Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (171)

Search Parameters:
Keywords = dimple process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 8654 KiB  
Article
Analysis of Flow Field and Machining Parameters in RUREMM for High-Precision Micro-Texture Fabrication on SS304 Surfaces
by Wenjun Tong and Lin Li
Processes 2025, 13(8), 2326; https://doi.org/10.3390/pr13082326 - 22 Jul 2025
Viewed by 270
Abstract
Micro-textures are crucial for enhancing surface performance in diverse applications, but traditional radial electrochemical micromachining (REMM) suffers from process complexity and workpiece damage. This study presents radial ultrasonic rolling electrochemical micromachining (RUREMM), an advanced technique integrating an ultrasonic field to improve electrolyte renewal, [...] Read more.
Micro-textures are crucial for enhancing surface performance in diverse applications, but traditional radial electrochemical micromachining (REMM) suffers from process complexity and workpiece damage. This study presents radial ultrasonic rolling electrochemical micromachining (RUREMM), an advanced technique integrating an ultrasonic field to improve electrolyte renewal, disrupt passivation layers, and optimize electrochemical reaction uniformity on SS304 surfaces. Aimed at overcoming challenges in precision machining, the research explores the synergistic effects of ultrasonic energy and flow field dynamics, offering novel insights for high-quality metal micromachining applications. The research establishes a mathematical model to analyze the interaction between the ultrasonic energy field and electrolytic machining and optimizes the flow field in the narrow electrolytic gap using Fluent software, revealing that an initial electrolyte velocity of 4 m/s and ultrasonic amplitude of 35 μm ensure optimal stability. High-speed photography is employed to capture bubble distribution and micro-pit formation dynamics, while SS304 surface experiments analyze the effects of machining parameters on micro-dimple localization and surface quality. The results show that optimized parameters significantly improve micro-texture quality, yielding micro-pits with a width of 223.4 μm, depth of 28.9 μm, aspect ratio of 0.129, and Ra of 0.205 μm, providing theoretical insights for high-precision metal micromachining. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

14 pages, 4871 KiB  
Article
Study on Laser Surface Texturing and Wettability Control of Silicon Nitride Ceramic
by Hong-Jian Wang, Jing-De Huang, Bo Wang, Yang Zhang and Jin Wang
Micromachines 2025, 16(7), 819; https://doi.org/10.3390/mi16070819 - 17 Jul 2025
Viewed by 252
Abstract
Silicon nitride (Si3N4) ceramic is widely used in the production of structural components. The surface wettability is closely related to the service life of materials. Laser surface texturing is considered an effective method for controlling surface wettability by processing [...] Read more.
Silicon nitride (Si3N4) ceramic is widely used in the production of structural components. The surface wettability is closely related to the service life of materials. Laser surface texturing is considered an effective method for controlling surface wettability by processing specific patterns. This research focused on the laser surface texturing of a Si3N4 ceramic, employing rectangular patterns instead of the typical dimple designs, as these had promising applications in heat transfer and hydrodynamic lubrication. The effects of scanning speed and number of scans on the change of the morphologies and dimensions of the grooves were investigated. The results indicated that the higher scanning speed and fewer number of scans resulted in less damage to the textured surface. As the scanning speed increased, the width and depth of the grooves decreased significantly first, and then fluctuated. Conversely, increasing the number of scans led to an increase in the width and depth of the grooves, eventually stabilizing. The analysis of the elemental composition of different areas on the textured surface presented a notable increase in oxygen content at the grooves, while Si and N levels decreased. It was mainly caused by the chemical reaction between Si3N4 ceramic and oxygen during laser surface texturing in an air environment. This study also assessed the wettability of the textured surface, finding that the contact angle of the water droplet was significantly affected by the groove dimensions. After laser surface texturing, the contact angle increased from 35.51 ± 0.33° to 57.52 ± 1.83°. Improved wettability was associated with smaller groove volume, indicating better hydrophilicity at lower scanning speed and enhanced hydrophobicity with a fewer number of scans. Full article
(This article belongs to the Special Issue Advances in Digital Manufacturing and Nano Fabrication)
Show Figures

Figure 1

31 pages, 62180 KiB  
Article
Evaluation of the Suitability of High-Temperature Post-Processing Annealing for Property Enhancement in LPBF 316L Steel: A Comprehensive Mechanical and Corrosion Assessment
by Bohdan Efremenko, Yuliia Chabak, Ivan Petryshynets, Tianliang Zhao, Vasily Efremenko, Kaiming Wu, Tao Xia, Miroslav Džupon and Sundas Arshad
Metals 2025, 15(6), 684; https://doi.org/10.3390/met15060684 - 19 Jun 2025
Viewed by 504
Abstract
This study aims to comprehensively assess the suitability of post-processing annealing (at 900–1200 °C) for enhancing the key properties of 316L steel fabricated via laser powder bed fusion (LPBF). It adopts a holistic approach to investigate the annealing-driven evolution of microstructure–property relationships, focusing [...] Read more.
This study aims to comprehensively assess the suitability of post-processing annealing (at 900–1200 °C) for enhancing the key properties of 316L steel fabricated via laser powder bed fusion (LPBF). It adopts a holistic approach to investigate the annealing-driven evolution of microstructure–property relationships, focusing on tensile properties, nanoindentation hardness and modulus, impact toughness at ambient and cryogenic temperatures (−196 °C), and the corrosion resistance of LPBF 316L. Annealing at 900–1050 °C reduced tensile strength and hardness, followed by a moderate increase at 1200 °C. Conversely, ductility and impact toughness peaked at 900 °C but declined with the increasing annealing temperature. Regardless of the annealing temperature and testing conditions, LPBF 316L steel fractured through a mixed transgranular/intergranular mechanism involving dimple formation. The corrosion resistance of annealed steel was significantly lower than that in the as-built state, with the least detrimental effect being observed at 1050 °C. These changes resulted from the complex interplay of annealing-induced structural transformations, including elimination of the cellular structure and Cr/Mo segregations, reduced dislocation density, the formation of recrystallized grains, and the precipitation of nano-sized (MnCrSiAl)O3 inclusions. At 1200 °C, an abundant oxide formation strengthened the steel; however, particle coarsening, combined with the transition of (MnCrSiAl)O3 into Mo-rich oxide, further degraded the passive film, leading to a sharp decrease in corrosion resistance. Overall, post-processing annealing at 900–1200 °C did not comprehensively improve the combination of LPBF 316L steel properties, suggesting that the as-built microstructure offers a favorable balance of properties. High-temperature annealing can enhance a particular property while potentially compromising other performance characteristics. Full article
Show Figures

Figure 1

23 pages, 9574 KiB  
Article
Optimization of Critical Parameters in Friction Stir Spot Welding of AA5052 Aluminum Alloy Using Response Surface Methodology
by Mohamed M. El-Sayed Seleman, Sabbah Ataya, Nashmi H. Alrasheedi, Mohamed M. Z. Ahmed, Hagar A. Reyad, Ashraf Bakkar and Ramy A. Fouad
Crystals 2025, 15(6), 571; https://doi.org/10.3390/cryst15060571 - 17 Jun 2025
Viewed by 444
Abstract
Understanding and optimizing the relationship between critical processing parameters (rotational speed and dwell time) and the resulting weld performance is crucial for the effective application of friction stir spot welding (FSSW) in joining aluminum alloys. FSSW is an increasingly important solid-state, clean technology [...] Read more.
Understanding and optimizing the relationship between critical processing parameters (rotational speed and dwell time) and the resulting weld performance is crucial for the effective application of friction stir spot welding (FSSW) in joining aluminum alloys. FSSW is an increasingly important solid-state, clean technology alternative for joining lightweight alloys such as AA5052-H32 in various industries. To optimize this technique for lap joint configurations, the current study examines the influence of rotational speeds (500, 1000, and 1500 rpm) and dwell times (1, 2, and 3 s) on the heat input energy, hardness across weld zones, and tensile/shear load, using a full factorial Design-Expert (DOE) analysis. The FSSW responses of the numerical model were validated using the experimental results for the spot-welded joints. The findings indicate that the dwell time significantly affected the mechanical properties, while the tool rotational speed had a substantial effect on the heat input energy and mechanical properties. Fracture surfaces predominantly exhibited ductile failure with diverse dimple morphologies, consistent with the enhanced tensile properties under optimal parameters. The presence of finer dimples suggests a mixed-mode fracture involving shear. Full article
(This article belongs to the Special Issue Advances in Processing, Simulation and Characterization of Alloys)
Show Figures

Figure 1

23 pages, 3557 KiB  
Article
Analysis of Surface Roughness and Machine Learning-Based Modeling in Dry Turning of Super Duplex Stainless Steel Using Textured Tools
by Shailendra Pawanr and Kapil Gupta
Technologies 2025, 13(6), 243; https://doi.org/10.3390/technologies13060243 - 11 Jun 2025
Viewed by 560
Abstract
One of the most critical aspects of turning, and machining in general, is the surface roughness of the finished product, which directly influences the performance, functionality, and longevity of machined components. The accurate prediction of surface roughness is vital for enhancing component quality [...] Read more.
One of the most critical aspects of turning, and machining in general, is the surface roughness of the finished product, which directly influences the performance, functionality, and longevity of machined components. The accurate prediction of surface roughness is vital for enhancing component quality and machining efficiency. This study presents a machine learning-driven framework for modeling mean roughness depth (Rz) during the dry machining of super duplex stainless steel (SDSS 2507). SDSS 2507 is known for its exceptional mechanical strength and corrosion resistance, but it poses significant challenges in machinability. To address this, this study employs flank-face textured cutting tools to enhance machining performance. Experiments were designed using the L27 orthogonal array with three continuous factors, cutting speed, feed rate, and depth of cut, and one categorical factor, tool texture type (dimple, groove, and wave), along with surface roughness as an output parameter. Gaussian Data Augmentation (GDA) was employed to enrich data variability and strengthen model generalization, resulting in the improved predictive performance of the machine learning models. MATLAB R2021a was employed for preprocessing, the normalization of datasets, and model development. Two models, Least-Squares Support Vector Machine (LSSVM) and Multi-Gene Genetic Programming (MGGP), were trained and evaluated on various statistical metrics. The results showed that both LSSVM and MGGP models learned well from the training data and accurately predicted Rz on the testing data, demonstrating their reliability and strong performance. Of the two models, LSSVM demonstrated superior performance, achieving a training accuracy of 98.14%, a coefficient of determination (R2) of 0.9959, and a root mean squared error (RMSE) of 0.1528. It also maintained strong generalization on the testing data, with 94.36% accuracy and 0.9391 R2 and 0.6730 RMSE values. The high predictive accuracy of the LSSVM model highlights its potential for identifying optimal machining parameters and integrating into intelligent process control systems to enhance surface quality and efficiency in the complex machining of materials like SDSS. Full article
(This article belongs to the Section Innovations in Materials Science and Materials Processing)
Show Figures

Figure 1

10 pages, 3383 KiB  
Article
Droplets at Liquid-Fluid Interfaces: Stages Leading to Coalescence
by Jose Davalos-Monteiro, Qi Liu and J. Carlos Santamarina
Fluids 2025, 10(5), 127; https://doi.org/10.3390/fluids10050127 - 12 May 2025
Viewed by 638
Abstract
Droplet coalescence at interfaces affects industrial and natural processes. Previous studies focused on droplet stability and thin film drainage. We use meticulous experiments to infer the evolution of coalescence for both ascending and descending droplets under different conditions. Images show the anticipatory deformation [...] Read more.
Droplet coalescence at interfaces affects industrial and natural processes. Previous studies focused on droplet stability and thin film drainage. We use meticulous experiments to infer the evolution of coalescence for both ascending and descending droplets under different conditions. Images show the anticipatory deformation of the interface and dimple formation during the approach phase. While the droplet rests at the interface, the two surfaces interact through the draining thin film, and the effective interfacial tension can be higher than twice the interfacial tension between the two fluids, suggesting not only concurrent action but also potential changes in interfacial tension in thin films. Following the film breakage, the unbalanced force propels the droplet into the continuous phase, i.e., the slingshot effect. Multiple droplets may coexist at the interface and collectively contribute to its deformation, which in turn pushes the droplets together. The various stages of droplet coalescence are influenced by the droplet and host fluid viscosities, densities, interfacial tension, size, and initial interface curvature. Full article
(This article belongs to the Section Flow of Multi-Phase Fluids and Granular Materials)
Show Figures

Figure 1

30 pages, 12183 KiB  
Article
Improving Hydrodynamics and Energy Efficiency of Bioreactor by Developed Dimpled Turbine Blade Geometry
by Anton Ruzhanskyi, Sergii Kostyk, Igor Korobiichuk and Vladislav Shybetskyi
Symmetry 2025, 17(5), 693; https://doi.org/10.3390/sym17050693 - 30 Apr 2025
Cited by 1 | Viewed by 748
Abstract
The hydrodynamic efficiency of bioreactors is contingent upon the design of the impeller, particularly the blade geometry, which influences flow symmetry. This study evaluates the impact of dimpled surfaces on the blades of a turbine impeller on mixing processes. Investigations were conducted using [...] Read more.
The hydrodynamic efficiency of bioreactors is contingent upon the design of the impeller, particularly the blade geometry, which influences flow symmetry. This study evaluates the impact of dimpled surfaces on the blades of a turbine impeller on mixing processes. Investigations were conducted using simulations in ANSYS (2021R2) with the k-ε turbulence model and experiments measuring vortex funnel depth and power consumption at 247 rpm in an 11-L cylindrical vessel. Results indicate that dimples disrupt the rotational symmetry of the blades, increasing the volume-averaged flow velocity from 0.312 m/s to 0.321 m/s (a 2.9% increase); the maximum shear strain rate from 161 s−1 to 1442 s−1; and the turbulent vortex frequency from 183 s−1 to 290 s−1 (a 58% increase). The volume-averaged shear strain rate rose from 44 s−1 to 63 s−1 (a 43% improvement), and the vortex funnel depth increased from 44 mm to 50 mm (a 14% increase), indicating enhanced homogenization. This facilitates efficient processing of sensitive biological organisms, such as mycoplasmas, and more robust structures, including fungi and mycelium. However, power consumption increased by 4.5% (from 4.9 W to 5.1 W). Thus, disrupting symmetry with dimples intensifies hydrodynamic processes, enhancing mixing efficiency, but requires optimization to reduce energy costs, offering prospects for advancing biotechnological systems. Full article
Show Figures

Figure 1

26 pages, 9960 KiB  
Article
Lanthanum Recovery from Aqueous Solutions by Adsorption onto Silica Xerogel with Iron Oxide and Zinc Oxide
by Ionuţ Bălescu, Mihaela Ciopec, Adina Negrea, Nicoleta Sorina Nemeş, Cătălin Ianăşi, Orsina Verdes, Mariana Suba, Paula Svera, Bogdan Pascu, Petru Negrea and Alina Ramona Buzatu
Gels 2025, 11(5), 314; https://doi.org/10.3390/gels11050314 - 23 Apr 2025
Viewed by 627
Abstract
From the lanthanide group, part of the rare earth elements (REEs), lanthanum is one of the most important elements given its application potential. Although it does not have severe toxicity to the environment, its increased usage in advanced technologies and medical fields and [...] Read more.
From the lanthanide group, part of the rare earth elements (REEs), lanthanum is one of the most important elements given its application potential. Although it does not have severe toxicity to the environment, its increased usage in advanced technologies and medical fields and scarce natural reserves point to the necessity also of recovering lanthanum from diluted solutions. Among the multiple methods for separation and purification, adsorption has been recognized as one of the most promising because of its simplicity, high efficiency, and large-scale availability. In this study, a xerogel based on silicon and iron oxides doped with zinc oxide and polymer (SiO2@Fe2O3@ZnO) (SFZ), obtained by the sol–gel method, was considered as an adsorbent material. Micrography indicates the existence of particles with irregular geometric shapes and sizes between 16 μm and 45 μm. Atomic force microscopy (AFM) reveals the presence of dimples on the top of the material. The specific surface area of the material, calculated by the Brunauer–Emmet–Teller (BET) method, indicates a value of 53 m2/g, with C constant at a value of 48. In addition, the Point of Zero Charge (pHpZc) of the material was determined to be 6.7. To establish the specific parameters of the La(III) adsorption process, static studies were performed. Based on experimental data, kinetic, thermodynamic, and equilibrium studies, the mechanism of the adsorption process was established. The maximum adsorption capacity was 6.7 mg/g, at a solid/liquid ratio = 0.1 g:25 mL, 4 < pH < 6, 298 K, after a contact time of 90 min. From a thermodynamic point of view, the adsorption process is spontaneous, endothermic, and occurs at the adsorbent–adsorbate interface. The Sips model is the most suitable for describing the observed adsorption process, indicating a complex interaction between La(III) ions and the adsorbent material. The material can be reused as an adsorbent material, having a regeneration capacity of more than 90% after the first cycle of regeneration. The material was reused 3 times with considerable efficiency. Full article
Show Figures

Graphical abstract

17 pages, 8882 KiB  
Article
Microstructures and Deep-Drawing Properties of Copper–Steel Bimetallic Sheets Fabricated Using an Arc Spray-Rolling Short Process
by Tairan Yao, Jinbiao Bai, Dehao Kong, Ruixiong Zhai, Yuwei Liang, Taihong Huang, Qing Li and Peng Song
Metals 2025, 15(4), 400; https://doi.org/10.3390/met15040400 - 3 Apr 2025
Viewed by 547
Abstract
Annealing and rolling play critical roles in improving the mechanical properties of arc spraying coatings. In this work, we successfully fabricated copper–steel bimetallic sheets (CSBSs) using an arc spray-rolling short process and achieved excellent internal bonding of the copper coating and improved deep-drawing [...] Read more.
Annealing and rolling play critical roles in improving the mechanical properties of arc spraying coatings. In this work, we successfully fabricated copper–steel bimetallic sheets (CSBSs) using an arc spray-rolling short process and achieved excellent internal bonding of the copper coating and improved deep-drawing of the CSBSs via annealing and rolling synergistic treatment. The results indicate that the microstructure of the copper coating became dense, and the porosity effectively reduced after annealing–rolling–annealing (ARA) treatment. Tight bonding was also observed between the copper coating and steel substrate. The copper coating had a porosity of less than 0.2%, an average grain size of 3.8 μm, and a micro-hardness of 55 HV0.05. After tensile testing, the As-sprayed coating generated brittle fractures and delamination. The A-R-A coating also displayed elongated dimples, with the majority oriented along the TD direction, and bonded well with the steel substrate. In addition, the As-sprayed coating fell off directly after deep drawing. In contrast, the A-R-A coating did not exhibit cracks and fall off. The fracture mechanism gradually changed from falling off and cracking, to toughness deformation due to the reduced porosity and tighter grain boundaries, and finally to cooperative deformation due to the metallurgical bonding of the sprayed particles and good interface bonding properties. These findings provide guidance and reference for the practical application of thermal spray additive manufacturing. Full article
Show Figures

Figure 1

12 pages, 18338 KiB  
Article
Effect of Heat Treatment on Microstructures and Mechanical Properties of a Ti-Al-V-Cr-Fe-Based Alloy
by Honglin Fang, Shewei Xin, Huan Wang, Xingyang Tu, Fei Qiang, Zhiwei Lian and Ping Guo
Crystals 2025, 15(3), 250; https://doi.org/10.3390/cryst15030250 - 7 Mar 2025
Viewed by 696
Abstract
The effects of different processes for heat treatment on microstructures and mechanical properties of a Ti-Al-V-Cr-Fe-based alloy (TLC002) were investigated based on the Ti-6411 alloy designed by Northwest Institute for Nonferrous Metals Research. The results show that the TLC002 alloy treated with solid [...] Read more.
The effects of different processes for heat treatment on microstructures and mechanical properties of a Ti-Al-V-Cr-Fe-based alloy (TLC002) were investigated based on the Ti-6411 alloy designed by Northwest Institute for Nonferrous Metals Research. The results show that the TLC002 alloy treated with solid solution and aging has high strength and low impact toughness. For the annealed specimens, both strength and impact toughness are high. With the rising annealing temperature from 800 °C to 880 °C, the tensile strength (UTS), yield strength (YS), and impact toughness (αu2) increase, especially for the αu2 from 48.7 J/cm2 to 86.0 J/cm2. The tensile and impact specimens treated with both solid solution and aging and annealing are all typical ductile fractures. Both the size dimension and depth of the dimples for the equiaxed structures are greater than those of the bimodal structures, indicating that the plasticity of the equiaxed structures is superior to that of the bimodal structures. The heat treatment that annealing at 880 °C for 1.5 h and then air cooling leads to qualified mechanical properties and a good match of the strength and plasticity of the TLC002 alloy. Full article
(This article belongs to the Special Issue Microstructural Characterization and Property Analysis of Alloys)
Show Figures

Figure 1

14 pages, 18226 KiB  
Article
Smart Bio-Nanocoatings with Simple Post-Synthesis Reversible Adjustment
by Mikhail Kryuchkov, Zhehui Wang, Jana Valnohova, Vladimir Savitsky, Mirza Karamehmedović, Marc Jobin and Vladimir L. Katanaev
Biomimetics 2025, 10(3), 163; https://doi.org/10.3390/biomimetics10030163 - 7 Mar 2025
Viewed by 922
Abstract
Nanopatterning of signal-transmitting proteins is essential for cell physiology and drug delivery but faces challenges such as high cost, limited pattern variability, and non-biofriendly materials. Arthropods, particularly beetles (Coleoptera), offer a natural model for biomimetic nanopatterning due to their diverse corneal nanostructures. Using [...] Read more.
Nanopatterning of signal-transmitting proteins is essential for cell physiology and drug delivery but faces challenges such as high cost, limited pattern variability, and non-biofriendly materials. Arthropods, particularly beetles (Coleoptera), offer a natural model for biomimetic nanopatterning due to their diverse corneal nanostructures. Using atomic force microscopy (AFM), we analyzed Coleoptera corneal nanocoatings and identified dimpled nanostructures that can transform into maze-like/nipple-like protrusions. Further analysis suggested that these modifications result from a temporary, self-assembled process influenced by surface adhesion. We identified cuticular protein 7 (CP7) as a key component of dimpled nanocoatings. Biophysical analysis revealed CP7’s unique self-assembly properties, allowing us to replicate its nanopatterning ability in vitro. Our findings demonstrate CP7’s potential for bioinspired nanocoatings and provide insights into the evolutionary mechanisms of nanostructure formation. This research paves the way for cost-effective, biomimetic nanopatterning strategies with applications in nanotechnology and biomedicine. Full article
(This article belongs to the Special Issue Advances in Biomimetics: Patents from Nature)
Show Figures

Figure 1

11 pages, 1999 KiB  
Article
Optimized Quasi-Optical Mode Converter for TE33,12 in 210 GHz Gyrotron
by Hamid Sharif, Muhammad Haris Jamil and Wenlong He
Micromachines 2025, 16(3), 308; https://doi.org/10.3390/mi16030308 - 6 Mar 2025
Viewed by 779
Abstract
This article discusses the design of a high-performance quasi-optical mode converter for the TE33,12 mode at 210 GHz. The conversion process is challenging due to a caustic-to-cavity radius ratio of approximately 0.41. The mode converter employs an optimized dimpled [...] Read more.
This article discusses the design of a high-performance quasi-optical mode converter for the TE33,12 mode at 210 GHz. The conversion process is challenging due to a caustic-to-cavity radius ratio of approximately 0.41. The mode converter employs an optimized dimpled wall launcher, analyzed using coupling mode theory with twenty-five coupled modes, compared to the usual nine modes and optimized reflector systems, to effectively address the conversion challenge.Electromagnetic field analysis within the launcher wall was optimized using MATLAB R2021b. The radiation fields from the launcher were analyzed in free space using Gaussian optics and vector diffraction theory. The mirror system consists of a quasi-elliptical mirror, an elliptical mirror, and phase-corrected parabolic mirrors. Following phase correction, the output window achieved a scalar Gaussian mode content of 99.0% and a vector Gaussian mode content of 97.4%. Full article
(This article belongs to the Special Issue Optoelectronic Fusion Technology)
Show Figures

Figure 1

19 pages, 6902 KiB  
Article
Experimental Investigation of Laser Micro-Structure Ablation Under Oblique Incidence
by Yong Tang, Yueqi Zhao, Zhengzhuo Li, Ronghe Ke and Xingsheng Wang
Coatings 2025, 15(3), 302; https://doi.org/10.3390/coatings15030302 - 5 Mar 2025
Viewed by 795
Abstract
Laser processing is an effective and precise micro-structure fabrication technique. At present, micro-structure processing is primarily applied to planar surfaces. However, for curved surfaces, variations in the incident angle of the laser beam lead to distortions in micro-structural morphology. In this study, an [...] Read more.
Laser processing is an effective and precise micro-structure fabrication technique. At present, micro-structure processing is primarily applied to planar surfaces. However, for curved surfaces, variations in the incident angle of the laser beam lead to distortions in micro-structural morphology. In this study, an experimental investigation was conducted to characterize micro-structural ablation under oblique laser incidence. Initially, a single-factor parametric study was performed on the surface of stainless steel. The results indicate that grooves measuring 45 μm in width and 43 μm in depth were achieved under the conditions of a single-pulse energy of 10 μJ, a laser frequency of 70 kHz, a scanning speed of 10 mm/s, and 20 processing cycles. Subsequently, the influence of the laser incidence angle on groove morphology was further examined. The results demonstrate that for incidence angles below 11°, the groove removal rate approaches 1, and the root mean square of shape error (RMS) remains below 1.5 μm. To reduce the deformation of the micro-structure at oblique incidence, a curve-guided surface projection (CGSP) method was developed, and the micro-dimples were fabricated at laser incidence angles of 10° and 14°. Compared with the conventional direct projection (DP) method, the CGSP approach significantly mitigates structural distortion resulting from oblique incidence. Finally, the CGSP method was applied to fabricate the micro-dimples at various locations on a spherical surface. The removal rates of 0.988 and 0.936 were closer to unity than those achieved via direct projection, while the RMS values were reduced by 56.4% and 76.2%, respectively. These findings offer a promising solution to the challenge of oblique laser incidence in curved micro-structuring and further broaden the application scope of laser processing technology. Full article
(This article belongs to the Special Issue Laser Surface Engineering: Technologies and Applications)
Show Figures

Figure 1

32 pages, 29310 KiB  
Article
Microstructure Evolution, Tensile/Nanoindentation Response, and Work-Hardening Behaviour of Prestrained and Subsequently Annealed LPBF 316L Stainless Steel
by Bohdan Efremenko, Yuliia Chabak, Ivan Petryshynets, Vasily Efremenko, Kaiming Wu, Sundas Arshad and František Kromka
Materials 2025, 18(5), 1102; https://doi.org/10.3390/ma18051102 - 28 Feb 2025
Cited by 1 | Viewed by 1069
Abstract
Additive manufacturing is increasingly used to produce metallic biomaterials, and post-processing is gaining increasing attention for improving the properties of as-built components. This study investigates the effect of work hardening followed by recrystallisation annealing on the tensile and nanoindentation behaviour of laser powder [...] Read more.
Additive manufacturing is increasingly used to produce metallic biomaterials, and post-processing is gaining increasing attention for improving the properties of as-built components. This study investigates the effect of work hardening followed by recrystallisation annealing on the tensile and nanoindentation behaviour of laser powder bed-fused (LPBF) 316L stainless steel, with the aim of optimising its mechanical properties. As-built and thermally stabilised (at 900 °C) specimens were prestrained in a uniaxially tensile manner at room temperature (0.12 plastic strain, ~75% of maximum work hardening) and subsequently annealed (at 900 °C or 1050 °C for 1 h). The microstructure and mechanical properties were then characterised by optical microscopy, SEM, EBSD, XRD, nanoindentation, and tensile testing. It was found that prestraining increased yield tensile strength (YTS) 1.2–1.7 times (to 690–699 MPa) and ultimate tensile strength (UTS) ~1.2 times (to 762–770 MPa), but decreased ductility 1.5 times. Annealing led to recovery and partial static recrystallisation, decreasing YTS (to 403–427 MPa), restoring ductility, and increasing the strain hardening rate; UTS and indentation hardness were less affected. Notably, the post-LPBF thermal stabilisation hindered recrystallisation and increased its onset temperature. Mechanical property changes under prestraining and annealing are discussed with respect to microstructure and crystalline features (microstrain, crystal size, dislocation density). All specimens exhibited ductile fractures with fine/ultra-fine dimples consistent with the as-built cellular structure. The combined treatment enhanced tensile strength whilst preserving sufficient ductility, achieving a strength–ductility product of 40.3 GPa·%. This offers a promising approach for tailoring LPBF 316L for engineering applications. Full article
(This article belongs to the Special Issue Research and Development of New Metal-Based Biomaterials)
Show Figures

Figure 1

14 pages, 6595 KiB  
Article
Effect of GBF Process Conditions on the Microstructural Characteristic, Melt Quality and Mechanical Properties of Al-Si Alloys with Scrap Addition
by Minji Kim, Kyung Il Kim, Jeong-Keun Lee, Soong-Keun Hyun and Kyung-Taek Kim
Materials 2025, 18(5), 943; https://doi.org/10.3390/ma18050943 - 21 Feb 2025
Cited by 1 | Viewed by 508
Abstract
In this study, the applicability of an Al-Si alloy with 30 wt% added scrap for automobile pistons was evaluated by investigating the melt quality, microstructural characteristics, and tensile properties under modified GBF (gas bubbling filtration) process conditions, including increasing rotor rotation speed and [...] Read more.
In this study, the applicability of an Al-Si alloy with 30 wt% added scrap for automobile pistons was evaluated by investigating the melt quality, microstructural characteristics, and tensile properties under modified GBF (gas bubbling filtration) process conditions, including increasing rotor rotation speed and adjusting the air-line supply and the inclination angle of the impeller blade. The melt quality was dramatically improved under modified GBF process conditions, resulting in a very clean melt, with the D.I. value decreasing by 28%, the length of the oxide layer per kilogram decreasing by 65%, and inclusion content decreasing by 97% compared to that of the conventional GBF process conditions. Additionally, the size of primary Si decreased from 40 µm to 27 µm, and the eutectic Si and intermetallic compounds were refined, showing a very fine microstructure. The identified phases included Al4Cu2Mg8Si7, AlxCuyNiz, and MgO. The ultimate tensile strength was 275 MPa, and the elongation was 6.0%, indicating improved tensile properties compared to those of the conventional GBF process conditions. The fracture behavior changed from a brittle microcleavage fracture mode to a ductile dimple fracture mode as the primary Si, eutectic Si particles, and intermetallic compounds were refined under modified GBF process conditions. These results confirmed that Al-Si alloy with added scrap can be used as a material for automobile pistons. Full article
Show Figures

Figure 1

Back to TopTop