Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (340)

Search Parameters:
Keywords = dielectric waveguides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3147 KB  
Article
Simulated Comparison of On-Chip Terahertz Filters for Sub-Wavelength Dielectric Sensing
by Josh Paul Robert Nixon, Connor Devyn William Mosley, Sae June Park, Christopher David Wood and John Cunningham
Sensors 2026, 26(1), 129; https://doi.org/10.3390/s26010129 - 24 Dec 2025
Abstract
This paper discusses the application of on-chip terahertz (THz) filters attached to waveguides that can act as sensor elements, including for scanned imaging applications. Our work presents a comparative numerical study of several different geometries (comprising five split-ring resonator geometries and a quarter-wavelength [...] Read more.
This paper discusses the application of on-chip terahertz (THz) filters attached to waveguides that can act as sensor elements, including for scanned imaging applications. Our work presents a comparative numerical study of several different geometries (comprising five split-ring resonator geometries and a quarter-wavelength stub resonator, the latter being well established as a sensor at THz frequencies and therefore able to act as a benchmark). We designed each structure to have a resonant frequency of 500 GHz, allowing the impact of resonator geometry on sensing performance to be isolated; the performance was quantified by assessing each design using four figures of merit: resonance quality factor, sensitivity (relative frequency shift under dielectric loading), responsivity (sensitivity weighted by resonance sharpness), and the electric field confinement area. Simulations were conducted using Ansys HFSS using the properties of a commercially available photoresist (Shipley 1813) as a dielectric load to assess performance under conditions comparable to previous experimental studies. The analysis showed that while sensitivity remained broadly similar across geometries, responsivity and quality factor differed substantially between resonators. Furthermore, the spatial distribution of the electric field and current density, particularly in rotated configurations, was found to significantly impact coupling efficiency between the resonator and transmission line. Our findings provide guidance for the general design of systems employing THz sensors while establishing a framework with which to benchmark future sensor geometries. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

9 pages, 4610 KB  
Article
A Single-Layer Full-Color Diffractive Waveguide by Lithography
by Yong Li, Fei Wu, Huihui Li, Haitao Yang, Mengguang Wang and Zhenrong Zheng
Nanomaterials 2026, 16(1), 6; https://doi.org/10.3390/nano16010006 - 19 Dec 2025
Viewed by 181
Abstract
Augmented reality (AR) near-eye displays (NEDs) couple microdisplay image light to the human eye via integrated optical modules, enabling seamless virtual–real fusion. As core components that synergistically transmit and diffract light, diffractive waveguides are promising for next-generation AR NEDs but face two bottlenecks: [...] Read more.
Augmented reality (AR) near-eye displays (NEDs) couple microdisplay image light to the human eye via integrated optical modules, enabling seamless virtual–real fusion. As core components that synergistically transmit and diffract light, diffractive waveguides are promising for next-generation AR NEDs but face two bottlenecks: compromised full-color performance in single-layer structures caused by grating dispersion and lack of scalable fabrication technologies. To address these, we first propose a mass-production-compatible workflow based on deep ultraviolet (DUV) lithography for large-area nanostructured optics. This workflow enables high-precision wafer-level production with 200 mm wafers and nine dies per wafer, overcomes scalability issues, and is fully compatible with straight-configuration nanostructures to ensure manufacturing feasibility. Leveraging this workflow, we develop a single-layer diffractive waveguide system for AR NEDs, which comprises a thin glass substrate, a broadband high-efficiency multi-layer dielectric in-coupler, and a 2D out-coupler that concurrently expands and out-couples light. Rigorous coupled wave analysis (RCWA) optimized coupler diffraction, while ray tracing refined guided light intensity and significantly improved exit pupil uniformity. This work establishes a foundation for full-color, high-efficiency AR waveguides and provides a scalable paradigm for large-area nanostructured optical systems such as telescopes and lithography equipment. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

14 pages, 1193 KB  
Communication
Fano Resonance Sensor with Ultra-High Spectral Resolution in a Metallic Waveguide
by Er’el Granot
Photonics 2025, 12(12), 1244; https://doi.org/10.3390/photonics12121244 - 18 Dec 2025
Viewed by 97
Abstract
High-resolution optical sensing typically relies on complex, high-finesse interferometers, limiting the scalability and cost-effectiveness of extreme-precision metrology. We propose a simple, compact alternative: a metallic-boundary waveguide containing a single-point dielectric impurity, operated near its cutoff frequency. This device achieves ultra-high spectral resolution by [...] Read more.
High-resolution optical sensing typically relies on complex, high-finesse interferometers, limiting the scalability and cost-effectiveness of extreme-precision metrology. We propose a simple, compact alternative: a metallic-boundary waveguide containing a single-point dielectric impurity, operated near its cutoff frequency. This device achieves ultra-high spectral resolution by exploiting Fano resonance, arising from the quantum–optical interference between the waveguide’s continuous modes and a quasi-bound state induced by the local impurity. For analytical modeling, we employ the Impurity D Function (IDF), an approach previously confined to quantum mechanical scattering, demonstrating its first application in an integrated optical system. Our analysis shows that the spectral resolution () scales powerfully with the geometry, specifically ~ε/w12, where ε/w is the impurity-to-waveguide ratio. This translates directly into an extremely sensitive strain gauge, with transmission linearity T11=1/2+η near the 50% working point (η is the mechanical strain). We calculate that for a practical ratio of ε/w1%, the device yields a resolution of ~1020, confirming its potential to measure mechanical strains smaller than η~1021 using a fundamentally simple, integrated platform. Full article
(This article belongs to the Special Issue Advances in Optical Sensors and Applications)
Show Figures

Figure 1

20 pages, 7738 KB  
Article
A Stacked Substrate-Integrated Waveguide-Based Pyramidal Horn Antenna for Terahertz Communications
by Biswash Paudel, Xue Jun Li and Boon-Chong Seet
Electronics 2025, 14(23), 4780; https://doi.org/10.3390/electronics14234780 - 4 Dec 2025
Viewed by 252
Abstract
The terahertz (THz) band offers ultra-wide bandwidth for next-generation high-speed wireless communication systems. However, achieving compact, high-gain, and beam-symmetric THz antennas remains challenging due to fabrication and propagation constraints. This paper presents a simulation-based design and optimization of a stacked substrate-integrated waveguide (SIW) [...] Read more.
The terahertz (THz) band offers ultra-wide bandwidth for next-generation high-speed wireless communication systems. However, achieving compact, high-gain, and beam-symmetric THz antennas remains challenging due to fabrication and propagation constraints. This paper presents a simulation-based design and optimization of a stacked substrate-integrated waveguide (SIW) pyramidal horn antenna achieving equal half-power beamwidths (HPBWs) in both E- and H-planes. The design employs vertically stacked SIW layers coupled through optimized slot apertures to ensure dominant TE10 mode propagation with minimal reflection. Using full-wave electromagnetic simulations, the effects of layer number, dielectric loading, amplitude tapering, and phase distribution are systematically analyzed. The optimized five-layer configuration exhibits 10 dBi gain, 41° HPBW, and sidelobe levels around −3.2 dB at 210 GHz. This framework aims to develop high-performance, beam-symmetric THz SIW antennas compatible with standard LTCC/PCB technologies. Full article
Show Figures

Figure 1

21 pages, 6067 KB  
Article
Data-Driven Inverse Design of Hybrid Waveguide Gratings Using Reflection Spectra via Tandem Networks and Conditional VAEs
by Shahrzad Dehghani, Christopher Knoth, Shaghayegh Eskandari, Maximilian Buchmüller, Tobias Meisen and Patrick Görrn
Optics 2025, 6(4), 61; https://doi.org/10.3390/opt6040061 - 26 Nov 2025
Viewed by 365
Abstract
This study presents a data-driven inverse design approach for one-dimensional hybrid waveguide gratings using full reflection spectra across the visible range and a complete span of incident angles. Traditionally, designing such structures to achieve specific optical responses relies on parameter sweeps and iterative [...] Read more.
This study presents a data-driven inverse design approach for one-dimensional hybrid waveguide gratings using full reflection spectra across the visible range and a complete span of incident angles. Traditionally, designing such structures to achieve specific optical responses relies on parameter sweeps and iterative simulations which are computationally expensive, time-consuming, and often inefficient. To overcome this, we generated a comprehensive dataset using rigorous coupled-wave analysis (RCWA) simulations and trained two machine learning models: a deterministic tandem network and a generative conditional Variational Autoencoder (cVAE). Both models were trained on noisy reflection spectra to mimic real-world measurements. They both predict structural parameters accurately on clean and noisy data. On clean data, the mean absolute error (MAE) for silver thickness and grating period is below 1 nm. For the dielectric layer, the error is about 13–15 nm. When noise is added, the Tandem network performs best with low to moderate noise. The cVAE, however, stays more stable under high noise conditions. At σ=0.3, the cVAE model reliably predicts the silver thickness and grating period, with MAEs below 6 nm. The main error comes from the dielectric thickness. Sensitivity analysis of reflection spectra confirms this trend. The reflection is least sensitive to the dielectric thickness, while silver thickness and grating period dominate. This analysis provides physical insight for waveguide design as well in which, accurate control of silver thickness and grating period is far more critical than small errors in dielectric thickness. In general, our approach enables rapid prediction of structural parameters of hybrid waveguide gratings from reflection spectra. This reduces design time and reliance on complex microscopic measurements, with potential applications in sensing, communication, and integrated photonics. Full article
Show Figures

Figure 1

13 pages, 590 KB  
Article
Delay Analysis of Pinching-Antenna-Assisted Cellular Networks
by Muyu Mei and Jiawen Yu
Electronics 2025, 14(22), 4406; https://doi.org/10.3390/electronics14224406 - 12 Nov 2025
Viewed by 344
Abstract
In 5G cellular networks, end-to-end data transmission delay is a key metric for evaluating network performance. High-frequency signal fading and complex transmission links often lead to increased delays. Pinching-antenna optimizes signal propagation through directional transmission, enhancing signal quality and reducing delay. Therefore, this [...] Read more.
In 5G cellular networks, end-to-end data transmission delay is a key metric for evaluating network performance. High-frequency signal fading and complex transmission links often lead to increased delays. Pinching-antenna optimizes signal propagation through directional transmission, enhancing signal quality and reducing delay. Therefore, this paper analyzes the end-to-end transmission delay performance of 5G cellular networks assisted by pinching-antenna. Specifically, the data transmission process is modeled as a two-hop link, where data is first transmitted from the base station to the relay station (RS) via a 5G high-frequency transmission link, and then from the RS to the user equipment via a dielectric waveguide-based pinching-antenna link. We derive the statistical characteristics of the service processes for both the 5G high-frequency transmission link and the dielectric waveguide link. Considering traffic arrivals and service capabilities, we then precisely define the network’s end-to-end delay using stochastic network calculus. Through numerical experiments, we initially evaluate the impact of various network parameters on the performance upper bound and provide system performance. The experimental results show that the pinching-antenna-assisted 5G cellular network significantly reduces end-to-end delay compared with the traditional decode and forward relay, further confirming the substantial advantage of pinching-antenna in optimizing delay performance. Full article
Show Figures

Figure 1

15 pages, 7009 KB  
Article
Low Coefficient of Thermal Expansion (CTE) Ceramic–Thermoplastic Composite for Fused Deposition Modelling of RF and Microwave Devices
by Vishvajitsinh Kosamiya, Liguan Li, Ioannis N. Gkikas, Juan D. Castro, Julia Oppenheimer, Ioannis Spanopoulos and Jing Wang
Crystals 2025, 15(11), 963; https://doi.org/10.3390/cryst15110963 - 7 Nov 2025
Viewed by 697
Abstract
Additive manufacturing (AM) has significant potential for rapid prototyping of intricate 3-dimensional geometries, yet its adoption in RF and microwave applications remains limited. Key barriers include inadequate material characterization, high dielectric losses, poor thermal stability, and challenges with multi-material integration. This work addresses [...] Read more.
Additive manufacturing (AM) has significant potential for rapid prototyping of intricate 3-dimensional geometries, yet its adoption in RF and microwave applications remains limited. Key barriers include inadequate material characterization, high dielectric losses, poor thermal stability, and challenges with multi-material integration. This work addresses these issues by developing a high-k, low-loss composite filament with a reduced coefficient of thermal expansion (CTE), specifically formulated for fused deposition modelling (FDM). By varying filler volume fractions (30%, 40%, and 50% v/v) and surfactant content, their impact on thermal stability and CTE was investigated and measured by thermomechanical analysis (TMA). XRD, Pycnometry, and EDS analysis were performed to verify the effect of the calcination process on ceramic microfillers. The B.E.T. method (Brunauer–Emmet–Teller) was utilized to calculate the specific surface area of the samples with N2 uptake. SEM images of the different composites were presented to visually demonstrate the homogeneous distribution of microfillers in the thermoplastic matrix. Titania was evaluated as the ceramic filler. Titania composites demonstrated decreased CTE values (35.93 ppm/°C at 50% v/v filler coated with surfactant) compared to composites without surfactant. A dielectric waveguide (DWG) printed with the T30S composite achieved an insertion loss of 0.46 dB at 17.23 GHz, significantly outperforming a commercially available ABS450-based DWG (0.95 dB at 16.88 GHz). Measurements aligned closely with 3D electromagnetic simulations, confirming dielectric properties (εr = 5.55, tan δ = 0.0009) suitable for advanced RF and microwave devices and advanced packaging applications. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

12 pages, 2252 KB  
Article
Ultra-High Spectral Contrast Nanobeam Photonic Crystal Cavity on Bending Waveguide
by Ping Yu, Peihong Cheng, Zhuoyuan Wang, Jingrui Wang, Fangfang Ge, Huiye Qiu and Daniel Kacik
Photonics 2025, 12(10), 1031; https://doi.org/10.3390/photonics12101031 - 17 Oct 2025
Viewed by 643
Abstract
In this article, one-dimensional photonic crystal cavities on bending waveguides (PCCoBW) used for achieving high-contrast spectra are proposed, analyzed, and experimentally verified on silicon on insulator (SOI). Both air and dielectric modes of the PCCoBW calculated by the finite-difference time-domain (FDTD) method show [...] Read more.
In this article, one-dimensional photonic crystal cavities on bending waveguides (PCCoBW) used for achieving high-contrast spectra are proposed, analyzed, and experimentally verified on silicon on insulator (SOI). Both air and dielectric modes of the PCCoBW calculated by the finite-difference time-domain (FDTD) method show finger-ring-like mode profiles with the achievement of high-quality factors (Q∼106), even when the bending radius is less than 50 times the lattice constant. Straight waveguides side-coupled to the cavity are used to access and measure mode resonances. The measured spectra show a high extinction ratio over 40 dB for dielectric modes and 20 dB for air modes, respectively. Both dielectric and air resonant modes are revealed with Q-factors over 3.3 × 104 and 7.9 × 104, respectively, for the coupled PCCoBWs. The proposed PCCoBW could be implemented as high-contrast notch filtering and would benefit a broad range of applications such as optical filters, modulators, sensors, or switches. Full article
(This article belongs to the Special Issue Recent Advancement in Microwave Photonics)
Show Figures

Figure 1

11 pages, 4467 KB  
Article
An Overmoded-Waveguide-Based Permittivity Measurement Method with High Accuracy and Ultra-Broadband over 8–110 GHz
by Weijie Wang, Yingjian Cao, Tieyang Wang, Fangfang Song, Shuanzhu Fang, Xianfeng Tang, Xiangqiang Li, Guoxiang Shu and Guo Liu
Micromachines 2025, 16(9), 1045; https://doi.org/10.3390/mi16091045 - 12 Sep 2025
Viewed by 1153
Abstract
An overmoded-waveguide-based kit operating in 8–110 GHz for material complex permittivity measurement is proposed and designed in this paper. It overcomes the significant errors caused by air gaps in the conventional standard waveguide method (SWM), especially for millimeter-wave frequency bands. Furthermore, it avoids [...] Read more.
An overmoded-waveguide-based kit operating in 8–110 GHz for material complex permittivity measurement is proposed and designed in this paper. It overcomes the significant errors caused by air gaps in the conventional standard waveguide method (SWM), especially for millimeter-wave frequency bands. Furthermore, it avoids the problem of SWM requiring different samples in broadband measurements. The proposed kit consists of an overmoded-waveguide sample fixture with cross dimensions of 22.86 mm × 10.16 mm, seven pairs of standard-overmoded waveguide transition structures for different frequency bands, and thru-reflect-line calibration kits. The air gap problem, a major error source in millimeter-wave measurement, is quantitatively investigated. Compared with the SWM method, the proposed kit can decrease errors from over 68% to below 8%. The proposed method was verified by measuring the polytetrafluoroethylene sample. Then, it was applied to measure the BeO-TiO2 ceramic, which is widely used in vacuum devices. The measured data are valuable for applying BeO-TiO2 ceramics in relevant devices and developing its dielectric relaxation model. Full article
(This article belongs to the Special Issue Microwave Passive Components, 3rd Edition)
Show Figures

Figure 1

13 pages, 2559 KB  
Article
Generation of an Electromagnetic Jet Using a PTFE-Loaded WR90 Waveguide: Design and Characterization
by Antoine Deubaibe, M. Podda Abouna, Mathis Granger, Bernard Bayard and Bruno Sauviac
Photonics 2025, 12(9), 895; https://doi.org/10.3390/photonics12090895 - 5 Sep 2025
Viewed by 767
Abstract
We present a compact dielectric lens integrated at the aperture of a WR90 rectangular waveguide, achieved using polytetrafluoroethylene (PTFE). This innovative configuration enables, for the first time in the X- and Ku-bands, the direct generation of a subwavelength electromagnetic jet from a guided [...] Read more.
We present a compact dielectric lens integrated at the aperture of a WR90 rectangular waveguide, achieved using polytetrafluoroethylene (PTFE). This innovative configuration enables, for the first time in the X- and Ku-bands, the direct generation of a subwavelength electromagnetic jet from a guided structure. The beam exhibits the hallmark features of an electromagnetic jet: strong near-field focusing, a subwavelength beam width surpassing the diffraction limit, and a quasi-planar wavefront sustained over a propagation distance of about 2λ. The lens design was systematically optimized, and its performance was assessed through full-wave finite element simulations and experimentally validated on a fabricated prototype. Excellent agreement between the simulation and measurement confirms the robustness of the approach. Beyond its simplicity and low cost, this solution achieves state-of-the-art focusing performance compared to free-space and guided-wave alternatives. It offers strong potential for applications in high-resolution imaging, precision sensing, and material characterization, particularly in opaque or highly lossy environments. Full article
Show Figures

Figure 1

12 pages, 2899 KB  
Article
Analysis and Optimization of Two-Dimensional Photonic Crystal Microcavity Structures for Gas Sensing
by Yu Song, Jiajia Quan, Linying Li, Jincheng Sun, Xinyi Huang, Zhili Meng, Jun Zhang, Zhongyu Cai and Yong Wan
Photonics 2025, 12(9), 875; https://doi.org/10.3390/photonics12090875 - 29 Aug 2025
Cited by 1 | Viewed by 870
Abstract
The monitoring of gases and vapors using portable instruments is critical in a variety of fields, such as industrial and household safety, environmental monitoring, process control, and national security, owing to gas pollution. In this study, we design a portable and simple two-dimensional [...] Read more.
The monitoring of gases and vapors using portable instruments is critical in a variety of fields, such as industrial and household safety, environmental monitoring, process control, and national security, owing to gas pollution. In this study, we design a portable and simple two-dimensional photonic crystal microcavity sensor for detecting gases such as ammonia, methane, carbon monoxide, acetylene, ethylene, and ethane. The basic structure of the sensor consists of silicon rods arranged in a square lattice pattern in air. Waveguide input and output channels are realized by engineering line defects within the lattice structure. Moreover, the sensor’s performance is continuously optimized by adding point defects, introducing a ring cavity, and varying the radius of the dielectric rods in the microcavity. Using the transmission spectrum obtained from the output waveguide, the performance parameters of the gas sensor are calculated. Based on the simulation analysis, the optimized gas sensor exhibits excellent performance, achieving a sensitivity S of 932.43 nm/RIU and a quality factor Q of 2421.719. Full article
(This article belongs to the Special Issue Emerging Trends in Photonic Crystals)
Show Figures

Figure 1

24 pages, 7981 KB  
Article
A Flexible and Compact UWB MIMO Antenna with Dual-Band-Notched Double U-Shaped Slot on Mylar® Polyester Film
by Vanvisa Chutchavong, Wanchalerm Chanwattanapong, Norakamon Wongsin, Paitoon Rakluea, Maleeya Tangjitjetsada, Chawalit Rakluea, Chatree Mahatthanajatuphat and Prayoot Akkaraekthalin
Electronics 2025, 14(17), 3363; https://doi.org/10.3390/electronics14173363 - 24 Aug 2025
Cited by 1 | Viewed by 1906
Abstract
Ultra-wideband (UWB) technology is a crucial facilitator for high-data-rate wireless communication due to its extensive frequency spectrum and low power consumption. Simultaneously, multiple-input multiple-output (MIMO) systems have garnered considerable attention owing to their capability to enhance channel capacity and link dependability. This article [...] Read more.
Ultra-wideband (UWB) technology is a crucial facilitator for high-data-rate wireless communication due to its extensive frequency spectrum and low power consumption. Simultaneously, multiple-input multiple-output (MIMO) systems have garnered considerable attention owing to their capability to enhance channel capacity and link dependability. This article discusses the development of small, high-performance MIMO UWB antennas with mutual suppression capabilities to fully use the benefits of both technologies. Additionally, the suggested antenna features a straightforward design and dual-band-notched characteristics. The antenna structure includes two radiating elements measuring 85 × 45 mm2. These elements use a rectangular patch provided by a coplanar waveguide (CPW). Double U-shaped slots are incorporated into the rectangular patch to introduce dual-band-notched properties, which help mitigate interference from WiMAX and WLAN communication systems. The antenna is fabricated on a Mylar® polyester film substrate of 0.3 mm in thickness, with a dielectric constant of 3.2. According to the measurement results, the suggested antenna functions efficiently across the frequency spectrum of 2.29 to 20 GHz, with excellent impedance matching throughout the bandwidth. Furthermore, it provides dual-band-notched coverage at 3.08–3.8 GHz for WiMAX and 4.98–5.89 GHz for WLAN. The antenna exhibits impressive performance, including favorable radiation attributes, consistent gain, and little mutual coupling (less than −20 dB). Additionally, the envelope correlation coefficient (ECC) is extremely low (ECC < 0.01) across the working bandwidth, which indicates excellent UWB MIMO performance. This paper offers an appropriate design methodology for future flexible and compact UWB MIMO systems that can serve as interference-resilient antennas for next-generation wireless applications. Full article
(This article belongs to the Collection MIMO Antennas)
Show Figures

Figure 1

15 pages, 3542 KB  
Article
mm-Wave Substrate-Integrated Fabry–Perot/Leaky-Wave Antennas in E-Band
by Rana Muhammad Hasan Bilal, Stefano Moscato, Simone Genovesi, Giuliano Manara and Filippo Costa
Sensors 2025, 25(17), 5248; https://doi.org/10.3390/s25175248 - 23 Aug 2025
Viewed by 1060
Abstract
This article introduces a substrate-integrated, low-cost, and low-profile E-band high-gain Fabry–Perot (FP)/leaky-wave (LW) antenna. This design enables the full integration of a high-gain antenna within a single-layer substrate for millimeter-wave (mm-wave) applications. The antenna design layout comprises a partially reflective surface (PRS) mounted [...] Read more.
This article introduces a substrate-integrated, low-cost, and low-profile E-band high-gain Fabry–Perot (FP)/leaky-wave (LW) antenna. This design enables the full integration of a high-gain antenna within a single-layer substrate for millimeter-wave (mm-wave) applications. The antenna design layout comprises a partially reflective surface (PRS) mounted on a thin, metal-coated, low-cost I-Tera MT40 dielectric substrate. The proposed antenna differs from conventional air-cavity-based FP/LW antennas, as it is fabricated on a low-cost dielectric substrate, eliminating the need for an air cavity, which restricts integration with printed circuit boards (PCBs) and planar circuits. The antenna is excited using a rectangular WR12 waveguide located beneath the ground plane. Impedance matching is achieved by employing a rectangular iris. The formulation for analyzing leaky waves within a cavity is thoroughly discussed using the Transverse Resonance Method (TRM). The proposed FP antenna achieves a maximum realized gain of 14.6 dBi with good impedance matching (|S11| = –14 dB). Finally, the proposed antenna is fabricated, and its performance is validated through experimental measurements. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

7 pages, 1290 KB  
Communication
Direct Nanoparticle Sensing in Liquids with Free-Space Excited Optical Whispering-Gallery-Mode Microresonators
by Davide D’Ambrosio, Saverio Avino and Gianluca Gagliardi
Sensors 2025, 25(16), 5111; https://doi.org/10.3390/s25165111 - 18 Aug 2025
Cited by 1 | Viewed by 967
Abstract
Whispering-gallery-mode (WGM) microresonators are amongst the most promising optical sensors for detecting bio-chemical targets. A number of laser interrogation methods have been proposed and demonstrated over the last decade, based on scattering and absorption losses or resonance splitting and shift, harnessing the high-quality [...] Read more.
Whispering-gallery-mode (WGM) microresonators are amongst the most promising optical sensors for detecting bio-chemical targets. A number of laser interrogation methods have been proposed and demonstrated over the last decade, based on scattering and absorption losses or resonance splitting and shift, harnessing the high-quality factor and ultra-small volume of WGMs. Actually, regardless of the sensitivity enhancement, their practical sensing operation may be hampered by the complexity of coupling devices as well as the signalprocessing required to extract the WGM response. Here, we use a silica microsphere immersed in an aqueous environment and efficiently excite optical WGMs with a free-space visible laser, thus collecting the relevant information from the transmitted and back-scattered light without any optical coupler, fiber, or waveguide. We show that a 640-nm diode laser, actively frequency-locked on resonance, provides real-time, fast sensing of dielectric nanoparticles approaching the surface with direct analog readout. Thanks to our illumination scheme, the sensor can be kept in water and operate for days without degradation or loss of sensitivity. Diverse noise contributions are carefully considered and quantified in our system, showing a minimum detectable particle size below 1 nm essentially limited by the residual laser microcavity jitter. Further analysis reveals that the inherent laserfrequency instability in the short, -mid-term operation regime sets an ultimate bound of 0.3 nm. Based on this work, we envisage the possibility to extend our method in view of developing new viable approaches for detection of nanoplastics in natural water without resorting to complex chemical laboratory methods. Full article
(This article belongs to the Section Communications)
Show Figures

Graphical abstract

20 pages, 1369 KB  
Article
Numerical Modeling of Electromagnetic Modes in a Planar Stratified Medium with a Graphene Interface
by Eugen Smolkin
Computation 2025, 13(7), 157; https://doi.org/10.3390/computation13070157 - 1 Jul 2025
Viewed by 533
Abstract
Graphene interfaces in layered dielectrics can support unique electromagnetic modes, but analyzing these modes requires robust computational techniques. This work presents a numerical method for computing TE-polarized eigenmodes in a planar stratified dielectric slab with an infinitesimally thin graphene sheet at its interface. [...] Read more.
Graphene interfaces in layered dielectrics can support unique electromagnetic modes, but analyzing these modes requires robust computational techniques. This work presents a numerical method for computing TE-polarized eigenmodes in a planar stratified dielectric slab with an infinitesimally thin graphene sheet at its interface. The governing boundary-value problem is reformulated as coupled initial-value problems and solved via a customized shooting method, enabling accurate calculation of complex propagation constants and field profiles despite the discontinuity at the graphene layer. We demonstrate that the graphene significantly alters the modal spectrum, introducing complex leaky and surface waves with attenuation due to graphene’s conductivity. Numerical results illustrate how the layers’ inhomogeneity and the graphene’s surface conductivity influence mode confinement and loss. These findings confirm the robustness of the proposed computational approach and provide insights relevant to the design and analysis of graphene-based waveguiding devices. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

Back to TopTop