 15, 117–127. [Google Scholar] [CrossRef]
- Sneddon, I.N. The use in mathematical analysis of Erdélyi -Kober operators and some of their applications. Fract. Calc. Appl. 1975, 457, 37–79. [Google Scholar]
- Luchko, Y.; Trujillo, J.J. Caputo-type modification of the Erdélyi-Kober fractional derivative. Fract. Calc. Appl. Anal. 2007, 10, 249–267. [Google Scholar]
- Tang, J.H. Analysis and Calculation of Erdélyi-Kober Fractional Differential Equations. Ph.D. Thesis, Shanghai University, Shanghai, China, 2022. [Google Scholar]
- Thongsalee, N.; Ntouyas, S.K.; Tariboon, J. Nonlinear Riemann-Liouville fractional differential equations with nonlocal Erdélyi-Kober fractional integral conditions. Fract. Calc. Appl. Anal. 2016, 19, 480–497. [Google Scholar] [CrossRef]
- Wang, J.R.; Dong, X.W.; Zhou, Y. Analysis of nonlinear integral equations with Erdélyi-Kober fractional operator. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 3129–3139. [Google Scholar] [CrossRef]
- Płociniczak, ł. Approximation of the Erdélyi-Kober operator with application to the time-fractional porous medium equation. SIAM J. Appl. Math. 2014, 74, 1219–1237. [Google Scholar] [CrossRef]
- Al-Musalhi, F.; Al-Salti, N.; Karimov, E. Initial boundary value problems for a fractional differential equation with hyper-Bessel operator. Fract. Calc. Appl. Anal. 2018, 21, 200–219. [Google Scholar] [CrossRef]
- Zhang, K.Q. Applications of Erdélyi-Kober fractional integral for solving time-fractional Tricomi-Keldysh type equation. Fract. Calc. Appl. Anal. 2020, 23, 1381–1400. [Google Scholar] [CrossRef]
- Zhang, K.Q. Existence and uniqueness of analytical solution of time-fractional Black-Scholes type equation involving hyper-Bessel operator. Math. Methods Appl. Sci. 2021, 44, 6164–6177. [Google Scholar] [CrossRef]
- Jin, B.T.; Li, B.Y.; Zhou, Z. An analysis of the Crank-Nicolson method for subdiffusion. IMA J. Numer. Anal. 2018, 38, 518–541. [Google Scholar] [CrossRef]
- Lin, Y.M.; Xu, C.J. Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 2007, 225, 1533–1552. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Sun, Z.Z.; Wu, H.W. Error estimates of Crank-Nicolson-type difference schemes for the subdiffusion equation. SIAM J. Numer. Anal. 2011, 49, 2302–2322. [Google Scholar] [CrossRef]
- Płociniczak, Ł.; Sobieszek, S. Numerical schemes for integro-differential equations with Erdélyi-Kober fractional operator. Numer. Algorithms 2017, 76, 125–150. [Google Scholar] [CrossRef]
- Odibat, Z.; Baleanu, D. On a new modification of the Erdélyi-Kober fractional derivative. Fractal Fract. 2021, 5, 121. [Google Scholar] [CrossRef]
- Płociniczak, Ł.; Świtała, M. Numerical scheme for Erdélyi-Kober fractional diffusion equation using Galerkin-Hermite method. Fract. Calc. Appl. Anal. 2022, 25, 1651–1687. [Google Scholar] [CrossRef]
- Chen, T.; Li, F.; Yu, P. Nilpotent center conditions in cubic switching polynomial Liénard systems by higher-order analysis. J. Differ. Equ. 2023, 379, 258–289. [Google Scholar] [CrossRef]
- Li, F.; Chen, T.; Liu, Y.Y.; Yu, P. A complete classification on the center-focus problem of a generalized cubic kukles system with a nilpotent singular point. Qual. Theory Dyn. Syst. 2024, 23, 8. [Google Scholar] [CrossRef]
- Li, F.; Liu, Y.Y.; Yu, P.; Wang, J. Complex integrability and linearizability of cubic Z2-equivariant systems with two 1:q resonant singular points. J. Differ. Equ. 2021, 300, 786–813. [Google Scholar] [CrossRef]
- Li, F.; Jin, Y.L.; Tian, Y.; Yu, P. Integrability and linearizability of cubic Z2 systems with non-resonant singular points. J. Differ. Equ. 2020, 269, 9026–9049. [Google Scholar] [CrossRef]
- López-Marcos, J. A difference scheme for a nonlinear partial integro differential equation. SIAM J. Numer. Anal. 1990, 27, 20–31. [Google Scholar] [CrossRef]
- Jiang, S.D.; Zhang, J.W.; Zhang, Q.; Zhang, Z.M. Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 2017, 21, 650–678. [Google Scholar] [CrossRef]
- Stynes, M.; O’Riordan, E.; Gracia, J. Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 2017, 55, 1057–1079. [Google Scholar] [CrossRef]
- Li, F.; Wang, J.L. Analysis of an HIV infection model with logistic target-cell growth and cell-to-cell transmission. Chaos Solitions Fractals 2015, 81, 136–145. [Google Scholar] [CrossRef]
- Li, F.; Yu, P.; Tian, Y.; Liu, Y.R. Center and isochronous center conditions for switching systems associated with elementary singular points. Commun. Nonlinear Sci. Numer. Simul. 2015, 28, 81–97. [Google Scholar] [CrossRef]
- Li, F.; Yu, P.; Liu, Y.R.; Liu, Y.Y. Centers and isochronous centers of a class of quasi-analytic switching systems. Sci. China Math. 2018, 61, 1201–1218. [Google Scholar] [CrossRef]
- Li, F.; Liu, Y.R.; Liu, Y.Y.; Yu, P. Bi-center problem and bifurcation of limit cycles from nilpotent singular points in Z2-equivariant cubic vector fields. J. Differ. Equ. 2018, 265, 4965–4992. [Google Scholar] [CrossRef]
Model | Operator | Parameters | Physical Interpretation |
---|---|---|---|
Classical Caputo [20,21,22] | Standard anomalous diffusion | ||
Proposed model (Equation (1)) | (Equation (4)) | Generalized scaling in time; | |
models multi-scale transport [9,10] |
N | Direct Difference Scheme (17)–(19) | Fast Difference Scheme (29)–(33) | |||||
---|---|---|---|---|---|---|---|
CPU (s) | CPU (s) | ||||||
(0.3, 0.4) | 80 | 2.02 × 10−4 | 8.46 | 2.02 × 10−4 | 8.05 | ||
160 | 5.16 × 10−5 | 1.9706 | 19.86 | 5.16 × 10−5 | 1.9706 | 17.18 | |
320 | 1.30 × 10−5 | 1.9891 | 39.27 | 1.30 × 10−5 | 1.9891 | 40.60 | |
640 | 3.18 × 10−6 | 2.0288 | 83.10 | 3.18 × 10−6 | 2.0288 | 80.38 | |
(0.6, 0.3) | 80 | 6.05 × 10−5 | 7.64 | 6.05 × 10−5 | 7.31 | ||
160 | 1.52 × 10−5 | 1.9926 | 16.00 | 1.52 × 10−5 | 1.9926 | 15.13 | |
320 | 3.71 × 10−6 | 2.0336 | 36.30 | 3.71 × 10−6 | 2.0336 | 34.93 | |
640 | 8.12 × 10−7 | 2.1934 | 76.77 | 8.12 × 10−7 | 2.1934 | 70.73 | |
(1, 0.6) | 80 | 2.78 × 10−5 | 7.23 | 2.78 × 10−5 | 7.84 | ||
160 | 7.45 × 10−6 | 2.0000 | 15.25 | 7.45 × 10−6 | 1.9000 | 16.12 | |
320 | 2.00 × 10−6 | 1.9000 | 34.22 | 2.00 × 10−6 | 1.9000 | 36.38 | |
640 | 5.35 × 10−7 | 1.9999 | 71.86 | 5.35 × 10−7 | 1.9000 | 75.73 |
N | Direct Difference Scheme (17)–(19) | Fast Difference Scheme (29)–(33) | |||||
---|---|---|---|---|---|---|---|
CPU (s) | CPU (s) | ||||||
0.1 | 80 | 5.97 × 10−5 | 7.58 | 5.97 × 10−5 | 8.22 | ||
160 | 1.61 × 10−5 | 1.8940 | 16.10 | 1.61 × 10−5 | 1.8940 | 17.78 | |
320 | 4.21 × 10−6 | 1.9310 | 38.82 | 4.21 × 10−6 | 1.9310 | 39.76 | |
640 | 1.03 × 10−6 | 2.0305 | 83.76 | 1.03 × 10−6 | 2.0305 | 80.96 | |
0.5 | 80 | 1.82 × 10−4 | 7.85 | 1.82 × 10−4 | 8.15 | ||
160 | 4.60 × 10−5 | 1.9824 | 16.41 | 4.60 × 10−5 | 1.9824 | 17.67 | |
320 | 1.15 × 10−5 | 1.9960 | 38.31 | 1.15 × 10−5 | 1.9960 | 39.44 | |
640 | 2.82 × 10−6 | 2.0304 | 78.76 | 2.82 × 10−6 | 2.0304 | 79.82 | |
0.9 | 80 | 2.32 × 10−4 | 10.04 | 2.32 × 10−4 | 8.24 | ||
160 | 5.79 × 10−5 | 2.0005 | 20.53 | 5.79 × 10−5 | 2.0007 | 17.01 | |
320 | 1.44 × 10−5 | 2.0058 | 37.52 | 1.44 × 10−5 | 2.0052 | 38.03 | |
640 | 3.54 × 10−6 | 2.0256 | 79.13 | 3.50 × 10−6 | 2.0415 | 77.87 |
M | Direct Difference Scheme (17)–(19) | Fast Difference Scheme (29)–(33) | |||||
---|---|---|---|---|---|---|---|
CPU (s) | CPU (s) | ||||||
0.1 | 8 | 1.16 × 10−2 | 1987.44 | 1.16 × 10−2 | 0.92 | ||
6 | 2.88 × 10−3 | 2.0069 | 2001.05 | 2.88 × 10−3 | 2.0069 | 0.97 | |
32 | 7.19 × 10−4 | 2.0017 | 2009.06 | 7.19 × 10−4 | 2.0017 | 1.20 | |
64 | 1.80 × 10−4 | 2.0004 | 2049.78 | 1.80 × 10−4 | 2.0004 | 2.24 | |
0.5 | 8 | 1.04 × 10−2 | 2015.86 | 1.04 × 10−2 | 0.92 | ||
16 | 2.60 × 10−3 | 2.0056 | 2014.54 | 2.60 × 10−3 | 2.0057 | 0.99 | |
32 | 6.50 × 10−4 | 2.0014 | 1994.91 | 6.50 × 10−4 | 2.0014 | 1.24 | |
64 | 1.62 × 10−4 | 2.0004 | 2015.61 | 1.62 × 10−4 | 2.0003 | 2.19 | |
0.9 | 8 | 8.36 × 10−3 | 2114.65 | 8.35 × 10−3 | 1.19 | ||
16 | 2.08 × 10−3 | 2.0034 | 2109.88 | 2.08 × 10−3 | 2.0052 | 1.35 | |
32 | 5.21 × 10−4 | 2.0009 | 2123.43 | 5.17 × 10−4 | 2.0080 | 1.55 | |
64 | 1.30 × 10−4 | 2.0002 | 2763.77 | 1.27 × 10−4 | 2.0293 | 2.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, R.; Tang, J. Efficient Numerical Methods for Time-Fractional Diffusion Equations with Caputo-Type Erdélyi–Kober Operators. Fractal Fract. 2025, 9, 486. https://doi.org/10.3390/fractalfract9080486
Du R, Tang J. Efficient Numerical Methods for Time-Fractional Diffusion Equations with Caputo-Type Erdélyi–Kober Operators. Fractal and Fractional. 2025; 9(8):486. https://doi.org/10.3390/fractalfract9080486
Chicago/Turabian StyleDu, Ruilian, and Jianhua Tang. 2025. "Efficient Numerical Methods for Time-Fractional Diffusion Equations with Caputo-Type Erdélyi–Kober Operators" Fractal and Fractional 9, no. 8: 486. https://doi.org/10.3390/fractalfract9080486
APA StyleDu, R., & Tang, J. (2025). Efficient Numerical Methods for Time-Fractional Diffusion Equations with Caputo-Type Erdélyi–Kober Operators. Fractal and Fractional, 9(8), 486. https://doi.org/10.3390/fractalfract9080486