Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = dewatering rate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3621 KB  
Article
Polymer-Assisted Tailings Dewatering in Seawater and Continental Water for Copper Flotation
by Rubén H. Olcay, Andréia B. Henriques, George E. Valadão, Iván A. Reyes, Julio C. Juárez, Martín Reyes, Miguel Pérez and Mizraim U. Flores
Polymers 2025, 17(19), 2613; https://doi.org/10.3390/polym17192613 - 27 Sep 2025
Viewed by 304
Abstract
This study evaluates the use of seawater and continental water in tailings thickening and copper flotation at laboratory scale, focusing on water reuse in mining operations in arid regions. The tailings had a mean particle size of 10 µm, with 75% < 50 [...] Read more.
This study evaluates the use of seawater and continental water in tailings thickening and copper flotation at laboratory scale, focusing on water reuse in mining operations in arid regions. The tailings had a mean particle size of 10 µm, with 75% < 50 µm, and a specific weight of 2.64 g/cm3. Seawater contained significantly higher ion concentrations Na+ 10,741 ppm, Mg2+ 1245 ppm, and Ca2+ 556 ppm compared with continental water (187, 32, and 127 ppm, respectively), which negatively affected polymer performance. Sedimentation tests showed that the anionic polymer (A3) increased settling rates by 33 times with continental water at 40 g/t, while with seawater the increase was 31 times at 60 g/t. In column thickener tests, discharge solids reached 65% with continental water and 62% with seawater, representing an annual reduction of ~17,000 m3 of recovered water when seawater is used. Consistency tests indicated that achieving slump <20% required 75% solids with continental water and 77.5% with seawater. With dewatering polymers, doses of 200 g/t achieved ~70% solids and slump values near 50%, surpassing column thickener performance. Primary flotation results showed that recirculated and filtered seawater improved copper recovery by 3–5% compared with fresh seawater, due to partial removal of interfering ions. In contrast, recirculated and filtered continental water reduced recovery by 2–4%, likely because of residual polymer effects on mineral surfaces. These findings highlight the importance of polymer selection and dosage optimization to ensure efficient water recovery and sustainable flotation performance under varying water chemistries. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

17 pages, 4446 KB  
Article
Study on Production System Optimization and Productivity Prediction of Deep Coalbed Methane Wells Considering Thermal–Hydraulic–Mechanical Coupling Effects
by Sukai Wang, Yonglong Li, Wei Liu, Siyu Zhang, Lipeng Zhang, Yan Liang, Xionghui Liu, Quan Gan, Shiqi Liu and Wenkai Wang
Processes 2025, 13(10), 3090; https://doi.org/10.3390/pr13103090 - 26 Sep 2025
Viewed by 272
Abstract
Deep coalbed methane (CBM) resources possess significant potential. However, their development is challenged by geological characteristics such as high in situ stress and low permeability. Furthermore, existing production strategies often prove inadequate. In order to achieve long-term stable production of deep coalbed methane [...] Read more.
Deep coalbed methane (CBM) resources possess significant potential. However, their development is challenged by geological characteristics such as high in situ stress and low permeability. Furthermore, existing production strategies often prove inadequate. In order to achieve long-term stable production of deep coalbed methane reservoirs and increase their final recoverable reserves, it is urgent to construct a scientific and reasonable drainage system. This study focuses on the deep CBM reservoir in the Daning-Jixian Block of the Ordos Basin. First, a thermal–hydraulic–mechanical (THM) multi-physics coupling mathematical model was constructed and validated against historical well production data. Then, the model was used to forecast production. Finally, key control measures for enhancing well productivity were identified through production strategy adjustment. The results indicate that controlling the bottom-hole flowing pressure drop rate at 1.5 times the current pressure drop rate accelerates the early-stage pressure drop, enabling gas wells to reach the peak gas production earlier. The optimized pressure drop rates for each stage are as follows: 0.15 MPa/d during the dewatering stage, 0.057 MPa/d during the gas production rise stage, 0.035 MPa/d during the stable production stage, and 0.01 MPa/d during the production decline stage. This strategy increases peak daily gas production by 15.90% and cumulative production by 3.68%. It also avoids excessive pressure drop, which can cause premature production decline during the stable phase. Consequently, the approach maximizes production over the entire life cycle of the well. Mechanistically, the 1.5× flowing pressure drop offers multiple advantages. Firstly, it significantly shortens the dewatering and production ramp-up periods. This acceleration promotes efficient gas desorption, increasing the desorbed gas volume by 1.9%, and enhances diffusion, yielding a 39.2% higher peak diffusion rate, all while preserving reservoir properties. Additionally, this strategy synergistically optimizes the water saturation and temperature fields, which mitigates the water-blocking effect. Furthermore, by enhancing coal matrix shrinkage, it rebounds permeability to 88.9%, thus avoiding stress-induced damage from aggressive extraction. Full article
Show Figures

Figure 1

15 pages, 3292 KB  
Article
Enhanced Electro-Dewatering of Sludge Through Inorganic Coagulant Pre-Conditioning
by Xiaoyin Yang, Song Huang, Yusong Zhang, Hanjun Wu, Yabin Ma and Bingdi Cao
Separations 2025, 12(10), 262; https://doi.org/10.3390/separations12100262 - 26 Sep 2025
Viewed by 166
Abstract
Sludge electro-dewatering technology is an attractive dewatering technology, but its application is limited by high energy consumption and filter cloth clogging caused by the dissolution of extracellular polymeric substances (EPSs). Thus, the addition of inorganic coagulants is expected to enhance the electro-dewatering efficiency [...] Read more.
Sludge electro-dewatering technology is an attractive dewatering technology, but its application is limited by high energy consumption and filter cloth clogging caused by the dissolution of extracellular polymeric substances (EPSs). Thus, the addition of inorganic coagulants is expected to enhance the electro-dewatering efficiency of waste activated sludge (WAS). In this study, we evaluated the effects of the three typical inorganic coagulants (HPAC, PAC, and FeCl3) on sludge electro-dewatering behavior. The results show that the electro-dewatering rate at the cathode was increased with the raising of the inorganic coagulants dosage, and FeCl3 exhibited the best effect on the improvement of sludge electro-dewatering among the three inorganic coagulants. The zeta potential of the sludge flocs and the electro-osmotic effect were raised with the increasing of the inorganic coagulants dosage. The sludge floc conditioned by FeCl3 is more compact than HPAC and PAC. Moreover, the dissolved EPS content reduced in the sludge electro-dewatering process when inorganic coagulant was added. In comparison to increasing ionic strength, the compression of extracellular polymeric substances (EPSs) plays a more critical role in enhancing the electro-dewatering process of sludge. The addition of inorganic coagulants also reduced the energy consumption during water removal in the electro-dewatering process. Full article
Show Figures

Graphical abstract

34 pages, 1661 KB  
Review
Algae to Biofuels: Catalytic Strategies and Sustainable Technologies for Green Energy Conversion
by Shushil Kumar Rai, Gyungmin Kim and Hua Song
Catalysts 2025, 15(9), 806; https://doi.org/10.3390/catal15090806 - 25 Aug 2025
Viewed by 2250
Abstract
The global population surge and continuously rising energy demand have led to the rapid depletion of fossil fuel reserves. Over-exploitation of non-renewable fuels is responsible for the emission of greenhouse gases, air pollution, and global warming, which causes serious health issues and ecological [...] Read more.
The global population surge and continuously rising energy demand have led to the rapid depletion of fossil fuel reserves. Over-exploitation of non-renewable fuels is responsible for the emission of greenhouse gases, air pollution, and global warming, which causes serious health issues and ecological imbalance. The present study focuses on the potential of algae-based biofuel as an alternative energy source for fossil fuels. Algal biofuels are more environmentally friendly and economically reasonable to produce on a pilot scale compared to lignocellulosic-derived biofuels. Algae can be cultivated in closed, open, and hybrid photobioreactors. Notably, high-rate raceway ponds with the ability to recycle nutrients can reduce freshwater consumption by 60% compared to closed systems. The algal strain along with various factors such as light, temperature, nutrients, carbon dioxide, and pH is responsible for the growth of biomass and biofuel production. Algal biomass conversion through hydrothermal liquefaction (HTL) can achieve higher energy return on investments (EROI) than conventional techniques, making it a promising Technology Readiness Level (TRL) 5–6 pathway toward circular biorefineries. Therefore, algal-based biofuel production offers numerous benefits in terms of socio-economic growth. This review highlights the basic cultivation, dewatering, and processing of algae to produce biofuels using various methods. A simplified multicriteria evaluation strategy was used to compare various catalytic processes based on multiple performance indicators. We also conferred various advantages of an integrated biorefinery system and current technological advancements for algal biofuel production. In addition to this, policies and market regulations are discussed briefly. At the end, critical challenges and future perspectives of algal biorefineries are reviewed. Algal biofuels are environmentally friendly as well as economically sustainable and usually offer more benefits compared to fossil fuels. Full article
Show Figures

Figure 1

13 pages, 1363 KB  
Article
Improving Anaerobic Digestion Process of Sewage Sludge in Terms of Energy Efficiency and Carbon Emission: Pre- or Post-Thermal Hydrolysis?
by Yawen Ye, Azizi Selemani Msuya, Xiaohu Dai, Xiaoli Chai and Boran Wu
Sustainability 2025, 17(13), 6147; https://doi.org/10.3390/su17136147 - 4 Jul 2025
Viewed by 754
Abstract
Sewage sludge, a by-product of biological wastewater treatment, poses significant environmental and health risks if not properly managed. Anaerobic digestion (AD), widely used as a stabilization technology for sewage sludge, faces challenges such as rate-limiting hydrolysis steps and difficult dewatering of residual digestate. [...] Read more.
Sewage sludge, a by-product of biological wastewater treatment, poses significant environmental and health risks if not properly managed. Anaerobic digestion (AD), widely used as a stabilization technology for sewage sludge, faces challenges such as rate-limiting hydrolysis steps and difficult dewatering of residual digestate. To address these issues, thermal hydrolysis (TH) has been explored as a pretreatment or post-treatment method. This study systematically analyzes the typical sludge treatment pathways incorporating TH either as a pretreatment step to AD or as a post-treatment step, combined with incineration or land application for the final disposal. The mass balance algorithm was applied to evaluate the chemical consumption, and energy input/output calculations were conducted to assess the potential effects of TH on energy recovery. Carbon emissions were estimated using the Intergovernmental Panel on Climate Change (IPCC) methodology, considering direct, indirect, and compensated carbon emissions. The results indicate that applying TH as a post-treatment significantly reduces the carbon emissions by 65.94% compared to conventional AD, primarily due to the enhanced dewaterability and reduced chemical flocculant usage. In contrast, TH as a pretreatment step only moderates the emission reduction. The combination of post-TH with land application results in the lowest carbon emissions among the evaluated pathways, highlighting the environmental benefits of this approach. All the findings here are expected to provide insights into optimizing the technical combination mode of sludge processing pathways in terms of minimizing carbon emission. Full article
(This article belongs to the Collection Environmental Assessment, Life Cycle Analysis and Sustainability)
Show Figures

Graphical abstract

19 pages, 3174 KB  
Article
Characterisation of Faecal Sludge from Different Nature-Based Treatment Processes for Agricultural Application
by Girija Ramakrishna and Balachandra Patil
Sustainability 2025, 17(13), 5683; https://doi.org/10.3390/su17135683 - 20 Jun 2025
Viewed by 901
Abstract
Nature-based systems predominantly treat faecal sludge in developing regions due to their cost-effectiveness and operational simplicity. These systems, including solid–liquid separation, anaerobic digestion, dewatering, phytofiltration, and composting produce, treated sludge with variable characteristics. However, application-specific characterisation of treated sludge from these systems remains [...] Read more.
Nature-based systems predominantly treat faecal sludge in developing regions due to their cost-effectiveness and operational simplicity. These systems, including solid–liquid separation, anaerobic digestion, dewatering, phytofiltration, and composting produce, treated sludge with variable characteristics. However, application-specific characterisation of treated sludge from these systems remains limited, hindering evidence-based agricultural application. This study investigated thirty treated faecal sludge samples from unplanted drying beds, planted drying beds, and co-composting, with a focus on their soil application potential. Nonparametric statistical analysis revealed that treatment processes significantly influenced the key properties, including electrical conductivity, total organic carbon, total nitrogen, and potassium content. The co-compost yielded comparatively higher conductivity (4.9 dS/m) and potassium levels (1.09%) but lower total nitrogen (2.15%) and organic carbon contents (28%). Additionally, co-composted sludge exhibited a balanced nutrient profile with a wide range of micronutrients and high variability. Despite this variability, all samples met the Indian compost quality guidelines for heavy metals. The findings underscore the importance of treatment-specific characterisation to inform appropriate soil application rates and ensure safe use. This study contributes to the development of quality criteria and guidelines for use of faecal sludge in agriculture, particularly in regions such as India, where no regulatory framework currently exists for faecal sludge application. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Graphical abstract

15 pages, 5081 KB  
Article
Comparative Study of Water Flow in Nanopores with Different Quartz (101¯0) Surfaces via Molecular Dynamics Simulations
by Peng Zhou, Junyao Bao, Shiyuan Zhan, Xingjian Wang, Shaopeng Li, Baofeng Lan and Zhanbo Liu
Nanomaterials 2025, 15(12), 896; https://doi.org/10.3390/nano15120896 - 10 Jun 2025
Viewed by 502
Abstract
Dewatering and gas production are applied on a large scale in shale gas development. The fundamental mechanisms of water flow in shale nanoporous media are essential for the development of shale oil and gas resources. In this work, we use molecular dynamic simulations [...] Read more.
Dewatering and gas production are applied on a large scale in shale gas development. The fundamental mechanisms of water flow in shale nanoporous media are essential for the development of shale oil and gas resources. In this work, we use molecular dynamic simulations to investigate water flow in two different quartz surface ((101¯0)-α and (101¯0)-β) nanopores. Results show that the (101¯0)-β surface exhibits stronger water molecule structuring with a structure arranged in two layers and higher first-layer adsorption density (2.44 g/cm3) compared to the ((101¯0)-α surface (1.68 g/cm³). The flow flux under the (101¯0)-α surface is approximately 1.2 times higher than that under the (101¯0)-β surface across various pressure gradients. We developed a theoretical model dividing the pore space into non-flowing, adsorbed, and bulk water regions, with critical thicknesses of 0.14 nm and 0.27 nm for the non-flowing region, and 0.15 nm for the adsorbed region in both surfaces. This model effectively predicts velocity distributions and volumetric flow rates with errors generally below 5%. Our findings provide insights into water transport mechanisms in shale inorganic nanopores and offer practical guidance for numerical simulation of shale gas production through dewatering operations. Full article
(This article belongs to the Special Issue Nanomaterials and Nanotechnology for the Oil and Gas Industry)
Show Figures

Graphical abstract

18 pages, 3601 KB  
Article
Application of COMSOL Multiphysics Model in Studying Effects of Straw Addition on Dewatering Performance of Residual Sludge During Freeze–Thaw Cycles
by Zirui Guo, Jiawei Wang, Yao Wang, Riguang Chi, Xujin Gong and Zhiqiang Chen
Water 2025, 17(12), 1727; https://doi.org/10.3390/w17121727 - 7 Jun 2025
Viewed by 904
Abstract
Freeze–thaw (F/T) technology is an environmentally friendly and efficient method for residual sludge treatment. This study investigates the enhancement of sludge dewatering performance through the addition of straw during F/T cycles. A mathematical model was established using the Box–Behnken central composite design and [...] Read more.
Freeze–thaw (F/T) technology is an environmentally friendly and efficient method for residual sludge treatment. This study investigates the enhancement of sludge dewatering performance through the addition of straw during F/T cycles. A mathematical model was established using the Box–Behnken central composite design and validated via COMSOL Multiphysics simulations. The optimal conditions were identified as freezing at −16 °C for 24 h, with 12.5 freeze–thaw cycles and a straw mixing ratio of 20%, reducing the sludge moisture content from 62.7% to 35.9%. The specific resistance to filtration (SRF) and cake moisture content decreased significantly with increasing straw addition, reaching a minimum SRF of 1.30 × 1012 m/kg at the optimal straw ratio. Straw conditioning also intensified the combustion stage of the sludge by increasing the maximum weight loss rate and elevating the thermal decomposition temperature. Numerical simulations confirmed the experimental results, demonstrating that straw addition significantly improves sludge dewaterability by modifying heat and mass transfer mechanisms. Full article
Show Figures

Figure 1

14 pages, 2703 KB  
Article
Energy Efficient Forward Osmosis to Maximize Dewatering Rates
by Jongmin Jeon, Dongkeon Kim and Suhan Kim
Membranes 2025, 15(6), 171; https://doi.org/10.3390/membranes15060171 - 7 Jun 2025
Viewed by 1478
Abstract
Forward osmosis (FO) is a membrane separation process driven by the osmotic pressure difference between a high-salinity draw solution (DS) and a low-salinity feed solution (FS). This pressure-free dewatering method is highly energy efficient, making it suitable for concentration and resource recovery. However, [...] Read more.
Forward osmosis (FO) is a membrane separation process driven by the osmotic pressure difference between a high-salinity draw solution (DS) and a low-salinity feed solution (FS). This pressure-free dewatering method is highly energy efficient, making it suitable for concentration and resource recovery. However, conventional FO systems using series-connected modules suffer from progressive DS dilution and FS concentration, leading to a reduction in the osmotic driving force and thereby limiting the overall performance. To address this issue, we propose a novel hybrid FO module configuration in which the FS flows in series while the DS is split and distributed in parallel across moules. This configuration was evaluated using an experimentally validated FO module model and RO simulation tools. Under seawater (600 mM NaCl) as DS and brackish water (10 mM NaCl) as FS, a conventional three-stage FO module achieved an enrichment ratio of 2.5 with an energy consumption of 0.151 kWh/m3. In contrast, the proposed draw solution split distribution (DSSD) achieved an enrichment ratio of 12.5 at a reduced energy consumption of 0.137 kWh/m3. In comparison, a reverse osmosis system consuming 0.58 kWh/m3 achieved a similar enrichment ratio of 12.3. These results demonstrate the high energy efficiency and dewatering capacity of the proposed FO configuration, highlighting its potential for industrial applications in food processing, beverage production, pharmaceuticals and agriculture. Full article
Show Figures

Figure 1

14 pages, 883 KB  
Article
Bioleaching Process of Sewage Sludge and Anaerobically Digested Sludge via Indigenous Sulfur-Oxidizing Bacteria to Improve Dewaterability and Reduce Heavy Metal Content
by Suyun Xu, Yuze Jiang, Ruixiang Zou, Xuefeng Zhu and Hongbo Liu
Fermentation 2025, 11(6), 321; https://doi.org/10.3390/fermentation11060321 - 4 Jun 2025
Cited by 1 | Viewed by 1005
Abstract
This study investigated the role of indigenous inoculum (primarily sulfur-oxidizing Acidithiobacillus thiooxidans and other acidophilic bacteria) in heavy metal removal from sewage sludge (SS) and anaerobic digested sludge (ADS). Four treatments were evaluated: inoculum + elemental sulfur (S/ADS + E), inoculum alone (S/ADS [...] Read more.
This study investigated the role of indigenous inoculum (primarily sulfur-oxidizing Acidithiobacillus thiooxidans and other acidophilic bacteria) in heavy metal removal from sewage sludge (SS) and anaerobic digested sludge (ADS). Four treatments were evaluated: inoculum + elemental sulfur (S/ADS + E), inoculum alone (S/ADS + B), elemental sulfur alone (S/ADS + S), and a control with no additives. After 7 days of bioleaching, SS and ADS exhibited comparable heavy metal removal rates on Ni (92–98%) and Pb (88–92%), which were significantly more mobilized than Cu (30–44%) and Cr (63–73%). After bioleaching treatment, residual metals in both sludge types were predominantly sequestered in the oxidizable (F3) and residual (F4) fractions, markedly reducing their environmental mobility and pollution risk during land application. The dewaterability performance, assessed via capillary suction time (CST), reached the optimal values in S + E and ADS + E within 24–48 h, after which CST increased alongside rising extracellular polymeric substances and dissolved organic carbon. While the S/ADS + B configuration exhibited marginally reduced Cu, Ni, and Pb removal efficiencies relative to S/ADS + E, it demonstrated superior dewaterability characteristics under equivalent reaction durations. These results suggest that limiting the sulfur (S0) supply to moderate the growth and activity of autotrophic A. thiooxidans can maintain the bioleaching pH within 2.0–3.0, striking a balance between effective heavy metal removal and favorable dewatering performance. Full article
(This article belongs to the Special Issue Fermentation of Organic Waste for High-Value-Added Product Production)
Show Figures

Figure 1

10 pages, 3721 KB  
Article
Influence of Algal Strain on Permeate Flux Rate in Crossflow Microfiltration
by Mostafa Khademi and Chandra Theegala
Phycology 2025, 5(2), 18; https://doi.org/10.3390/phycology5020018 - 7 May 2025
Cited by 1 | Viewed by 888
Abstract
The separation of microalgae from a culture medium is a major cost and energy hurdle for the efficient production of algal biomass. Crossflow microfiltration has been found to be promising for the algal cell concentration process. Three algal strains with different cell sizes [...] Read more.
The separation of microalgae from a culture medium is a major cost and energy hurdle for the efficient production of algal biomass. Crossflow microfiltration has been found to be promising for the algal cell concentration process. Three algal strains with different cell sizes and morphology, namely Chlorella vulgaris, Nannochloris sp., and Scenedesmus sp., were studied. Analysis of the culture suspensions showed very different particle size distributions for the selected strains due to cell clustering. For a given membrane under the same operational conditions to achieve an equal volumetric reduction factor, Nannochloris sp., with the biggest particles and smallest cells, demonstrated the highest permeation flux, and in the same order of the particle sizes, it was followed by Chlorella vu. and Scenedesmus sp. For all the selected algal species, the highest dewatering rate (176–303 L/m2·h) was obtained by means of the membrane with the smallest pore size of 0.05 µm. Full article
Show Figures

Figure 1

24 pages, 9917 KB  
Article
Experimental Investigation of Soil Settlement Mechanisms Induced by Staged Dewatering and Excavation in Alternating Multi-Aquifer–Aquitard Systems
by Cheng Zhao, Yimei Cheng, Guohong Zeng, Guoyun Lu and Yuwen Ju
Buildings 2025, 15(9), 1534; https://doi.org/10.3390/buildings15091534 - 2 May 2025
Viewed by 637
Abstract
Dewatering and excavation are fundamental processes influencing soil deformation in deep foundation pit construction. Excavation causes stress redistribution through unloading, while dewatering lowers the groundwater level, increases effective stress, and generates seepage forces and compressive deformation in the surrounding soil. To systematically investigate [...] Read more.
Dewatering and excavation are fundamental processes influencing soil deformation in deep foundation pit construction. Excavation causes stress redistribution through unloading, while dewatering lowers the groundwater level, increases effective stress, and generates seepage forces and compressive deformation in the surrounding soil. To systematically investigate their combined influence, this study conducted a scaled physical model test under staged excavation and dewatering conditions within a layered multi-aquifer–aquitard system. Throughout the experiment, soil settlement, groundwater head, and pore water pressure were continuously monitored. Two dimensionless parameters were introduced to quantify the contributions of dewatering and excavation: the total dewatering settlement rate ηdw and the cyclic dewatering settlement rate ηdw,i. Under different experimental conditions, ηdw ranges from 0.35 to 0.63, while ηdw,i varies between 0.32 and 0.82. Both settlement rates decrease with increasing diaphragm wall insertion depth and increase with greater dewatering depth inside the pit and higher soil permeability. An analytical formula for dewatering-induced soil settlement was developed using a modified layered summation method that accounts for deformation coordination between soil layers and includes correction factors for unsaturated zones. Although this approach is limited by scale effects and simplified boundary conditions, the findings offer valuable insights into soil deformation mechanisms under the combined influence of excavation and dewatering. These results provide practical guidance for improving deformation control strategies in complex hydrogeological environments. Full article
(This article belongs to the Special Issue Advances in Foundation Engineering for Building Structures)
Show Figures

Figure 1

16 pages, 3243 KB  
Article
Enhanced Nitrification of High-Ammonium Reject Water in Lab-Scale Sequencing Batch Reactors (SBRs)
by Sandeep Gyawali, Eshetu Janka and Carlos Dinamarca
Water 2025, 17(9), 1344; https://doi.org/10.3390/w17091344 - 30 Apr 2025
Viewed by 807
Abstract
Dewatering anaerobic digested sludge leaves a liquid fraction known as reject water, a liquid organic fertilizer containing high amounts of ammonium nitrogen (NH4-N). However, its concentration should be enhanced to produce commercial fertilizer. Thus, reject water nitrification for stabilization as well [...] Read more.
Dewatering anaerobic digested sludge leaves a liquid fraction known as reject water, a liquid organic fertilizer containing high amounts of ammonium nitrogen (NH4-N). However, its concentration should be enhanced to produce commercial fertilizer. Thus, reject water nitrification for stabilization as well as for nitrate capture in biochar to be used as a slow-release fertilizer is proposed. This study attempted to accomplish enhanced nitrification by tuning the operating parameters in two lab-scale sequential-batch reactors (SBRs), which were fed reject water (containing 520 ± 55 mg NH4-N/L). Sufficient alkalinity as per stoichiometric value was needed to maintain the pH and free nitrous acid (FNA) within the optimum range. A nitrogen loading rate (NLR) of 0.14 ± 0.01 kg/m3·d and 3.34 days hydraulic retention time (HRT) helped to achieved complete 100% nitrification in reactor 1 (R1) on day 61 and in reactor 2 (R2) on day 82. After a well-developed bacterial biomass, increasing the NH4-N concentration up to 750 ± 85 mg/L and NLR to 0.23 ± 0.03 kg/m3·d did not affect the nitrification process. Moreover, a feeding sequence once a day provided adequate contact time between nitrifying sludge and reject water, resulting in complete nitrification. It can be concluded that enhanced stable nitrification of reject water can be achieved with quick adjustment of loading, alkalinity, and HRT in SBRs. Full article
Show Figures

Graphical abstract

15 pages, 1957 KB  
Article
Machine Learning-Based Sizing Model for Tapered Electrical Submersible Pumps Under Multiple Operating Conditions
by Jinsong Yao, Guoqing Han, Xingyuan Liang and Mengyu Wang
Processes 2025, 13(4), 1056; https://doi.org/10.3390/pr13041056 - 1 Apr 2025
Cited by 1 | Viewed by 611
Abstract
Dewatering gas wells typically exhibit a high gas–liquid ratio, making tapered electrical submersible pump (ESP) systems a common choice. However, the flow rate within the pump varies significantly along its length, and production parameters fluctuate considerably across different stages of operation for a [...] Read more.
Dewatering gas wells typically exhibit a high gas–liquid ratio, making tapered electrical submersible pump (ESP) systems a common choice. However, the flow rate within the pump varies significantly along its length, and production parameters fluctuate considerably across different stages of operation for a gas reservoir. Traditional ESP sizing methods typically consider one single operating case and one single pump model. In contrast, tapered ESP systems require the designer to manually select and combine pump models, stage numbers, and operating frequencies based largely on experience. This process can be cumbersome and time-consuming. To address the limitations of existing ESP sizing methods, this study develops a computational program for ESP operation parameters stage by stage and generates extensive training data. A fully connected neural network (FCNN) based on the backpropagation (BP) algorithm is then trained on these data. The model can predict key parameters such as gas volume fraction (GVF) and flow rate along the pump, operating frequency, and total pump efficiency, using input data such as fluid parameters at the pump’s intake and discharge, as well as pump stage numbers and performance curve data. The model demonstrates high accuracy, with a mean absolute error (MAE) of 0.3431, a mean squared error (MSE) of 0.3231, and a coefficient of determination (R2) of 0.9991. By integrating a wellbore two-phase flow model and leveraging industry experience in pump sizing, a hybrid model for automatic ESP sizing under multiple working conditions is proposed, with the objective of maximizing pump efficiency. This model enables optimal pump sizing, calculates the operating frequency corresponding to given working cases, significantly reduces the workload of designers, and enhances the overall design outcomes. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

22 pages, 5895 KB  
Article
Hydro-Mechanical Numerical Analysis of a Double-Wall Deep Excavation in a Multi-Aquifer Strata Considering Soil–Structure Interaction
by Yinhang Zhu, Weidong Wang, Zhonghua Xu, Jinjian Chen and Ji Zhang
Buildings 2025, 15(6), 989; https://doi.org/10.3390/buildings15060989 - 20 Mar 2025
Cited by 2 | Viewed by 575
Abstract
In order to exploit the deep underground space, the construction of ultra-deep excavation in Shanghai is growing rapidly. In multi-aquifer strata, deep excavations typically require dewatering of confined aquifers to ensure engineering safety. However, existing studies have seldom conducted in-depth analysis on the [...] Read more.
In order to exploit the deep underground space, the construction of ultra-deep excavation in Shanghai is growing rapidly. In multi-aquifer strata, deep excavations typically require dewatering of confined aquifers to ensure engineering safety. However, existing studies have seldom conducted in-depth analysis on the influence of the soil parameters and construction measures on the deformation of retaining structures. In this study, a three-dimensional hydro-mechanical numerical model was developed to evaluate the performances of excavation and dewatering of the foundation pit. The model was validated by comparing the calculated and measured wall deflections and groundwater drawdowns of a 45 m ultra-deep double-wall excavation in Shanghai. According to the characteristics of soil stratification and construction activities, three parameters were selected for subsequent analysis, including the hydraulic conductivity of aquitard below the bottom of the pit, the pumping rate in the second confined aquifer and the construction of TRD wall. The stress distributions on both sides of the diaphragm wall were examined to elucidate the deformation mechanism. The results indicate that the aquitard hydraulic conductivity directly affects the effective stress of the overlying aquifer, which plays a crucial role in resisting wall deflection. An increase in the hydraulic conductivity leads to smaller effective stress, greater wall deflection and larger ground settlement. While an appropriately increased pumping rate enhances effective stress, over-pumping may induce excessive wall deflection at depth and disproportionate ground settlement. The TRD wall is quite useful in terms of waterproofing but the effect on deformation control is limited. The findings of this study provide valuable insights for engineering practices and the optimization of deep excavation construction measures in multi-aquifer strata. Full article
(This article belongs to the Special Issue Advances in Soil-Structure Interaction for Building Structures)
Show Figures

Figure 1

Back to TopTop