Generation of an Electromagnetic Jet Using a PTFE-Loaded WR90 Waveguide: Design and Characterization
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Numerical Simulations
3.1.1. Near-Field Electromagnetic Field Concentration for an Open Rectangular Waveguide
3.1.2. Focusing the Electromagnetic Field Using an Electromagnetic Jet Lens
3.1.3. Impact of Frequency on the Electromagnetic Jet
3.1.4. Characteristics of the Electromagnetic Jet Lens
3.2. Experimental Validation of Electromagnetic Jet Mapping
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
FWHMx | Full width at half maximum along the x-axis |
FWHMy | Full width at half maximum along the y-axis |
FLHM | Full length at half maximum along the z-axis |
PTFE | Polytetrafluoroethylene |
TRL | Thru/Reflect/Line calibration method |
References
- Gardiol, F. Open-ended waveguides: Principles and applications. Adv. Electron. Electron Phys. 1985, 63, 139–187. [Google Scholar]
- Baudrand, H.; Tao, J.-W.; Atechian, J. Study of radiating properties of open-ended rectangular waveguides. IEEE Trans. Antennas Propag. 2002, 36, 1071–1077. [Google Scholar] [CrossRef]
- Tantot, O.; Chatard-Moulin, M.; Guillon, P. Measurement of complex permittivity and permeability and thickness of multilayered medium by an open-ended waveguide method. IEEE Trans. Instrum. Meas. 2002, 46, 519–522. [Google Scholar] [CrossRef]
- Ramzi, M.R.; Abou-Khousa, M.; Prayudi, I. Near-field microwave imaging using open-ended circular waveguide probes. IEEE Sens. J. 2017, 17, 2359–2366. [Google Scholar] [CrossRef]
- Ur Rahman, M.S.U.; Gaya, S.M.; Abou-Khousa, M.A. Nondestructive testing and evaluation of surface cracks using a planar microwave resonator probe. In Proceedings of the 2022 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), Bangalore, India, 12–16 December 2022; pp. 552–556. [Google Scholar]
- Ur Rahman, M.S.; Mustapha, A.A.; Abou-Khousa, M.A. Detection and sizing of surface cracks in metals using a UHF probe. In Proceedings of the 2021 IEEE International Conference on Imaging Systems and Techniques (IST), Kaohsiung, Taiwan, 24–26 August 2021; pp. 1–5. [Google Scholar]
- Huber, C.; Abiri, H.; Ganchev, S.I.; Zoughi, R. Modeling of surface hairline-crack detection in metals under coatings using an open-ended rectangular waveguide. IEEE Trans. Microw. Theory Tech. 2002, 45, 2049–2057. [Google Scholar] [CrossRef]
- Mbarek, S.B.; Choubani, F.; Cretin, B. Study of a new micromachined coplanar probe for near-field microwave microscopy. Microsyst. Technol. 2018, 24, 2887–2893. [Google Scholar] [CrossRef]
- Varshney, P.K.; Akhtar, M.J. Near-field subsurface microwave imaging using a planar sensor based on substrate-integrated waveguide. In Proceedings of the 2018 IEEE MTT-S International Microwave and RF Conference (IMaRC), Kolkata, India, 28–30 November 2018; pp. 1–4. [Google Scholar]
- Héritier, M.; Pachlatko, R.; Tao, Y.; Abendroth, J.M.; Degen, C.L.; Eichler, A. Spatially resolved surface dissipation over metal and dielectric substrates. Phys. Rev. Lett. 2021, 127, 216101. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Taflove, A.; Backman, V. Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique. Opt. Express 2004, 12, 1214–1220. [Google Scholar] [CrossRef] [PubMed]
- Lecler, S.; Takakura, Y.; Meyrueis, P. Properties of a three-dimensional photonic jet. Opt. Lett. 2005, 30, 2641–2643. [Google Scholar] [CrossRef] [PubMed]
- Ounnas, B.; Sauviac, B.; Takakura, Y.; Lecler, S.; Bayard, B.; Robert, S. Single and Dual Photonic Jets and Corresponding Backscattering Enhancement with Tipped Waveguides: Direct Observation at Microwave Frequencies. IEEE Trans. Antennas Propag. 2015, 63, 5612–5618. [Google Scholar] [CrossRef]
- Hyani, H.; Sauviac, B.; Edee, K.; Granet, G.; Robert, S.; Bayard, B. Multi-waveguide tip for photonic jet generation applied to detection in opaque structures. In Proceedings of the 15th Edition of the Microwave and Materials Characterization Days (JCMM), Paris, France, 19–21 March 2018. [Google Scholar]
- Johnson, S.G.; Bienstman, P.; Skorobogatiy, M.A.; Ibanescu, M.; Lidorikis, E.; Joannopoulos, J.D. Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals. Phys. Rev. E 2002, 66, 066608. [Google Scholar] [CrossRef] [PubMed]
- Wei-Ping, H. Coupled-mode theory for optical waveguides: An overview. J. Opt. Soc. Am. A 1994, 11, 963–983. [Google Scholar] [CrossRef]
- Hyani, H.; Sauviac, B.; Edee, M.K.; Granet, G.; Robert, S. Numerical study of a photonic jet with aperiodic Fourier modal method and experimental validation. Prog. Electromagn. Res. C 2018, 88, 133–143. [Google Scholar] [CrossRef]
- Engen, G.F.; Hoer, C.A. Thru-reflect-line: An improved technique for calibrating the dual six-port automatic network analyzer. IEEE Trans. Microw. Theory Tech. 1979, 27, 987–993. [Google Scholar] [CrossRef]
- Baskakova, A.; Hoffmann, K. Investigation of waveguide sensors for ultra-short-distance measurements. In Proceedings of the 2019 93rd ARFTG Microwave Measurement Conference (ARFTG), Boston, MA, USA, 7 June 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Baskakova, A.; Hoffmann, K. W-Band imaging sensor using a rectangular waveguide structure with choke. IEEE Microw. Wirel. Components Lett. 2021, 32, 230–233. [Google Scholar] [CrossRef]
- Granger, M.; Ghaddar, A.; Bayard, B.; Sauviac, B. Towards a local free-space microwave characterization method. In Proceedings of the 2024 IEEE/MTTS International Microwave Symposium (IMS), Washington, DC, USA, 16–21 June 2024; pp. 912–915. [Google Scholar] [CrossRef]
- Wei, B.; Chen, R.; Xu, Q.; Li, R.; Gong, S.; Yan, S. Optical force on a Rayleigh particle generated by photonic jet. Opt. Rev. 2024, 31, 41–53. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Jiang, H.; Deng, M.; Yin, L.; Gong, C.; Liu, W. Super-resolution terahertz imaging based on a meta-waveguide. Opt. Lett. 2024, 49, 1261–1264. [Google Scholar] [CrossRef]
FWHMx | FWHMy | FLHM | Normalized | |
---|---|---|---|---|
Lens 1—Figure 9a: | ||||
0.52 | 0.67 | 3.1 | 1.2 | 0.68 |
Lens 2—Figure 9b: | ||||
0.60 | 0.61 | 2.0 | 0.8 | 0.72 |
Lens 3—Figure 9c: | ||||
0.59 | 0.44 | 1.8 | 0.6 | 0.95 |
Lens 4—Figure 9d: | ||||
0.59 | 0.39 | 1.5 | 0.4 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deubaibe, A.; Abouna, M.P.; Granger, M.; Bayard, B.; Sauviac, B. Generation of an Electromagnetic Jet Using a PTFE-Loaded WR90 Waveguide: Design and Characterization. Photonics 2025, 12, 895. https://doi.org/10.3390/photonics12090895
Deubaibe A, Abouna MP, Granger M, Bayard B, Sauviac B. Generation of an Electromagnetic Jet Using a PTFE-Loaded WR90 Waveguide: Design and Characterization. Photonics. 2025; 12(9):895. https://doi.org/10.3390/photonics12090895
Chicago/Turabian StyleDeubaibe, Antoine, M. Podda Abouna, Mathis Granger, Bernard Bayard, and Bruno Sauviac. 2025. "Generation of an Electromagnetic Jet Using a PTFE-Loaded WR90 Waveguide: Design and Characterization" Photonics 12, no. 9: 895. https://doi.org/10.3390/photonics12090895
APA StyleDeubaibe, A., Abouna, M. P., Granger, M., Bayard, B., & Sauviac, B. (2025). Generation of an Electromagnetic Jet Using a PTFE-Loaded WR90 Waveguide: Design and Characterization. Photonics, 12(9), 895. https://doi.org/10.3390/photonics12090895