Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (326)

Search Parameters:
Keywords = dielectric waveguide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1369 KiB  
Article
Numerical Modeling of Electromagnetic Modes in a Planar Stratified Medium with a Graphene Interface
by Eugen Smolkin
Computation 2025, 13(7), 157; https://doi.org/10.3390/computation13070157 - 1 Jul 2025
Viewed by 196
Abstract
Graphene interfaces in layered dielectrics can support unique electromagnetic modes, but analyzing these modes requires robust computational techniques. This work presents a numerical method for computing TE-polarized eigenmodes in a planar stratified dielectric slab with an infinitesimally thin graphene sheet at its interface. [...] Read more.
Graphene interfaces in layered dielectrics can support unique electromagnetic modes, but analyzing these modes requires robust computational techniques. This work presents a numerical method for computing TE-polarized eigenmodes in a planar stratified dielectric slab with an infinitesimally thin graphene sheet at its interface. The governing boundary-value problem is reformulated as coupled initial-value problems and solved via a customized shooting method, enabling accurate calculation of complex propagation constants and field profiles despite the discontinuity at the graphene layer. We demonstrate that the graphene significantly alters the modal spectrum, introducing complex leaky and surface waves with attenuation due to graphene’s conductivity. Numerical results illustrate how the layers’ inhomogeneity and the graphene’s surface conductivity influence mode confinement and loss. These findings confirm the robustness of the proposed computational approach and provide insights relevant to the design and analysis of graphene-based waveguiding devices. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

23 pages, 2905 KiB  
Article
Fluxgate Magnetometers Based on New Physical Principles
by Ivan V. Bryakin, Igor V. Bochkarev, Vadim R. Khramshin, Vadim R. Gasiyarov and Ivan N. Erdakov
Sensors 2025, 25(13), 3893; https://doi.org/10.3390/s25133893 - 22 Jun 2025
Viewed by 1144
Abstract
This article considers a fluxgate magnetometer (FM) that operates based on a new physical principle. The authors analyze how the alternating electric charge potential of a cylindrical metal electrode impacts the structure of a cylindrical permanent magnet made of composite-conducting ferrite. They demonstrate [...] Read more.
This article considers a fluxgate magnetometer (FM) that operates based on a new physical principle. The authors analyze how the alternating electric charge potential of a cylindrical metal electrode impacts the structure of a cylindrical permanent magnet made of composite-conducting ferrite. They demonstrate that this impact and permanent magnet structure initiate the emergence of polarons with oscillating magnetism. This causes significant changes in the entropy of indirect exchange and the related sublattice magnetism fluctuations that ultimately result in the generation of circularly polarized spin waves at the spin wave resonance frequency that are channeled and evolve in dielectric ferrite waveguides of the FM. It is demonstrated that these moving spin waves have an electrodynamic impact on the measuring FM coils on the macro-level and perform parametric modulation of the magnetic permeability of the waveguide material. This results in the respective variations of the changeable magnetic field, which is also registered by the measuring FM coils. The authors considered a generalized flow of the physical processes in the FM to obtain a detailed representation of the operating functions of the FM. The presented experimental results for the proposed FM in the field meter mode confirm its operating parameters (±40 μT—measurement range, 0.5 nT—detection threshold). The usage of a cylindrical metal electrode as a source of exciting electrical change instead of a conventional multiturn excitation coil can significantly reduce temperature drift, simplify production technology, and reduce the unit weight and size. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

10 pages, 5694 KiB  
Article
Structural Health Monitoring of Aerial Vehicles Using Guided Electromagnetic Waves in K-Band: Initial Damage Detection Results from Drone Flight Testing
by Moritz Mälzer, Jonas Simon, Carsten Günner, Daniel del Rio Velilla, Manuel Rao, Sebastian Beck, Vittorio Memmolo, Jochen Moll and Viktor Krozer
Appl. Sci. 2025, 15(12), 6478; https://doi.org/10.3390/app15126478 - 9 Jun 2025
Viewed by 370
Abstract
This paper introduces a novel structural health monitoring (SHM) approach based on guided electromagnetic waves propagating in a dielectric waveguide in the frequency range from 23.5 to 26 GHz. This approach enables the detection of structural damage based on the analysis of radar [...] Read more.
This paper introduces a novel structural health monitoring (SHM) approach based on guided electromagnetic waves propagating in a dielectric waveguide in the frequency range from 23.5 to 26 GHz. This approach enables the detection of structural damage based on the analysis of radar signals. This paper presents the performance of the methodology through an experimental case study considering an autonomous heavy lift drone where the whole SHM system is integrated onboard. The whole data acquisition pipeline is described, and damage detection results based on a damage indicator approach are presented and discussed. Finally, this work proves the ability of guided electromagnetic wave technology to be used in flying aerial vehicles. The methodology can be applied to other aircraft structures and application cases in the future. Full article
(This article belongs to the Special Issue Novel Approaches for Fault Diagnostics of Machine Elements)
Show Figures

Figure 1

15 pages, 2714 KiB  
Article
A Low-Loss and High-Bandwidth Horizontally Polarized Transition Between Rectangular Polymer Dielectric Waveguide and Microstrip Line for Array Application
by Haibing Zhan, Xiaochun Li, Changsheng Sun and Ken Ning
Electronics 2025, 14(12), 2345; https://doi.org/10.3390/electronics14122345 - 8 Jun 2025
Viewed by 390
Abstract
To achieve interconnects of rectangular polymer dielectric waveguides (PDWs) at the W-band, this paper presents a novel low-loss and high-bandwidth horizontally polarized transition between a rectangular PDW and a microstrip line (ML), which can achieve a rectangular PDW array. The proposed structure consists [...] Read more.
To achieve interconnects of rectangular polymer dielectric waveguides (PDWs) at the W-band, this paper presents a novel low-loss and high-bandwidth horizontally polarized transition between a rectangular PDW and a microstrip line (ML), which can achieve a rectangular PDW array. The proposed structure consists of a patch, a bent ridge waveguide, a tapered ridge waveguide, a dielectric-filled waveguide, and a tapered horn. An equivalent circuit model is established for synthesis design, and the transition is manufactured utilizing printed circuit board (PCB) and computerized numerical control (CNC) technologies. A rectangular PDW interconnect with two designed transitions is constructed and experiments are conducted. The measured results indicate that the rectangular PDW interconnect with two transitions operates within a frequency range (|S11| < −10 dB) of 81.9–108.2 GHz, and the insertion loss of the transition is 0.51–2.01 dB in this frequency range. Then, the designed transition is used to achieve a rectangular PDW array with two rectangular PDWs and two transitions, which has a far-end crosstalk (FEXT) of −55.4 to −21.7 dB in the frequency range of 78.1–110 GHz. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

11 pages, 2884 KiB  
Article
The Design of a Circulator Based on Topological Photonic Crystals
by Yulin Zhao, Feng Liang, Jianfei Han, Jingsen Li, Haihua Hu, Weihao Zhang and Xiangjun Tan
Photonics 2025, 12(6), 581; https://doi.org/10.3390/photonics12060581 - 7 Jun 2025
Viewed by 412
Abstract
Topological photonic crystals have garnered significant attention due to their fascinating topological edge states. These states are robust against sharp bends and defects and exhibit the novel property of unidirectional transmission. In this study, we analyze the topological edge states of gyromagnetic topological [...] Read more.
Topological photonic crystals have garnered significant attention due to their fascinating topological edge states. These states are robust against sharp bends and defects and exhibit the novel property of unidirectional transmission. In this study, we analyze the topological edge states of gyromagnetic topological photonic crystals in analogy with the quantum Hall effect. Through expanding and shrinking six dielectric cylinders, the optical quantum spin Hall effect is achieved. And helical edge states with pseudo-spin are demonstrated. Owing to the novel topological properties of these edge states, robust waveguides are proposed. Furthermore, integrating these two distinct types of topological states, a novel circulator with topological characteristics is designed. These topologically protected photonic devices will be beneficial for developing integrated circuits. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

8 pages, 1930 KiB  
Communication
A Characterizing Method of Carbon Nanotubes in Powder Form with Different Packing Densities
by Ruiliang Li, Chuang Yang, Yunlong Zhang and Jian Wang
Micromachines 2025, 16(6), 662; https://doi.org/10.3390/mi16060662 - 31 May 2025
Viewed by 399
Abstract
A method for characterizing carbon nanotubes (CNTs) in powder form with different packing densities in the microwave regions is proposed. The CNTs were sandwiched between two dielectric walls in (Polyvinyl Chloride) PVC and put in a waveguide shim. We measured the transmission/reflection S-parameters [...] Read more.
A method for characterizing carbon nanotubes (CNTs) in powder form with different packing densities in the microwave regions is proposed. The CNTs were sandwiched between two dielectric walls in (Polyvinyl Chloride) PVC and put in a waveguide shim. We measured the transmission/reflection S-parameters of the waveguide using a Vector Network Analysis (VNA), and the impacts of the PVCs on the measured S-parameters were de-embedded by microwave network analysis. Then, the well-known Nicolson–Ross–Weir (NRW) method was processed to determine the complex permittivity and permeability of the CNTs. Furthermore, we pressed the PVC to increase the packing densities of the CNTs. The results of the characterization can be employed to design microwave devices using the CNTs. Full article
Show Figures

Figure 1

16 pages, 5900 KiB  
Article
Tuning Transmission Properties of Two-Dimensional Photonic Crystal Waveguides Using Functional Dielectric Cavities
by Siqi Zhang, Feng Yang, Wenying Zhang, Wei Zhao, Luhe Yang and Hong Li
Micromachines 2025, 16(5), 597; https://doi.org/10.3390/mi16050597 - 20 May 2025
Viewed by 488
Abstract
In this study, the photonic band structure, transmissivity, and electric field distribution of a two-dimensional photonic crystal coupled waveguide structure are calculated using the supercell technique and finite element method. The waveguide consists of circular KNbO3 and functional dielectric [...] Read more.
In this study, the photonic band structure, transmissivity, and electric field distribution of a two-dimensional photonic crystal coupled waveguide structure are calculated using the supercell technique and finite element method. The waveguide consists of circular KNbO3 and functional dielectric cylinders embedded in air. The dielectric constant of a functional medium cylinder is spatially dependent, which is realized through the electro-optic and Kerr effects. The dielectric constant function is defined as εc(r)=k·r+b (0rrc), where the coefficient k and parameter b can be adjusted by an external electric field. By tuning k and b, the transmission characteristics of the waveguide, including the propagation direction and light field distribution, exhibit significant adjustability. Specifically, parameter b enhances or suppresses the transmissivity at output ports 1 and 2. By utilizing the regulatory capability of functional media on waveguide transmission characteristics, optical filters with specific filtering functions can be designed. These findings provide novel design strategies for advanced optical devices. Full article
Show Figures

Figure 1

10 pages, 2567 KiB  
Article
A TM01-TE11 Circular Waveguide Mode Converter on the Basis of Dielectric Filling
by Zibin Weng, Ziming Lv, Liupeng Zan, Sihan Xiao and Chen Liang
Micromachines 2025, 16(5), 585; https://doi.org/10.3390/mi16050585 - 16 May 2025
Viewed by 567
Abstract
In this paper, a dielectric-filled circular waveguide TM01-TE11 mode converter is proposed, which has high conversion efficiency and a wide operating bandwidth. Filling the circular waveguide with dielectric material changes the local propagation characteristics, thus achieving a [...] Read more.
In this paper, a dielectric-filled circular waveguide TM01-TE11 mode converter is proposed, which has high conversion efficiency and a wide operating bandwidth. Filling the circular waveguide with dielectric material changes the local propagation characteristics, thus achieving a phase difference between the TE11 modes in the two halves of the circular waveguide during propagation. This, in turn, facilitates the completion of mode conversion with high efficiency. Compared with the conventional radial dielectric plate, this paper improves the method of filling the dielectric inside the circular waveguide by transforming it into a coaxial structure. This is followed by the incorporation of a radial dielectric plate, a modification that has been proven to enhance the conversion efficiency and extend the operational bandwidth. The mode converter operates at 9.7 GHz, and when the dielectric filler material is polytetrafluoroethylene (PTFE), both simulation and practical studies are carried out. The simulation results demonstrate that the maximum conversion efficiency of this mode converter is 99.2%, and the bandwidth with conversion efficiency greater than 90% is nearly 21.1%. The maximum conversion efficiency in the actual test is essentially consistent with the simulation results. The validity of the design scheme of this converter and the accuracy of the simulation study are demonstrated. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

18 pages, 8684 KiB  
Article
Harnessing Nanoplasmonics: Design Optimization for Enhanced Optoelectronic Performance in Nanocrystalline Silicon Devices
by Mohsen Mahmoudysepehr and Siva Sivoththaman
Micromachines 2025, 16(5), 540; https://doi.org/10.3390/mi16050540 - 30 Apr 2025
Viewed by 410
Abstract
Nanoplasmonic structures have emerged as a promising approach to address light trapping limitations in thin-film optoelectronic devices. This study investigates the integration of metallic nanoparticle arrays onto nanocrystalline silicon (nc-Si:H) thin films to enhance optical absorption through plasmonic effects. Using finite-difference time-domain (FDTD) [...] Read more.
Nanoplasmonic structures have emerged as a promising approach to address light trapping limitations in thin-film optoelectronic devices. This study investigates the integration of metallic nanoparticle arrays onto nanocrystalline silicon (nc-Si:H) thin films to enhance optical absorption through plasmonic effects. Using finite-difference time-domain (FDTD) simulations, we systematically optimize key design parameters, including nanoparticle geometry, spacing, metal type (Ag and Al), dielectric spacer material, and absorber layer thickness. The results show that localized surface plasmon resonances (LSPRs) significantly amplify near-field intensities, improve forward scattering, and facilitate coupling into waveguide modes within the active layer. These effects lead to a measurable increase in integrated quantum efficiency, with absorption improvements reaching up to 30% compared to bare nc-Si:H films. The findings establish a reliable design framework for engineering nanoplasmonic architectures that can be applied to enhance performance in photovoltaic devices, photodetectors, and other optoelectronic systems. Full article
(This article belongs to the Special Issue Nanostructured Optoelectronic and Nanophotonic Devices)
Show Figures

Figure 1

19 pages, 5431 KiB  
Article
Polarization-Insensitive Silicon Grating Couplers via Subwavelength Metamaterials and Metaheuristic Optimization
by Jorge Parra
Photonics 2025, 12(5), 428; https://doi.org/10.3390/photonics12050428 - 29 Apr 2025
Viewed by 687
Abstract
Silicon photonics is the leading platform in photonic integrated circuits (PICs), enabling dense integration and low-cost manufacturing for applications such as data communications, artificial intelligence, and quantum processing, to name a few. However, efficient and polarization-insensitive fiber-to-PIC coupling for multipoint wafer characterization remains [...] Read more.
Silicon photonics is the leading platform in photonic integrated circuits (PICs), enabling dense integration and low-cost manufacturing for applications such as data communications, artificial intelligence, and quantum processing, to name a few. However, efficient and polarization-insensitive fiber-to-PIC coupling for multipoint wafer characterization remains a challenge due to the birefringence of silicon waveguides. Here, we address this issue by proposing polarization-insensitive grating couplers based on subwavelength dielectric metamaterials and metaheuristic optimization. Subwavelength periodic structures were engineered to act as uniaxial homogeneous linear (UHL) materials, enabling tailored anisotropy. On the other hand, particle swarm optimization (PSO) was employed to optimize the coupling efficiency, bandwidth, and polarization-dependent loss (PDL). Numerical simulations demonstrated that a pitch of 100 nm ensures UHL behavior while minimizing leaky waves. Optimized grating couplers achieved coupling efficiencies higher than −3 dB and a PDL of below 1 dB across the telecom C-band (1530–1565 nm). Three optimization strategies were explored, balancing efficiency, the bandwidth, and the PDL while considering the Pareto front. This work establishes a robust framework combining metamaterial engineering with computational optimization, paving the way for high-performance polarization-insensitive grating couplers with potential uses in advanced photonic applications. Full article
(This article belongs to the Special Issue Photonics Metamaterials: Processing and Applications)
Show Figures

Figure 1

16 pages, 1742 KiB  
Article
Modeling and Analysis of the Transverse Surface Roughness in Hollow-Core Fibers
by Federico Melli, Kostiantyn Vasko, Lorenzo Rosa, Fetah Benabid and Luca Vincetti
Fibers 2025, 13(4), 36; https://doi.org/10.3390/fib13040036 - 27 Mar 2025
Viewed by 683
Abstract
The corrugation of the interfaces of the cross-section of hollow core fibers based on the inhibited coupling waveguiding mechanism is modeled and the impact on propagation loss analyzed. The proposed model is based on a combined use of coupled-mode theory and Azimuthal Fourier [...] Read more.
The corrugation of the interfaces of the cross-section of hollow core fibers based on the inhibited coupling waveguiding mechanism is modeled and the impact on propagation loss analyzed. The proposed model is based on a combined use of coupled-mode theory and Azimuthal Fourier Decomposition. It shows that such transverse roughness causes coupling between the core modes and the dielectric modes of the cladding and consequently an increase of the fiber loss. The model is validated by comparing theoretical and numerical results obtained by applying both deterministic and stochastic corrugations to tubular lattice and nested fibers. Scaling laws and impact of the fibers’ parameters are discussed. The model shows that the loss increase is not directly correlated to the root mean square of the stochastic roughness but only to the value of the power spectral density in specific spatial frequency ranges. In particular, the spectral components characterized by a periodicity lower than 101 of the tube circumference must have a power spectral density value lower than 0.2 nm2 to ensure a negligible effect of the transverse roughness on fibers with losses lower than 0.1 dB/Km. Full article
(This article belongs to the Special Issue Characterization and Applications of Specialty Optical Fibers)
Show Figures

Figure 1

13 pages, 2953 KiB  
Article
Voltage Tunable Spoof Surface Plasmon Polariton Waveguide Loaded with Ferroelectric Resonators
by Jiaxiong Shen, Shun Lei, Mingzhe Hu, Chaobiao Zhou, Shengyun Luo and Chuanbin Wang
Coatings 2025, 15(4), 378; https://doi.org/10.3390/coatings15040378 - 23 Mar 2025
Viewed by 764
Abstract
A real-time tunable planar plasmonic waveguide based on a voltage-adjustable ferroelectric resonator is designed and investigated. The laminated ferroelectric compound resonator is composed of a ferroelectric Ba0.85Ca0.15Zr0.9Ti0.1O3 (BCZT) layer, a PCB layer, as well [...] Read more.
A real-time tunable planar plasmonic waveguide based on a voltage-adjustable ferroelectric resonator is designed and investigated. The laminated ferroelectric compound resonator is composed of a ferroelectric Ba0.85Ca0.15Zr0.9Ti0.1O3 (BCZT) layer, a PCB layer, as well as a localized spoof plasmonic metal layer, where the BCZT layer is beneficial for enhancing the voltage tunability in the spoof surface plasmon polariton (SSPP) waveguide. The simulated results show that the tuning range of the notch in the transmission curve, generated by the coupling between the ferroelectric compound resonator and the plasmonic waveguide, can achieve a variation of up to 8.8% thanks to the large tunability value in the BCZT ferroelectric layer. In addition, the notches consist of Fano resonant frequencies, the generation mechanism of which is elaborately discussed in terms of the temporal coupled mode theory. Full article
Show Figures

Figure 1

11 pages, 6274 KiB  
Article
A Low-Cost, Wide-Band, High-Gain Mechanically Reconfigurable Multi-Polarization Antenna Based on a 3-D Printed Polarizer
by Wenjie Ding, Guoda Xie, Yang Hong, Hang Yu, Chao Wang, Siliang Wang and Zhixiang Huang
Electronics 2025, 14(6), 1224; https://doi.org/10.3390/electronics14061224 - 20 Mar 2025
Viewed by 412
Abstract
This paper proposes a mechanically reconfigurable multi-polarization antenna based on a 3D-printed anisotropic dielectric polarizer, offering wide bandwidth, high gain, and extremely low cost. The working mechanism of the dielectric polarizer is analyzed, demonstrating its ability to efficiently convert linear polarization (LP) to [...] Read more.
This paper proposes a mechanically reconfigurable multi-polarization antenna based on a 3D-printed anisotropic dielectric polarizer, offering wide bandwidth, high gain, and extremely low cost. The working mechanism of the dielectric polarizer is analyzed, demonstrating its ability to efficiently convert linear polarization (LP) to circular polarization (CP) over a wide frequency range. Furthermore, the polarizer exhibits subwavelength characteristics. For a given duty cycle, its phase response depends only on the height and is independent of the aperture size. This property enables miniaturized and customized designs of the polarizer’s aperture size. Subsequently, the polarizer is placed above a Ku band waveguide and standard horn antennas. The results show that by rotating the dielectric polarizer and adjusting the positions of the antennas, right-handed CP (RHCP), left-handed CP (LHCP), and dual LP radiation switching can be achieved in the 12.4–18.0 GHz band, verifying the quad-polarization reconfigurability. Additionally, the polarizer significantly enhances the gain of the waveguide antenna by approximately 9.5 dB. Furthermore, due to the low-cost 3D printing material, the manufacturing cost of the polarizer is exceptionally low, making it suitable for applications such as anechoic chamber measurements and wireless communications. Finally, the measurement results further validate the accuracy of the simulations. Full article
Show Figures

Figure 1

11 pages, 3387 KiB  
Communication
Smart Capacitive Transducer for High-Frequency Vibration Measurement
by Vygantas Augutis, Gintautas Balčiūnas, Pranas Kuzas, Darius Gailius and Edita Raudienė
Sensors 2025, 25(6), 1639; https://doi.org/10.3390/s25061639 - 7 Mar 2025
Viewed by 2190
Abstract
A smart capacitive transducer (SCT) for high-frequency vibration (HFV) measurements was developed, featuring self-calibration for the improvement of measurement accuracy. Measurements using this transducer are performed by positioning it over a thin (10 µm) dielectric layer on a conductive surface. This method was [...] Read more.
A smart capacitive transducer (SCT) for high-frequency vibration (HFV) measurements was developed, featuring self-calibration for the improvement of measurement accuracy. Measurements using this transducer are performed by positioning it over a thin (10 µm) dielectric layer on a conductive surface. This method was shown to be a non-contact vibration measurement technique for solid surfaces at frequencies over 10 kHz. Auto-calibration is performed every time the SCT is placed on the object being measured. This reduces the influence of positioning and the object’s surface properties on the measurement results. For the transducer’s auto-calibration, a predefined vibration of the measurement electrode is induced. This is achieved using a waveguide excited by a piezo element. The diameter of the developed SCT is 5 mm, with a frequency range of 10 kHz to 1 MHz, an object HFV amplitude measurement resolution of several picometers, and a repeatability error of several percent. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

16 pages, 3185 KiB  
Article
Microwave Sensor for Dielectric Constant of Lossy Organic Liquids Based on Negative-Resistance Oscillation
by Huan Liu and Yichao Meng
Sensors 2025, 25(3), 961; https://doi.org/10.3390/s25030961 - 5 Feb 2025
Viewed by 914
Abstract
The dielectric constant, or permittivity, is a fundamental property that characterizes a material’s electromagnetic behavior, crucial for diverse applications in agriculture, healthcare, industry, and scientific research. In microwave engineering, accurate permittivity measurement is essential for advancements in fields such as biomedicine, aerospace, and [...] Read more.
The dielectric constant, or permittivity, is a fundamental property that characterizes a material’s electromagnetic behavior, crucial for diverse applications in agriculture, healthcare, industry, and scientific research. In microwave engineering, accurate permittivity measurement is essential for advancements in fields such as biomedicine, aerospace, and microwave chemistry. However, conventional waveguide resonator methods face challenges when measuring high-loss materials, often leading to reduced accuracy and increased cost. This paper introduces a lightweight, compact system for dielectric constant measurement using a negative-resistance voltage-controlled oscillator (VCO) integrated within a frequency synthesizer. The proposed system employs phase response variations of a planar sensor embedded in the VCO’s gate network to detect changes in oscillation frequency, enabling precise measurement of high-loss materials. The experimental validation demonstrates the system’s capability to accurately measure dielectric constants of lossy organic liquids, with applications in distinguishing liquid mixtures. The contributions include the design of a resonant-network-attached oscillator, comprehensive sensor performance simulations, and successful characterization of organic liquid mixtures, showcasing the potential of this approach for practical dielectric property measurements. Full article
(This article belongs to the Section Sensors Development)
Show Figures

Figure 1

Back to TopTop