Effect of Heat Treatment on Microstructures and Mechanical Properties of a Ti-Al-V-Cr-Fe-Based Alloy
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
3.1. Microstructures
3.2. Mechanical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, H.; Dong, Y.C.; Dan, Z.H.; Li, F.; Guo, Y.H.; Zhou, L. Current Status and Development Trend of Titanium Alloy for Marine Engineering in China. Mater. China 2020, 39, 585–590. [Google Scholar]
- Williams, W.L. Development of structural titanium alloys for marine applications. Ocean Eng. 1969, 1, 375–383. [Google Scholar] [CrossRef]
- Gurrappa, I. Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications. Mater. Charact. 2003, 51, 131–139. [Google Scholar] [CrossRef]
- Kang, L.M.; Yang, C. A Review on High-Strength Titanium Alloys: Microstructure, Strengthening, and Properties. Adv. Eng. Mater. 2019, 21, 1801359. [Google Scholar] [CrossRef]
- Yu, Y.; Li, J.Q. Current Application and Prospect of Titanium Alloys in Marine Engineering. Dev. Appl. Mater. 2018, 3, 111–116. [Google Scholar]
- Geographic, N. Deepsea Challenger Pilot Sphere. Available online: http://www.deepseachallenge.com/the-sub/pilot-sphere (accessed on 10 August 2024).
- WHOI. Sixty Years of Deep Ocean Research, Exploration, and Discovery with Human-Occupied Vehicle Alvin. 2024. Available online: https://www.whoi.edu/press-room/news-release/alvin-60 (accessed on 10 January 2025).
- Global Dynamics. Alcin a Manned Deep-Ocean Research Project. 2025. Available online: http://gdynx.com/res_dev3.php (accessed on 12 January 2025).
- Busby, R.F. Manned Submersibles. 2025. Available online: http://mannedsubmersibles.org (accessed on 12 January 2025).
- Nanba, N.; Morihana, H.; Nakamura, E. Development of Deep Submergence Research Vehicle SHINKAI 6500. Technol. Rev. Mitsubishi Heavy Ind. Ltd. 1990, 27, 157–168. [Google Scholar]
- Qiang, F.; Xin, S.W.; Tu, X.Y.; Wang, H.; Guo, P.; Hou, H.; Lian, Z.; Zhang, L.; Hou, W. Low-temperature superplastic deformation mechanism of ultra-fine grain Ti-6Al-4V alloy by friction stir processing. J. Mater. Res. Technol. 2024, 30, 7413–7419. [Google Scholar] [CrossRef]
- Zhang, W.J.; Ding, H.; Yang, W.J.; Li, J.Z. Effect of Initial Microstructure on Grain Refinement and Enhanced Low Temperature Superplaticity in Friction Stir Processed Ti-6Al-4V Alloy. Defect Diffus. Forum 2018, 385, 189–194. [Google Scholar] [CrossRef]
- Sha, A.X.; Li, X.W.; Chu, J.P. Common Annealing of TA15 Alloy. Chin. J. Rare Met. 2003, 27, 213–215. [Google Scholar]
- Zhang, J.Y.; Yang, Y.Q.; Chen, Y.; Wen, L.; Zhou, Y.G. Effect of Annealing on the Structure and Properties of TA15 Titanium Alloy. Heat Treat. Met. 2003, 28, 46–48. [Google Scholar]
- Zhao, Y.; Guo, H.Z.; Shi, Z.F.; Zhang, Y.Q.; Yao, Z.K.; Tan, L.J.; Wang, T. Effect of Annealing on Microstructure and Microhardnesws of TA15 Titanium Alloy Processed by Equal Channel Angular Pressing. Adv. Mater. Sci. Technol. 2011, 675–677, 735–738. [Google Scholar]
- Wu, C.; Zhan, M. Effect of solution plus aging heat treatment on microstructural evolution and mechanical properties of near-β titanium alloy. Trans. Nonferrous Met. Soc. China 2019, 29, 997–1006. [Google Scholar] [CrossRef]
- Oryshchenko, A.S.; Gorynin, I.V.; Leonov, V.P.; Kudryavtsev, A.S.; Mikhailov, V.I.; Chudakov, E.V. Marine Titanium Alloys: Present and Future. Inorg. Mater. Appl. Res. 2015, 6, 571–579. [Google Scholar] [CrossRef]
- An, F.P.; Zhang, L.J.; Ning, J.; Zhang, B.; Sun, Z.; Na, S.J. Influence of annealing on the microstructure and Charpy impact toughness of wire arc additive manufactured Ti5111 alloy. Mater. Sci. Eng. A 2022, 860, 144255. [Google Scholar] [CrossRef]
- Wang, Q.; Ren, J.Q.; Zhang, B.B.; Xin, C.; Wu, Y.K.; Zhang, L. Simultaneously improved strength and elongation at cryogenic temperature in Ti-5Al-1V-1Sn-1Zr-0.8Mo alloy with a bimodal structure. Mater. Sci. Eng. A 2021, 824, 141792. [Google Scholar] [CrossRef]
- Mao, P.L.; Cao, Z.X. A Study of Effect of Compositions on Mechanical Properties of Titanium Alloy STi80. J. Shanghai Iron Steel Res. 2001, 4, 10–13. [Google Scholar]
- Yang, J.; Ren, X.L.; Wang, T.; Sun, F.; Zhang, S.; Lei, J.; Li, S.; Chen, H.; Luo, J. Research on preparation of oversized forging billet for Ti80 titanium alloy in ocean engineering. Forg. Stamp. Technol. 2021, 46, 19–22. [Google Scholar]
- Yang, S.L.; Sun, E.J.; Liu, X.Q.; Song, D.; Tao, H.; Zhang, N.; Li, B.; Yu, Y. Effect of Heat Treatment on Microstructure and Properties of Ti6321 Alloy Slab with Different Microstructures. Rare Met. Mater. Eng. 2020, 49, 1002–1008. [Google Scholar]
- Liang, Z.; Miao, J.; Brown, T.; Sachdev, A.K.; Williams, J.C.; Luo, A.A.A. Low-cost and high-strength Ti-Al-Fe-based cast titanium alloy for structural applications. Scr. Mater. 2018, 157, 124–128. [Google Scholar] [CrossRef]
- Bodunrin, M.O.; Chown, L.H.; van der Merwe, J.W.; Alaneme, K.K. On the substitution of vanadium with iron in Ti–6Al–4V: Thermo-Calc simulation and processing map considerations for design of low-cost alloys. Mater. Sci. Eng. A 2020, 791, 139622. [Google Scholar] [CrossRef]
- Chirico, C.; Romero, A.V.; Gordo, E.; Tsipas, S.A. Improvement of wear resistance of low-cost powder metallurgy β-titanium alloys for biomedical applications. Surf. Coat. Technol. 2022, 434, 128207. [Google Scholar] [CrossRef]
- Gunawarman, B.; Niinomi, M.; Akahori, T.; Souma, T.; Ikeda, M.; Toda, H. Mechanical properties and microstructures of low cost β titanium alloys for healthcare applications. Mater. Sci. Eng. C 2005, 25, 304–311. [Google Scholar] [CrossRef]
- Li, C.-L.; Narayana, P.; Reddy, N.; Choi, S.-W.; Yeom, J.-T.; Hong, J.-K.; Park, C.H. Modeling hot deformation behavior of low-cost Ti-2Al-9.2Mo-2Fe beta titanium alloy using a deep neural network. J. Mater. Sci. Technol. 2019, 35, 907–916. [Google Scholar] [CrossRef]
- Luo, L.S.; Su, B.X.; Wang, Y.; Wang, L.; Su, Y.Q.; Guo, J.J. A High-Strength and Corrosion-Resistant Ti-Al-Zr-Sn-Mo-Nb Alloy and Its Preparation Metho. CN110218908A, 10 September 2019. [Google Scholar]
- Chang, H.; Li, J.J.; Gao, H.; Dong, Y.C.; Li, D.; Ni, H.J.; Zhou, L. A Low-Cost Near-β High-Strength Titanium Alloy Adding Fe and Its Preparation Method. CN106521236A, 22 March 2017. [Google Scholar]
- Chen, F.W.; Xu, G.L.; Cui, Y.W.; Chang, H. Optimization of low-cost Ti35421 titanium alloy: Phase transformation, bimodal microstructure, and combinatorial mechanical properties. Materials 2019, 12, 2791. [Google Scholar] [CrossRef]
- Ge, P.; Zhou, W.; Mao, X.N. Effect of rolling deformation on microstructure and properties of Ti-5322 sheet. J. Mater. Eng. 2009, 37 (Suppl. S1), 154–157+162. [Google Scholar]
- Luo, X.; Xu, J.J.; Wang, Y.Q.; Yang, Y.Q.; Umer, M.A.; Zhang, S.Q. Effect of solution and aging treatment on microstructure and tensile properties of Ti-5322 alloy. Heat Treat. Met. 2020, 45, 24–28. [Google Scholar]
- Song, P.; Li, W.B.; Zheng, Y.; Guan, Z.W.; Wang, X.M.; Xu, W.X.; Ge, P. The constitutive behavior of Ti-5Al-3V-2Cr-2Fe under high-velocity impact: Experimental, modeling, and validation. J. Alloys Compd. 2019, 811, 151946. [Google Scholar] [CrossRef]
- GB/T 228.1-2021; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. China Standard Press: Beijing, China, 2021.
- GB/T 229-2020; Metallic Materials—Charpy Pendulum Impact Test Method. China Standard Press: Beijing, China, 2020.
- An, Y.; Kou, W.J.; Gao, T.; Sun, Q. Effect of solid solution temperature on aging precipitation behavior and properties of Ti-1300 alloy. Heat Treat. Met. 2020, 9, 29–36. [Google Scholar]
- Liu, Q.M.; Zhang, Z.H.; Yang, H.Y.; Liu, S.F. Effects of Solid Solution Temperature on the Structure and Properties of TC16 Titanium Alloy Bars. Adv. Mater. Res. 2014, 881–883, 1588–1591. [Google Scholar] [CrossRef]
- Zhou, W.; Qu, H.L.; Zhao, Y.Q. Effect of Heat Treatment on Microstructure and Mechanical Properties of TC4 Alloy. Hot Work. Technol. 2005, 8, 26–27. [Google Scholar]
- Liu, J.Q. Microstructure and Impact Toughness Resistance of TC4 Titanium Alloy. Hot Work. Technol. 2013, 42, 63–66. [Google Scholar]
- Li, Z.; Su, B.; Chen, C.; Luo, L.; Wang, L.; Su, Y.; Guo, J. Composition Optimization, Microstructure and Mechanical Properties of Ti-Al-Nb-Zr-Mo Alloy with High Strength and Corrosion Resistance. Spec. Cast. Nonferrous Alloys 2020, 40, 591–595. [Google Scholar]
Position | Element Composition/wt.% | ||||||
---|---|---|---|---|---|---|---|
Al | Cr | Fe | V | H | N | O | |
Upper | 5.47 | 1.02 | 1.02 | 3.80 | 0.0034 | 0.008 | 0.20 |
Bottom | 5.47 | 0.92 | 0.88 | 3.66 |
Average UTS/MPa | Average YS/MPa | Average E/GPa | |
---|---|---|---|
(a) 900 °C/1 h, AC + 500 °C/4 h, AC | 1201 | 1107 | 118 |
(b) 920 °C/1 h, AC + 500 °C/4 h, AC | 1178 | 1077 | 118 |
(c) 940 °C/1 h, AC + 500 °C/4 h, AC | 1187 | 1073 | 115 |
(d) 800 °C/1.5 h, AC | 954 | 823 | 99 |
(e) 840 °C/1.5 h, AC | 1027 | 884 | 106 |
(f) 880 °C/1.5 h, AC | 1027 | 937 | 115 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, H.; Xin, S.; Wang, H.; Tu, X.; Qiang, F.; Lian, Z.; Guo, P. Effect of Heat Treatment on Microstructures and Mechanical Properties of a Ti-Al-V-Cr-Fe-Based Alloy. Crystals 2025, 15, 250. https://doi.org/10.3390/cryst15030250
Fang H, Xin S, Wang H, Tu X, Qiang F, Lian Z, Guo P. Effect of Heat Treatment on Microstructures and Mechanical Properties of a Ti-Al-V-Cr-Fe-Based Alloy. Crystals. 2025; 15(3):250. https://doi.org/10.3390/cryst15030250
Chicago/Turabian StyleFang, Honglin, Shewei Xin, Huan Wang, Xingyang Tu, Fei Qiang, Zhiwei Lian, and Ping Guo. 2025. "Effect of Heat Treatment on Microstructures and Mechanical Properties of a Ti-Al-V-Cr-Fe-Based Alloy" Crystals 15, no. 3: 250. https://doi.org/10.3390/cryst15030250
APA StyleFang, H., Xin, S., Wang, H., Tu, X., Qiang, F., Lian, Z., & Guo, P. (2025). Effect of Heat Treatment on Microstructures and Mechanical Properties of a Ti-Al-V-Cr-Fe-Based Alloy. Crystals, 15(3), 250. https://doi.org/10.3390/cryst15030250