Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = dihydrotanshinone I

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3664 KiB  
Article
Poly-Glutamic Acid Regulates Physiological Characteristics, Plant Growth, and the Accumulation of the Main Medical Ingredients in the Root of Salvia miltiorrhiza Under Water Shortage
by Changjuan Shan and Yibo Zhang
Agronomy 2024, 14(12), 2977; https://doi.org/10.3390/agronomy14122977 - 13 Dec 2024
Viewed by 836
Abstract
To supply information concerning the application of poly-glutamic acid (PGA) in the drought-resistant cultivation of red sage (Salvia miltiorrhiza), we investigated the role of PGA in regulating the physiological characteristics, plant growth, and the accumulation of the main medical components in [...] Read more.
To supply information concerning the application of poly-glutamic acid (PGA) in the drought-resistant cultivation of red sage (Salvia miltiorrhiza), we investigated the role of PGA in regulating the physiological characteristics, plant growth, and the accumulation of the main medical components in the root under water shortage. The findings showed that different levels of water shortage (WS) all suppressed the photosynthetic function by reducing the net photosynthetic rate (Pn), Soil and plant analyzer development (SPAD) value, maximum photochemical efficiency of PSII (Fv/Fm), photochemical quenching (qP), and actual photochemical efficiency of PSII (Y(II)), as well as increasing non-photochemical quenching (qN). Compared with WS, PGA plus WS enhanced the photosynthetic function by reducing qN and increasing the other indicators above. For water metabolism, WS increased stomatal limit value (Ls) and water use efficiency (WUE), but decreased transpiration rate (Tr) and stomatal conductance (Gs). Compared with WS, PGA plus WS decreased Ls and increased Tr, Gs, and WUE. Meanwhile, WS enhanced the antioxidant capacity by increasing superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities. However, WS increased malondialdehyde (MDA) content. Compared with WS, PGA plus WS enhanced the above antioxidant enzymes. In this way, PGA reduced MDA content and improved the antioxidant capacity under WS. In addition, WS decreased the shoot and root biomass, but increased the root/shoot ratio. Compared with WS, PGA plus WS further increased the root/shoot ratio and shoot and root biomass. For medical ingredients, WS decreased the yield of rosmarinic acid (RosA) and salvianolic acid B (SalB), but increased the yield of dihydrotanshinone (DHT), cryptotanshinone (CTS), tanshinone I (Tan I), and tanshinone ⅡA (Tan ⅡA). Compared with WS, PGA plus WS increased the yield of these medical ingredients. Our findings clearly suggested that PGA application was an effective method to enhance sage drought tolerance and the yield of the main medical ingredients in sage root. This provides useful information for its application in sage production under WS. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

18 pages, 5183 KiB  
Article
Enhanced Extraction of Tanshinones from Salvia miltiorrhiza Using Natural-Surfactant-Based Cloud Point Extraction
by Yerim Shin, Byeongryeol Ryu, Minji Kang, Minjun Kim and Jungdae Lim
Processes 2024, 12(10), 2227; https://doi.org/10.3390/pr12102227 - 12 Oct 2024
Viewed by 1599
Abstract
Salvia miltiorrhiza (SM) contains the tanshinones, a compound with various pharmacological effects, and has been extensively studied as a pharmaceutical material. However, conventional methods for extracting tanshinones face challenges such as environmental hazards and high cost. In this study, we aimed to effectively [...] Read more.
Salvia miltiorrhiza (SM) contains the tanshinones, a compound with various pharmacological effects, and has been extensively studied as a pharmaceutical material. However, conventional methods for extracting tanshinones face challenges such as environmental hazards and high cost. In this study, we aimed to effectively extract tanshinones from SM using cloud point extraction (CPE) with lecithin, a natural surfactant. By optimizing various extraction conditions including the solid-to-liquid ratio, lecithin concentration, NaCl concentration, pH, and equilibrium temperature, the optimal extraction efficiency was achieved using 20 mL of solvent per 1 g of sample, 3% lecithin (w/v), 2% NaCl (w/v), pH 6, and room temperature (25 ± 2 °C). The CPE method, which minimizes the use of organic solvent and is eco-friendly, demonstrated improvements in extraction efficiency, with a 4.55% increase for dihydrotanshinone I, 8.32% for cryptotanshinone, 15.77% for tanshinone I, and 6.81% for tanshinone IIA compared to the conventional water extraction method. These results suggest that CPE is a promising, environmentally friendly, and efficient approach for extracting hydrophobic components from pharmacologically active materials such as SM, with potential applications across various fields of natural product extraction. Full article
Show Figures

Graphical abstract

20 pages, 3203 KiB  
Article
Poly-Glutamic Acid Promotes the Growth and the Accumulation of Main Medicinal Components in Salvia miltiorrhiza
by Changjuan Shan, Xiaoqing Zhang, Yi Luo and Dongfeng Yang
Agronomy 2024, 14(2), 252; https://doi.org/10.3390/agronomy14020252 - 24 Jan 2024
Cited by 5 | Viewed by 1495
Abstract
Salvia miltiorrhiza Bunge is a traditional medicinal plant in China and poly-glutamic acid (PGA) is a valuable biopolymer. However, it is unclear whether PGA promotes growth and the accumulation of main medicinal components in S. miltiorrhiza. To elucidate this scientific question, the [...] Read more.
Salvia miltiorrhiza Bunge is a traditional medicinal plant in China and poly-glutamic acid (PGA) is a valuable biopolymer. However, it is unclear whether PGA promotes growth and the accumulation of main medicinal components in S. miltiorrhiza. To elucidate this scientific question, the influences of PGA on the growth, physiological characteristics, and accumulation of main medicinal components in S. miltiorrhiza were explored through a pot experiment. The results revealed that PGA significantly promoted basal diameter, plant height, shoot and root biomass, as well as root volume, compared with control. PGA also increased SPAD value, net photosynthetic rate, actual and maximum photochemical efficiency of photosynthetic system II, photochemical quenching, and electronic transfer rate. Meanwhile, PGA increased transpiration rate, stomatal conductance, water use efficiency, leaf relative water content, and the contents of soluble protein, soluble sugar, and proline. Furthermore, PGA increased the activities of antioxidant enzymes and the contents of antioxidants. The above findings imply that PGA facilitated S. miltiorrhiza growth by enhancing photosynthetic performance, water metabolism, and antioxidant capacity. Additionally, PGA significantly improved the yield of rosmarinic acid, salvianolic acid B, dihydrotanshinone, cryptotanshinone, tanshinone I, and tanshinone ⅡA in roots by up-regulating the transcript levels of genes responsible for their biosynthesis. Our findings indicated that PGA promoted S. miltiorrhiza growth and the accumulation of main medicinal components in roots. Full article
Show Figures

Figure 1

13 pages, 2232 KiB  
Article
A Nondestructive Methodology for Determining Chemical Composition of Salvia miltiorrhiza via Hyperspectral Imaging Analysis and Squeeze-and-Excitation Residual Networks
by Jieqiang Zhu, Jiaqi Bao and Yi Tao
Sensors 2023, 23(23), 9345; https://doi.org/10.3390/s23239345 - 23 Nov 2023
Cited by 2 | Viewed by 1291
Abstract
The quality assurance of bulk medicinal materials, crucial for botanical drug production, necessitates advanced analytical methods. Conventional techniques, including high-performance liquid chromatography, require extensive pre-processing and rely on extensive solvent use, presenting both environmental and safety concerns. Accordingly, a non-destructive, expedited approach for [...] Read more.
The quality assurance of bulk medicinal materials, crucial for botanical drug production, necessitates advanced analytical methods. Conventional techniques, including high-performance liquid chromatography, require extensive pre-processing and rely on extensive solvent use, presenting both environmental and safety concerns. Accordingly, a non-destructive, expedited approach for assessing both the chemical and physical attributes of these materials is imperative for streamlined manufacturing. We introduce an innovative method, designated as Squeeze-and-Excitation Residual Network Combined Hyperspectral Image Analysis (SE-ReHIA), for the swift and non-invasive assessment of the chemical makeup of bulk medicinal substances. In a demonstrative application, hyperspectral imaging in the 389–1020 nm range was employed in 187 batches of Salvia miltiorrhiza. Notable constituents such as salvianolic acid B, dihydrotanshinone I, cryptotanshinone, tanshinone IIA, and moisture were quantified. The SE-ReHIA model, incorporating convolutional layers, maxpooling layers, squeeze-and-excitation residual blocks, and fully connected layers, exhibited Rc2 values of 0.981, 0.980, 0.975, 0.972, and 0.970 for the aforementioned compounds and moisture. Furthermore, Rp2 values were ascertained to be 0.975, 0.943, 0.962, 0.957, and 0.930, respectively, signifying the model’s commendable predictive competence. This study marks the inaugural application of SE-ReHIA for Salvia miltiorrhiza’s chemical profiling, offering a method that is rapid, eco-friendly, and non-invasive. Such advancements can fortify consistency across botanical drug batches, underpinning product reliability. The broader applicability of the SE-ReHIA technique in the quality assurance of bulk medicinal entities is anticipated with optimism. Full article
Show Figures

Figure 1

17 pages, 4382 KiB  
Article
Dihydrotanshinone Triggers Porimin-Dependent Oncosis by ROS-Mediated Mitochondrial Dysfunction in Non-Small-Cell Lung Cancer
by Dongjie Zhang, Renyikun Yuan, Jiaping Pan, Qiumei Fan, Kaili Sun, Zhipeng Xu, Xiang Gao, Qinqin Wang, Jia He, Yaqing Ye, Zhengrong Mu, Jing Leng and Hongwei Gao
Int. J. Mol. Sci. 2023, 24(15), 11953; https://doi.org/10.3390/ijms241511953 - 26 Jul 2023
Cited by 9 | Viewed by 2493
Abstract
Lung cancer is one of the leading causes of cancer death. Non-small-cell lung cancer (NSCLC) accounts for the majority of lung cancer diagnoses. Dihydrotanshinone (DHT) is a compound extract from Salvia miltiorrhiza, which has favorable anti-inflammatory and anti-cancer activities. However, the role [...] Read more.
Lung cancer is one of the leading causes of cancer death. Non-small-cell lung cancer (NSCLC) accounts for the majority of lung cancer diagnoses. Dihydrotanshinone (DHT) is a compound extract from Salvia miltiorrhiza, which has favorable anti-inflammatory and anti-cancer activities. However, the role of DHT in NSCLC has not been fully studied. The anti-cancer drugs used for treating lung cancer often lead to apoptosis; however, the drug resistance of apoptosis restricts the effect of these drugs. Oncosis is a passive form of cell death that is different from apoptosis. It is characterized by cell swelling, and Porimin is a specific marker for oncosis. In this study, the role of DHT in mediating oncosis in A549 cells was investigated. In vitro, the MTS assay was used to detect cell activity after DHT treatment. Microscopy and electron microscopy were used to observe cell morphology changes. Western blotting was used to detect protein expression. Flow cytometry was used to detect intracellular reactive oxygen species (ROS) level, calcium ion (Ca2+) level, and cell mortality. The intracellular Lactic dehydrogenase (LDH) level was detected by an LDH detection kit after DHT treatment. The ATP level was detected using an ATP detection kit. In vivo, Lewis lung cancer (LLC) xenograft mice were used to evaluate the anti-tumor effect of DHT. Hematoxylin and eosin (HE) staining was used to detect the pathology of lung cancer tumors. The detection of Porimin in the tumor tissues of the mice after DHT administration was assessed by immunohistochemistry (IHC). The results of this study showed that DHT treatment changed the cell morphology; destroyed the mitochondrial structure; increased the expression of Porimin; increased the levels of LDH, ROS, and Ca2+; decreased the mitochondrial membrane potential and ATP level; and played an anti-tumor role in vitro by mediating oncosis in A549 cells. The in vivo studies showed that DHT could effectively inhibit tumor growth. The results of protein detection and IHC detection in the tumor tissues showed that the expression of Porimin was increased and that oncosis occurred in the tumor tissues of mice. DHT triggered Porimin-dependent oncosis by ROS-mediated mitochondrial dysfunction in NSCLC. The in vivo studies showed that DHT could inhibit tumor growth in LLC xenograft mice by triggering oncosis. This study indicates the potential for DHT to treat NSCLC. Full article
Show Figures

Figure 1

23 pages, 3300 KiB  
Article
Isolation of Salvia miltiorrhiza Kaurene Synthase-like (KSL) Gene Promoter and Its Regulation by Ethephon and Yeast Extract
by Piotr Szymczyk, Łukasz Kuźma, Agnieszka Jeleń, Ewa Balcerczak and Małgorzata Majewska
Genes 2023, 14(1), 54; https://doi.org/10.3390/genes14010054 - 24 Dec 2022
Cited by 2 | Viewed by 2626
Abstract
The presented study describes the regulation of the promoter region of the Salvia miltiorrhiza kaurene synthase-like gene (SmKSL) by ethylene and yeast extract. The isolated fragment is 897 bp and is composed of a promoter (763 bp), 5′UTR (109 bp), and [...] Read more.
The presented study describes the regulation of the promoter region of the Salvia miltiorrhiza kaurene synthase-like gene (SmKSL) by ethylene and yeast extract. The isolated fragment is 897 bp and is composed of a promoter (763 bp), 5′UTR (109 bp), and a short CDS (25 bp). The initial in silico analysis revealed the presence of numerous putative cis-active sites for trans-factors responding to different stress conditions. However, this study examines the influence of ethylene and yeast extract on SmKSL gene expression and tanshinone biosynthesis regulation. The results of 72h RT-PCR indicate an antagonistic interaction between ethylene, provided as ethephon (0.05, 0.10, 0.25, and 0.50 mM), and yeast extract (0.5%) on SmKSL gene expression in callus cultures of S. miltiorrhiza. A similar antagonistic effect was observed on total tanshinone concentration for up to 60 days. Ethylene provided as ethephon (0.05, 0.10, 0.25, and 0.50 mM) is a weak inducer of total tanshinone biosynthesis, increasing them only up to the maximum value of 0.67 ± 0.04 mg g−1 DW (60-day induction with 0.50 mM ethephon). Among the tanshinones elicited by ethephon, cryptotanshinone (52.21%) dominates, followed by dihydrotanshinone (45.00%) and tanshinone IIA (3.79%). In contrast, the 0.5% yeast extract strongly increases the total tanshinone concentration up to a maximum value of 13.30 ± 1.09 mg g−1 DW, observed after 50 days of induction. Yeast extract and ethylene appear to activate different fragments of the tanshinone biosynthesis route; hence the primary tanshinones induced by yeast extract were cryptotanshinone (81.42%), followed by dihydrotanshinone (17.06%) and tanshinone IIA (1.52%). Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Graphical abstract

17 pages, 3995 KiB  
Article
Dihydrotanshinone I Inhibits the Lung Metastasis of Breast Cancer by Suppressing Neutrophil Extracellular Traps Formation
by Huan Zhao, Yi Liang, Chengtao Sun, Yufei Zhai, Xuan Li, Mi Jiang, Ruiwen Yang, Xiaojuan Li, Qijin Shu, Guoyin Kai and Bing Han
Int. J. Mol. Sci. 2022, 23(23), 15180; https://doi.org/10.3390/ijms232315180 - 2 Dec 2022
Cited by 34 | Viewed by 3230
Abstract
Breast cancer (BC) is a common female malignancy, worldwide. BC death is predominantly caused by lung metastasis. According to previous studies, Dihydrotanshinone I (DHT), a bioactive compound in Salvia miltiorrhiza Bunge (S. miltiorrhiza), has inhibitory effects on numerous cancers. Here, we [...] Read more.
Breast cancer (BC) is a common female malignancy, worldwide. BC death is predominantly caused by lung metastasis. According to previous studies, Dihydrotanshinone I (DHT), a bioactive compound in Salvia miltiorrhiza Bunge (S. miltiorrhiza), has inhibitory effects on numerous cancers. Here, we investigated the anti-metastatic effect of DHT on BC, where DHT more strongly inhibited the growth of BC cells (MDA-MB-231, 4T1, MCF-7, and SKBR-3) than breast epithelial cells (MCF-10a). Additionally, DHT repressed the wound healing, invasion, and migration activities of 4T1 cells. In the 4T1 spontaneous metastasis model, DHT (20 mg/kg) blocked metastasis progression and distribution in the lung tissue by 74.9%. DHT reversed the formation of neutrophil extracellular traps (NETs) induced by phorbol 12-myristate 13-acetate, as well as ameliorated NETs-induced metastasis. Furthermore, it inhibited Ly6G+Mpo+ neutrophils infiltration and H3Cit expression in the lung tissues. RNA sequencing, western blot, and bioinformatical analysis indicated that TIMP1 could modulate DHT acting on lung metastasis inhibition. The study demonstrated a novel suppression mechanism of DHT on NETs formation to inhibit BC metastasis. Full article
Show Figures

Figure 1

17 pages, 5688 KiB  
Article
Dihydrotanshinone I Inhibits the Proliferation and Growth of Oxaliplatin-Resistant Human HCT116 Colorectal Cancer Cells
by Mengge Wang, Yusen Xiang, Ruyu Wang, Lijun Zhang, Hong Zhang, Hongzhuan Chen, Xin Luan and Lili Chen
Molecules 2022, 27(22), 7774; https://doi.org/10.3390/molecules27227774 - 11 Nov 2022
Cited by 13 | Viewed by 2785
Abstract
Oxaliplatin (OXA) is a first-line chemotherapeutic drug for the treatment of colorectal cancer (CRC), but acquired drug resistance becomes the main cause of treatment failure. Increasing evidence has shown that some natural components may serve as chemoresistant sensitizers. In this study, we discovered [...] Read more.
Oxaliplatin (OXA) is a first-line chemotherapeutic drug for the treatment of colorectal cancer (CRC), but acquired drug resistance becomes the main cause of treatment failure. Increasing evidence has shown that some natural components may serve as chemoresistant sensitizers. In this study, we discovered Dihydrotanshinone I (DHTS) through virtual screening using a ligand-based method, and explored its inhibitory effects and the mechanism on OXA-resistant CRC in vitro and in vivo. The results showed that DHTS could effectively inhibit the proliferation of HCT116 and HCT116/OXA resistant cells. DHTS-induced cell apoptosis blocked cell cycle in S and G2/M phases, and enhanced DNA damage of HCT116/OXA cells in a concentration-dependent manner. DHTS also exhibited the obvious inhibition of tumor growth in the HCT116/OXA xenograft model. Mechanistically, DHTS could downregulate the expression of Src homology 2 structural domain protein tyrosine phosphatase (SHP2) and Wnt/β-catenin, as well as conventional drug resistance and apoptosis-related proteins such as multidrug resistance associated proteins (MRP1), P-glycoprotein (P-gp), Bcl-2, and Bcl-xL. Thus, DHTS markedly induces cell apoptosis and inhibits tumor growth in OXA-resistant HCT116 CRC mice models, which can be used as a novel lead compound against OXA-resistant CRC. Full article
(This article belongs to the Special Issue Novel Anti-cancer Lead Compounds)
Show Figures

Figure 1

19 pages, 14096 KiB  
Article
The Expression Profiles of the Salvia miltiorrhiza 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase 4 Gene and Its Influence on the Biosynthesis of Tanshinones
by Małgorzata Majewska, Piotr Szymczyk, Jan Gomulski, Agnieszka Jeleń, Renata Grąbkowska, Ewa Balcerczak and Łukasz Kuźma
Molecules 2022, 27(14), 4354; https://doi.org/10.3390/molecules27144354 - 7 Jul 2022
Cited by 7 | Viewed by 2360
Abstract
Salvia miltiorrhiza is a medicinal plant that synthesises biologically-active tanshinones with numerous therapeutic properties. An important rate-limiting enzyme in the biosynthesis of their precursors is 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR). This study presents the organ-specific expression profile of the S. miltiorrhiza HMGR4 gene and [...] Read more.
Salvia miltiorrhiza is a medicinal plant that synthesises biologically-active tanshinones with numerous therapeutic properties. An important rate-limiting enzyme in the biosynthesis of their precursors is 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR). This study presents the organ-specific expression profile of the S. miltiorrhiza HMGR4 gene and its sensitivity to potential regulators, viz. gibberellic acid (GA3), indole-3-acetic acid (IAA) and salicylic acid (SA). In addition, it demonstrates the importance of the HMGR4 gene, the hormone used, the plant organ, and the culture environment for the biosynthesis of tanshinones. HMGR4 overexpression was found to significantly boost the accumulation of dihydrotanshinone I (DHTI), cryptotanshinone (CT), tanshinone I (TI) and tanshinone IIA (TIIA) in roots by 0.44 to 5.39 mg/g dry weight (DW), as well as TIIA in stems and leaves. S. miltiorrhiza roots cultivated in soil demonstrated higher concentrations of the examined metabolites than those grown in vitro. GA3 caused a considerable increase in the quantity of CT (by 794.2 µg/g DW) and TIIA (by 88.1 µg/g DW) in roots. In turn, IAA significantly inhibited the biosynthesis of the studied tanshinones in root material. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

22 pages, 3762 KiB  
Article
Dihydrotanshinone I Enhances Cell Adhesion and Inhibits Cell Migration in Osteosarcoma U−2 OS Cells through CD44 and Chemokine Signaling
by Lanyan Fan, Chen Peng, Xiaoping Zhu, Yawen Liang, Tianyi Xu, Peng Xu and Shihua Wu
Molecules 2022, 27(12), 3714; https://doi.org/10.3390/molecules27123714 - 9 Jun 2022
Cited by 8 | Viewed by 2924
Abstract
In the screening of novel natural products against cancer using an in vitro cancer cell model, we recently found that tanshinones from a traditional Chinese medicine, the rhizome of Salvia miltiorrhiza Bunge (Danshen), had potent effects on cell proliferation and migration. Especially for [...] Read more.
In the screening of novel natural products against cancer using an in vitro cancer cell model, we recently found that tanshinones from a traditional Chinese medicine, the rhizome of Salvia miltiorrhiza Bunge (Danshen), had potent effects on cell proliferation and migration. Especially for human osteosarcoma U−2 OS cells, tanshinones significantly enhanced the cell adherence, implying a possible role in cell adhesion and cell migration inhibition. In this work, therefore, we aimed to provide a new insight into the possible molecule mechanisms of dihydrotanshinone I, which had the strongest effects on cell adhesion among several candidate tanshinones. RNA−sequencing-based transcriptome analysis and several biochemical experiments indicated that there were comprehensive signals involved in dihydrotanshinone I-treated U−2 OS cells, such as cell cycle, DNA replication, thermogenesis, tight junction, oxidative phosphorylation, adherens junction, and focal adhesion. First, dihydrotanshinone I could potently inhibit cell proliferation and induce cell cycle arrest in the G0/G1 phase by downregulating the expression of CDK4, CDK2, cyclin D1, and cyclin E1 and upregulating the expression of p21. Second, it could significantly enhance cell adhesion on cell plates and inhibit cell migration, involving the hyaluronan CD44−mediated CXCL8–PI3K/AKT–FOXO1, IL6–STAT3–P53, and EMT signaling pathways. Thus, the increased expression of CD44 and lengthened protrusions around the cell yielded a significant increase in cell adhesion. In summary, these results suggest that dihydrotanshinone I might be an interesting molecular therapy for enhancing human osteosarcoma U−2 OS cell adhesion and inhibiting cell migration and proliferation. Full article
(This article belongs to the Special Issue Chemical Biology Research in Asia)
Show Figures

Graphical abstract

21 pages, 2288 KiB  
Article
Methyl Jasmonate Activates the 2C Methyl-D-erithrytol 2,4-cyclodiphosphate Synthase Gene and Stimulates Tanshinone Accumulation in Salvia miltiorrhiza Solid Callus Cultures
by Piotr Szymczyk, Grażyna Szymańska, Łukasz Kuźma, Agnieszka Jeleń and Ewa Balcerczak
Molecules 2022, 27(6), 1772; https://doi.org/10.3390/molecules27061772 - 8 Mar 2022
Cited by 5 | Viewed by 2600
Abstract
The present study characterizes the 5′ regulatory region of the SmMEC gene. The isolated fragment is 1559 bp long and consists of a promoter, 5′UTR and 31 nucleotide 5′ fragments of the CDS region. In silico bioinformatic analysis found that the promoter region [...] Read more.
The present study characterizes the 5′ regulatory region of the SmMEC gene. The isolated fragment is 1559 bp long and consists of a promoter, 5′UTR and 31 nucleotide 5′ fragments of the CDS region. In silico bioinformatic analysis found that the promoter region contains repetitions of many potential cis-active elements. Cis-active elements associated with the response to methyl jasmonate (MeJa) were identified in the SmMEC gene promoter. Co-expression studies combined with earlier transcriptomic research suggest the significant role of MeJa in SmMEC gene regulation. These findings were in line with the results of the RT-PCR test showing SmMEC gene expression induction after 72 h of MeJa treatment. Biphasic total tanshinone accumulation was observed following treatment of S. miltiorrhiza solid callus cultures with 50–500 μM methyl jasmonate, with peaks observed after 10–20 and 50–60 days. An early peak of total tanshinone concentration (0.08%) occurred after 20 days of 100 μM MeJa induction, and a second, much lower one, was observed after 50 days of 50 μM MeJa stimulation (0.04%). The dominant tanshinones were cryptotanshinone (CT) and dihydrotanshinone (DHT). To better understand the inducing effect of MeJa treatment on tanshinone biosynthesis, a search was performed for methyl jasmonate-responsive cis-active motifs in the available sequences of gene proximal promoters associated with terpenoid precursor biosynthesis. The results indicate that MeJa has the potential to induce a significant proportion of the presented genes, which is in line with available transcriptomic and RT-PCR data. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

11 pages, 732 KiB  
Article
Simultaneous Determination of Seven Lipophilic and Hydrophilic Components in Salvia miltiorrhiza Bunge by LC-MS/MS Method and Its Application to a Transport Study in a Blood-Brain-Barrier Cell Model
by Hui Wang, Mingyong Zhang, Jiahao Fang, Yuzhen He, Min Liu, Zhanying Hong and Yifeng Chai
Molecules 2022, 27(3), 657; https://doi.org/10.3390/molecules27030657 - 20 Jan 2022
Cited by 10 | Viewed by 2486
Abstract
Salvia miltiorrhiza Bunge (SM) has been extensively used in Alzheimer’s disease treatment, the permeability through the blood-brain barrier (BBB) determining its efficacy. However, the transport mechanism of SM components across the BBB remains to be clarified. A simple, precise, and sensitive method using [...] Read more.
Salvia miltiorrhiza Bunge (SM) has been extensively used in Alzheimer’s disease treatment, the permeability through the blood-brain barrier (BBB) determining its efficacy. However, the transport mechanism of SM components across the BBB remains to be clarified. A simple, precise, and sensitive method using LC-MS/MS was developed for simultaneous quantification of tanshinone I (TS I), dihydrotanshinone I (DTS I), tanshinone IIA (TS IIA), cryptotanshinone (CTS), protocatechuic aldehyde (PAL), protocatechuic acid (PCTA), and caffeic acid (CFA) in transport samples. The analytes were separated on a C18 column by gradient elution. Multiple reaction monitoring mode via electrospray ionization source was used to quantify the analytes in positive mode for TS I, DTS I, TS IIA, CTS, and negative mode for PAL, PCTA, and CFA. The linearity ranges were 0.1–8 ng/mL for TS I and DTS I, 0.2–8 ng/mL for TS IIA, 1–80 ng/mL for CTS, 20–800 ng/mL for PAL and CFA, and 10–4000 ng/mL for PCTA. The developed method was accurate and precise for the compounds. The relative matrix effect was less than 15%, and the analytes were stable for analysis. The established method was successfully applied for transport experiments on a BBB cell model to evaluate the apparent permeability of the seven components. Full article
(This article belongs to the Special Issue Chromatographic Science of Natural Products II)
Show Figures

Graphical abstract

17 pages, 3141 KiB  
Article
Effects of Dihydrotanshinone I on Proliferation and Invasiveness of Paclitaxel-Resistant Anaplastic Thyroid Cancer Cells
by Lorenzo Allegri, Francesca Capriglione, Valentina Maggisano, Giuseppe Damante and Federica Baldan
Int. J. Mol. Sci. 2021, 22(15), 8083; https://doi.org/10.3390/ijms22158083 - 28 Jul 2021
Cited by 10 | Viewed by 2553
Abstract
ATC is a very rare, but extremely aggressive form of thyroid malignancy, responsible for the highest mortality rate registered for thyroid cancer. In patients without known genetic aberrations, the current treatment is still represented by palliative surgery and systemic mono- or combined chemotherapy, [...] Read more.
ATC is a very rare, but extremely aggressive form of thyroid malignancy, responsible for the highest mortality rate registered for thyroid cancer. In patients without known genetic aberrations, the current treatment is still represented by palliative surgery and systemic mono- or combined chemotherapy, which is often not fully effective for the appearance of drug resistance. Comprehension of the mechanisms involved in the development of the resistance is therefore an urgent issue to suggest novel therapeutic approaches for this very aggressive malignancy. In this study, we created a model of anaplastic thyroid cancer (ATC) cells resistant to paclitaxel and investigated the characteristics of these cells by analyzing the profile of gene expression and comparing it with that of paclitaxel-sensitive original ATC cell lines. In addition, we evaluated the effects of Dihydrotanshinone I (DHT) on the viability and invasiveness of paclitaxel-resistant cells. ATC paclitaxel-resistant cells highlighted an overexpression of ABCB1 and a hyper-activation of the NF-κB compared to sensitive cells. DHT treatment resulted in a reduction of viability and clonogenic ability of resistant cells. Moreover, DHT induces a decrement of NF-κB activity in SW1736-PTX and 8505C-PTX cells. In conclusion, to the best of our knowledge, the results of the present study are the first to demonstrate the antitumor effects of DHT on ATC cells resistant to Paclitaxel in vitro. Full article
Show Figures

Figure 1

14 pages, 1439 KiB  
Article
Simultaneous Determination of Seven Bioactive Constituents from Salvia miltiorrhiza in Rat Plasma by HPLC-MS/MS: Application to a Comparative Pharmacokinetic Study
by Yanli Zhang, Weiliang Cui, Xianghong Liu, Ning Wang, Wenru Kong, Junyu Sui, Huifen Li and Shuqi Wang
Separations 2021, 8(7), 93; https://doi.org/10.3390/separations8070093 - 29 Jun 2021
Cited by 2 | Viewed by 3380
Abstract
The roots of Salvia miltiorrhiza (Danshen) is a precious herbal medicine used to treat cardiovascular diseases. This study establishes a high-performance liquid chromatography-tandem mass spectrometric (HPLC-MS/MS) method to quantify seven bioactive constituents from Danshen in rat plasma simultaneously. Chromatographic separation is performed on [...] Read more.
The roots of Salvia miltiorrhiza (Danshen) is a precious herbal medicine used to treat cardiovascular diseases. This study establishes a high-performance liquid chromatography-tandem mass spectrometric (HPLC-MS/MS) method to quantify seven bioactive constituents from Danshen in rat plasma simultaneously. Chromatographic separation is performed on an Agilent Eclipse Plus C18 column (150 mm × 2.1 mm, 5 μm), utilizing a gradient of acetonitrile and 0.2% formic acid aqueous solution as the mobile phase, at a flow rate of 0.6 mL/min. We conduct a tandem mass spectrometric detection with electrospray ionization (ESI) interface via multiple reaction monitoring (MRM) in both positive and negative ionization mode. Our results show that a linear relationship is established for each analyte of interest over the concentration range of 0.5–300 ng/mL with r ≥ 0.9976. The validated method is successfully used to compare the pharmacokinetic properties of crude and wine-processed Danshen extract orally administered to rats. Cmax of tanshinone IIA, Cmax, and AUC0-t of dihydrotanshinone I decrease significantly (p < 0.05) in the wine-processed group. No significant changes for other compounds are observed. These results might provide meaningful information for the further application of wine-processed Danshen and understanding of wine-processing mechanisms. Full article
(This article belongs to the Collection State of the Art in Separation Science)
Show Figures

Graphical abstract

13 pages, 8866 KiB  
Article
Plasma Membrane H+-ATPase SmPHA4 Negatively Regulates the Biosynthesis of Tanshinones in Salvia miltiorrhiza
by Xiuhong Li, Bin Zhang, Pengda Ma, Ruizhi Cao, Xiaobing Yang and Juane Dong
Int. J. Mol. Sci. 2021, 22(7), 3353; https://doi.org/10.3390/ijms22073353 - 25 Mar 2021
Cited by 6 | Viewed by 2112
Abstract
Salvia miltiorrhiza Bunge has been widely used in the treatment of cardiovascular and cerebrovascular diseases, due to the pharmacological action of its active components such as the tanshinones. Plasma membrane (PM) H+-ATPase plays key roles in numerous physiological processes in plants. [...] Read more.
Salvia miltiorrhiza Bunge has been widely used in the treatment of cardiovascular and cerebrovascular diseases, due to the pharmacological action of its active components such as the tanshinones. Plasma membrane (PM) H+-ATPase plays key roles in numerous physiological processes in plants. However, little is known about the PM H+-ATPase gene family in S. miltiorrhiza (Sm). Here, nine PM H+-ATPase isoforms were identified and named SmPHA1–SmPHA9. Phylogenetic tree analysis showed that the genetic distance of SmPHAs was relatively far in the S. miltiorrhiza PM H+-ATPase family. Moreover, the transmembrane structures were rich in SmPHA protein. In addition, SmPHA4 was found to be highly expressed in roots and flowers. HPLC revealed that accumulation of dihydrotanshinone (DT), cryptotanshinone (CT), and tanshinone I (TI) was significantly reduced in the SmPHA4-OE lines but was increased in the SmPHA4-RNAi lines, ranging from 2.54 to 3.52, 3.77 to 6.33, and 0.35 to 0.74 mg/g, respectively, suggesting that SmPHA4 is a candidate regulator of tanshinone metabolites. Moreover, qRT-PCR confirmed that the expression of tanshinone biosynthetic-related key enzymes was also upregulated in the SmPHA4-RNAi lines. In summary, this study highlighted PM H+-ATPase function and provided new insights into regulatory candidate genes for modulating secondary metabolism biosynthesis in S. miltiorrhiza. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

Back to TopTop