Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (355)

Search Parameters:
Keywords = designers’ monitor display

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2656 KiB  
Article
Chip-Sized Lensless Holographic Microscope for Real-Time On-Chip Biological Sensing
by Sofía Moncada-Madrazo, Sergio Moreno, Oriol Caravaca, Joan Canals, Natalia Castro, Manel López, Javier Ramón-Azcón, Anna Vilà and Ángel Diéguez
Sensors 2025, 25(17), 5247; https://doi.org/10.3390/s25175247 (registering DOI) - 23 Aug 2025
Abstract
Microscopy is a fundamental tool in biological research. However, conventional microscopes require manual operation and depend on user and equipment availability, limiting their suitability for continuous observation. Moreover, their size and complexity make them impractical for in situ experimentation. In this work, we [...] Read more.
Microscopy is a fundamental tool in biological research. However, conventional microscopes require manual operation and depend on user and equipment availability, limiting their suitability for continuous observation. Moreover, their size and complexity make them impractical for in situ experimentation. In this work, we present a novel, compact, affordable, and portable microscope that enables continuous in situ monitoring by being placed directly on biological samples. This chip-sized lensless holographic microscope (CLHM) is specifically designed to overcome the limitations of traditional microscopy. The device consists solely of an ultra-compact, state-of-the-art micro-LED display and a CMOS sensor, all enclosed within a 3D-printed housing. This unique light source enables a size that is markedly smaller than any comparable technology, allowing a resolution of 2.19 μm within a 7 mm distance between the light source and the camera. This paper demonstrates the CLHM’s versatility by monitoring in vitro models and performing whole-organism morphological analyses of small specimens. These experiments underscore its potential as an on-platform sensing device for continuous, in situ biological monitoring across diverse models. Full article
Show Figures

Figure 1

72 pages, 1538 KiB  
Review
Blueprint of Collapse: Precision Biomarkers, Molecular Cascades, and the Engineered Decline of Fast-Progressing ALS
by Matei Șerban, Corneliu Toader and Răzvan-Adrian Covache-Busuioc
Int. J. Mol. Sci. 2025, 26(16), 8072; https://doi.org/10.3390/ijms26168072 - 21 Aug 2025
Viewed by 57
Abstract
Amyotrophic lateral sclerosis (ALS) is still a heterogeneous neurodegenerative disorder that can be identified clinically and biologically, without a strong set of biomarkers that can adequately measure its fast rate of progression and molecular heterogeneity. In this review, we intend to consolidate the [...] Read more.
Amyotrophic lateral sclerosis (ALS) is still a heterogeneous neurodegenerative disorder that can be identified clinically and biologically, without a strong set of biomarkers that can adequately measure its fast rate of progression and molecular heterogeneity. In this review, we intend to consolidate the most relevant and timely advances in ALS biomarker discovery, in order to begin to bring molecular, imaging, genetic, and digital areas together for potential integration into a precision medicine approach to ALS. Our goal is to begin to display how several biomarkers in development (e.g., neurofilament light chain (NfL), phosphorylated neurofilament heavy chain (pNfH), TDP-43 aggregates, mitochondrial stress markers, inflammatory markers, etc.) are changing our understanding of ALS and ALS dynamics. We will attempt to provide a framework for thinking about biomarkers in a systematic way where our candidates are not signals alone but part of a tethered pathophysiological cascade. We are particularly interested in the fast progressor phenotype, a devastating and under-characterized subset of ALS due to a rapid axonal degeneration, early respiratory failure, and very short life span. We will try to highlight the salient molecular features of this ALS subtype, including SOD1 A5V toxicity, C9orf72 repeats, FUS variants, mitochondrial collapse, and impaired autophagy mechanisms, and relate these features to measurable blood and CSF (biomarkers) and imaging platforms. We will elaborate on several interesting tools, for example, single-cell transcriptomics, CSF exosomal cargo analysis, MRI techniques, and wearable sensor outputs that are developing into high-resolution windows of disease progression and onset. Instead of providing a static catalog, we plan on providing a conceptual roadmap to integrate biomarker panels that will allow for earlier diagnosis, real-time disease monitoring, and adaptive therapeutic trial design. We hope this synthesis will make a meaningful contribution to the shift from observational neurology to proactive biologically informed clinical care in ALS. Although there are still considerable obstacles to overcome, the intersection of a precise molecular or genetic association approach, digital phenotyping, and systems-level understandings may ultimately redefine how we monitor, care for, and treat this challenging neurodegenerative disease. Full article
(This article belongs to the Special Issue Amyotrophic Lateral Sclerosis (ALS): Pathogenesis and Treatments)
Show Figures

Figure 1

24 pages, 4967 KiB  
Article
Thermal Field Reconstruction on Microcontrollers: A Physics-Informed Digital Twin Using Laplace Equation and Real-Time Sensor Data
by Victor H. Benitez, Jesus Pacheco and Agustín Brau
Sensors 2025, 25(16), 5130; https://doi.org/10.3390/s25165130 - 19 Aug 2025
Viewed by 328
Abstract
This paper presents a physics-informed digital twin designed for real-time thermal monitoring and visualization of a metallic plate. The system comprises a physical layer consisting of an aluminum plate equipped with thermistors to capture boundary conditions, a computational layer that implements the steady-state [...] Read more.
This paper presents a physics-informed digital twin designed for real-time thermal monitoring and visualization of a metallic plate. The system comprises a physical layer consisting of an aluminum plate equipped with thermistors to capture boundary conditions, a computational layer that implements the steady-state Laplace equation using the finite difference method, and an embedded execution framework deployed on a microcontroller that utilizes Direct Memory Access-driven ADC for efficient concurrent acquisition. The computed thermal field is transmitted through a serial interface and displayed in real time using a Python-based visualization interface. The Steinhart–Hart model was used to experimentally characterize the sensors, ensuring accuracy in the boundary condition acquisition. While the current formulation is restricted to steady-state conditions, it enables accurate spatial reconstructions with acceptable error margins and demonstrates operational concurrency with the physical system. The compact and modular architecture allows adaptation to other physical domains governed by elliptic PDEs, making it suitable for educational applications, diagnostic prototyping, and embedded edge deployments. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

20 pages, 2737 KiB  
Article
Development of Gelatin/Polyvinyl Alcohol Films Incorporated with Blueberry Extracts for Freshness Detection of Shrimp
by Bárbara Teixeira Gomes, Meirielly Jesus, Joana Santos, Clara Suprani Marques, Noé Mitterhofer Eiterer Ponce de Leon da Costa, Fernando Mata, Paulo Cesar Stringheta, Taila Veloso de Oliveira and Nilda de Fatima Ferreira Soares
Polymers 2025, 17(16), 2188; https://doi.org/10.3390/polym17162188 - 10 Aug 2025
Viewed by 397
Abstract
The objective of this study was to evaluate the physical, chemical, mechanical, thermal, and topological properties of polyvinyl alcohol (PVA) and gelatin (GL) films after incorporating three different fractions of blueberry extract: crude extract (EB, without purification), phenolic portion (EF), and concentrated anthocyanins [...] Read more.
The objective of this study was to evaluate the physical, chemical, mechanical, thermal, and topological properties of polyvinyl alcohol (PVA) and gelatin (GL) films after incorporating three different fractions of blueberry extract: crude extract (EB, without purification), phenolic portion (EF), and concentrated anthocyanins (EA). Additionally, the study aimed to analyze the efficiency of these colorimetric indicator films in monitoring the freshness quality of shrimp. The experiment followed a completely randomized design with one factor—different types of films—studied at six levels: film incorporated with crude blueberry extract (FB), film incorporated with phenolic extract (FF), and film incorporated with anthocyanin extract (FA), in addition to the control films: the plasticized blend containing glycerol, PVA, and GL (FC), the pristine gelatin film (FG), and the pristine PVA film (FPVA). To evaluate the colorimetric sensitivity of the indicators applied to shrimp, storage time was studied at two levels: T0 (before storage—on the day of collection) and T7 (after 7 days of storage at 6.5 ± 1 °C) for the FB and FA films. Regarding thermal properties, the degradation profile occurred in three stages, with the FC film being the most thermally stable. In terms of mechanical behavior, the isolated anthocyanin content increased the elasticity of FA, while the crude extract and other phenolic compounds contributed to the stiffness of FB (Young’s modulus, YM = 22.52) and FF (YM = 37.33). Structurally, the FC film exhibited a smooth and well-blended polymeric surface, whereas FF, FB, and FA displayed heterogeneous and discontinuous phases. The incorporation of blueberry extracts reduced water absorption, leading to decreased swelling and solubility. FF showed the lowest solubility (S = 16.14%), likely due to hydrogen bonding between phenolic compounds and the polymer matrix. Notably, FB demonstrated superior physical, chemical, and mechanical performance, as well as the highest thermal stability among the extract-containing films. It also showed a visible color change (from purple to green/brown) after 7 days of shrimp storage, corresponding with spoilage and pH values unsuitable for consumption. Both FA and FB effectively monitored shrimp freshness, offering a sustainable approach to quality assurance and food waste reduction. Among them, FB was the most practical for visual detection. Overall, these films demonstrated strong potential as pH-sensitive indicators for evaluating the freshness of shrimp. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

26 pages, 1978 KiB  
Article
Fluorescent Peptides Internalize HeLa Cells and Kill Multidrug-Resistant Clinical Bacterial Isolates
by Daniel Castellar-Almonacid, Kelin Johana Cuero-Amu, Jose David Mendoza-Mendoza, Natalia Ardila-Chantré, Fernando José Chavez-Salazar, Andrea Carolina Barragán-Cárdenas, Jhon Erick Rivera-Monroy, Claudia Parra-Giraldo, Zuly Jenny Rivera-Monroy, Javier García-Castañeda and Ricardo Fierro-Medina
Antibiotics 2025, 14(8), 793; https://doi.org/10.3390/antibiotics14080793 - 4 Aug 2025
Viewed by 429
Abstract
Palindromic antimicrobial peptides (PAMs) constitute versatile scaffolds for the design and optimization of anticancer agents with applications in therapy, diagnosis, and/or monitoring. In the present study, fluorolabeled peptides derived from the palindromic sequence RWQWRWQWR containing fluorescent probes, such as 2-Aminobenzoyl, 5(6)-Carboxyfluorescein, and Rhodamine [...] Read more.
Palindromic antimicrobial peptides (PAMs) constitute versatile scaffolds for the design and optimization of anticancer agents with applications in therapy, diagnosis, and/or monitoring. In the present study, fluorolabeled peptides derived from the palindromic sequence RWQWRWQWR containing fluorescent probes, such as 2-Aminobenzoyl, 5(6)-Carboxyfluorescein, and Rhodamine B, were obtained. RP-HPLC analysis revealed that the palindromic peptide conjugated to Rhodamine B (RhB-RWQWRWQWR) exhibited the presence of isomers, likely corresponding to the open-ring and spiro-lactam forms of the fluorescent probe. This equilibrium is dependent on the peptide sequence, as the RP-HPLC analysis of dimeric peptide (RhB-RRWQWR-hF-KKLG)2K-Ahx did not reveal the presence of isomers. The antibacterial activity of the fluorescent peptides depends on the probe attached to the sequence and the bacterial strain tested. Notably, some fluorescent peptides showed activity against reference strains as well as sensitive, resistant, and multidrug-resistant clinical isolates of E. coli, S. aureus, and E. faecalis. Fluorolabeled peptides 1-Abz (MIC = 62 µM), RhB-1 (MIC = 62 µM), and Abz-1 (MIC = 31 µM) exhibited significant activity against clinical isolates of E. coli, S. aureus, and E. faecalis, respectively. The RhB-1 (IC50 = 61 µM), Abz-1 (IC50 = 87 µM), and RhB-2 (IC50 = 35 µM) peptides exhibited a rapid, significant, and concentration-dependent cytotoxic effect on HeLa cells, accompanied by morphological changes characteristic of apoptosis. RhB-1 (IC50 = 18 µM) peptide also exhibited significant cytotoxic activity against breast cancer cells MCF-7. These conjugates remain valuable for elucidating the possible mechanisms of action of these novel anticancer peptides. Rhodamine-labeled peptides displayed cytotoxicity comparable to that of their unlabeled analogues, suggesting that cellular internalization constitutes a critical early step in their mechanism of action. These findings suggest that cell death induced by both unlabeled and fluorolabeled peptides proceeds predominantly via apoptosis and is likely contingent upon peptide internalization. Functionalization at the N-terminal end of the palindromic sequence can be evaluated to develop systems for transporting non-protein molecules into cancer cells. Full article
Show Figures

Figure 1

10 pages, 903 KiB  
Article
Gender Differences in Visual Information Perception Ability: A Signal Detection Theory Approach
by Yejin Lee and Kwangtae Jung
Appl. Sci. 2025, 15(15), 8621; https://doi.org/10.3390/app15158621 - 4 Aug 2025
Viewed by 338
Abstract
The accurate perception of visual stimuli in human–machine systems is crucial for improving system safety, usability, and task performance. The widespread adoption of digital technology has significantly increased the importance of visual interfaces and information. Therefore, it is essential to design visual interfaces [...] Read more.
The accurate perception of visual stimuli in human–machine systems is crucial for improving system safety, usability, and task performance. The widespread adoption of digital technology has significantly increased the importance of visual interfaces and information. Therefore, it is essential to design visual interfaces and information with user characteristics in mind to ensure accurate perception of visual information. This study employed the Cognitive Perceptual Assessment for Driving (CPAD) to evaluate and compare gender differences in the ability to perceive visual signals within complex visual stimuli. The experimental setup included a computer with CPAD installed, along with a touch monitor, mouse, joystick, and keyboard. The participants included 11 male and 20 female students, with an average age of 22 for males and 21 for females. Prior to the experiment, participants were instructed to determine whether a signal stimulus was present: if a square, presented as the signal, was included in the visual stimulus, they moved the joystick to the left; otherwise, they moved it to the right. Each participant performed a total of 40 trials. The entire experiment was recorded on video to measure overall response times. The experiment measured the number of correct detections of signal presence, response times, the number of misses (failing to detect the signal when present), and false alarms (detecting the signal when absent). The analysis of experimental data revealed no significant differences in perceptual ability or response times for visual stimuli between genders. However, males demonstrated slightly superior perceptual ability and marginally shorter response times compared to females. Analyses of sensitivity and response bias, based on signal detection theory, also indicated a slightly higher perceptual ability in males. In conclusion, although these differences were not statistically significant, males demonstrated a slightly better perception ability for visual stimuli. The findings of this study can inform the design of information, user interfaces, and visual displays in human–machine systems, particularly in light of the recent trend of increased female participation in the industrial sector. Future research will focus on diverse types of visual information to further validate these findings. Full article
Show Figures

Figure 1

20 pages, 6273 KiB  
Article
Seeding Status Monitoring System for Toothed-Disk Cotton Seeders Based on Modular Optoelectronic Sensors
by Tao Jiang, Xuejun Zhang, Zenglu Shi, Jingyi Liu, Wei Jin, Jinshan Yan, Duijin Wang and Jian Chen
Agriculture 2025, 15(15), 1594; https://doi.org/10.3390/agriculture15151594 - 24 Jul 2025
Viewed by 257
Abstract
In precision cotton seeding, the toothed-disk precision seeder often experiences issues with missed seeding and multiple seeding. To promptly detect and address these abnormal seeding conditions, this study develops a modular photoelectric sensing monitoring system. Initially, the monitoring time window is divided using [...] Read more.
In precision cotton seeding, the toothed-disk precision seeder often experiences issues with missed seeding and multiple seeding. To promptly detect and address these abnormal seeding conditions, this study develops a modular photoelectric sensing monitoring system. Initially, the monitoring time window is divided using the capacitance sensing signal between two seed drop ports. Concurrently, a photoelectric monitoring circuit is designed to convert the time when seeds block the sensor into a level signal. Subsequently, threshold segmentation is performed on the time when seeds block the photoelectric path under different seeding states. The proposed spatiotemporal joint counting algorithm identifies, in real time, the threshold type of the photoelectric sensor’s output signal within the current monitoring time window, enabling the differentiation of seeding states and the recording of data. Additionally, an STM32 micro-controller serves as the core of the signal acquisition circuit, sending collected data to the PC terminal via serial port communication. The graphical display interface, designed with LVGL (Light and Versatile Graphics Library), updates the seeding monitoring information in real time. Compared to photoelectric monitoring algorithms that detect seed pickup at the seed metering disc, the monitoring node in this study is positioned posteriorly within the seed guide chamber. Consequently, the differentiation between single seeding and multiple seeding is achieved with greater accuracy by the spatiotemporal joint counting algorithm, thereby enhancing the monitoring precision of the system. Field test results indicate that the system’s average accuracy for single-seeding monitoring is 97.30%, for missed-seeding monitoring is 96.48%, and for multiple-seeding monitoring is 96.47%. The average probability of system misjudgment is 3.25%. These outcomes suggest that the proposed modular photoelectric sensing monitoring system can meet the monitoring requirements of precision cotton seeding at various seeding speeds. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

15 pages, 6386 KiB  
Article
Soil, Tree Species, and Pleurozium schreberi as Tools for Monitoring Heavy Metal Pollution in Urban Parks
by Marek Pająk, Michał Gąsiorek, Marta Szostak and Wiktor Halecki
Sustainability 2025, 17(15), 6708; https://doi.org/10.3390/su17156708 - 23 Jul 2025
Viewed by 318
Abstract
Urban parks are an integral component of cities; however, they are susceptible to heavy metal contamination from anthropogenic sources. Here, we investigated the moss Pleurozium schreberi and tree leaves as bioindicators for monitoring heavy metal contamination in urban parks. We determined heavy metal [...] Read more.
Urban parks are an integral component of cities; however, they are susceptible to heavy metal contamination from anthropogenic sources. Here, we investigated the moss Pleurozium schreberi and tree leaves as bioindicators for monitoring heavy metal contamination in urban parks. We determined heavy metal concentrations in P. schreberi, leaf tissues of selected tree species, and soil samples collected from various locations within a designated urban parks. The order of heavy metal accumulation was Zn > Pb > Cr > Cu > Ni > Cd > Hg in soil and Zn > Cu > Pb > Cr > Ni > Cd > Hg in P. schreberi. The order was Zn > Cu > Cr > Ni > Pb > Cd > Hg in linden and sycamore leaves, while birch leaves displayed a similar order but with slightly more Ni than Cr. The heavy metal concentration in the tested soils correlated positively with finer textures (clay and silt) and negatively with sand. The highest metal accumulation index (MAI) was noted in birch and P. schreberi, corresponding to the highest total heavy metal accumulation. The bioconcentration factor (BAF) was also higher in P. schreberi, indicating a greater ability to accumulate heavy metals than tree leaves, except silver birch for Zn in one of the parks. Silver birch displayed the highest phytoremediation capacity among the analysed tree species, highlighting its potential as a suitable bioindicator in heavy metal-laden urban parks. Our findings revealed significant variation in heavy metal accumulation, highlighting the potential of these bioindicators to map contamination patterns. Full article
(This article belongs to the Special Issue Evaluation of Landscape Ecology and Urban Ecosystems)
Show Figures

Figure 1

25 pages, 5055 KiB  
Article
FlickPose: A Hand Tracking-Based Text Input System for Mobile Users Wearing Smart Glasses
by Ryo Yuasa and Katashi Nagao
Appl. Sci. 2025, 15(15), 8122; https://doi.org/10.3390/app15158122 - 22 Jul 2025
Viewed by 498
Abstract
With the growing use of head-mounted displays (HMDs) such as smart glasses, text input remains a challenge, especially in mobile environments. Conventional methods like physical keyboards, voice recognition, and virtual keyboards each have limitations—physical keyboards lack portability, voice input has privacy concerns, and [...] Read more.
With the growing use of head-mounted displays (HMDs) such as smart glasses, text input remains a challenge, especially in mobile environments. Conventional methods like physical keyboards, voice recognition, and virtual keyboards each have limitations—physical keyboards lack portability, voice input has privacy concerns, and virtual keyboards struggle with accuracy due to a lack of tactile feedback. FlickPose is a novel text input system designed for smart glasses and mobile HMD users, integrating flick-based input and hand pose recognition. It features two key selection methods: the touch-panel method, where users tap a floating UI panel to select characters, and the raycast method, where users point a virtual ray from their wrist and confirm input via a pinch motion. FlickPose uses five left-hand poses to select characters. A machine learning model trained for hand pose recognition outperforms Random Forest and LightGBM models in accuracy and consistency. FlickPose was tested against the standard virtual keyboard of Meta Quest 3 in three tasks (hiragana, alphanumeric, and kanji input). Results showed that raycast had the lowest error rate, reducing unintended key presses; touch-panel had more deletions, likely due to misjudgments in key selection; and frequent HMD users preferred raycast, as it maintained input accuracy while allowing users to monitor their text. A key feature of FlickPose is adaptive tracking, which ensures the keyboard follows user movement. While further refinements in hand pose recognition are needed, the system provides an efficient, mobile-friendly alternative for HMD text input. Future research will explore real-world application compatibility and improve usability in dynamic environments. Full article
(This article belongs to the Special Issue Extended Reality (XR) and User Experience (UX) Technologies)
Show Figures

Figure 1

12 pages, 5437 KiB  
Article
Cyber-Physical System Interface for Implantable Esophageal Prosthesis
by Ana Magdalena Anghel and Teodora Mîndra
Sensors 2025, 25(14), 4469; https://doi.org/10.3390/s25144469 - 18 Jul 2025
Viewed by 327
Abstract
This article presents a Cyber-Physical System Interface (CPSI) for a patented implantable esophageal prosthesis. Designed for in vivo use, the CPSI has been implemented in a MATLAB (version R2021b) simulation environment integrated with real-time data from sensors relevant for monitoring the prosthesis’s physical [...] Read more.
This article presents a Cyber-Physical System Interface (CPSI) for a patented implantable esophageal prosthesis. Designed for in vivo use, the CPSI has been implemented in a MATLAB (version R2021b) simulation environment integrated with real-time data from sensors relevant for monitoring the prosthesis’s physical positioning and environmental interactions, aggregated through an Arduino external system. This setup enables the modeling and analysis of system behaviors in a controlled setting. The paper discusses the sensors, hardware and software components supporting a wide range of applications, and the method chosen for sensor-to-display flow. The case study demonstrates two monitoring system applications: one analyzes the influence of variations in the prosthesis geometry, while the other evaluates the tissue response to the implant. The proposed framework and implementation are highly relevant for a wide range of in vivo implants and related systems. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

13 pages, 485 KiB  
Article
Cognitive Systems and Artificial Consciousness: What It Is Like to Be a Bat Is Not the Point
by Javier Arévalo-Royo, Juan-Ignacio Latorre-Biel and Francisco-Javier Flor-Montalvo
Metrics 2025, 2(3), 11; https://doi.org/10.3390/metrics2030011 - 17 Jul 2025
Viewed by 553
Abstract
A longstanding ambiguity surrounds the operationalization of consciousness in artificial systems, complicated by the philosophical and cultural weight of subjective experience. This work examines whether cognitive architectures may be designed to support a functionally explicit form of artificial consciousness, focusing not on the [...] Read more.
A longstanding ambiguity surrounds the operationalization of consciousness in artificial systems, complicated by the philosophical and cultural weight of subjective experience. This work examines whether cognitive architectures may be designed to support a functionally explicit form of artificial consciousness, focusing not on the replication of phenomenology, but rather on measurable, technically realizable introspective mechanisms. Drawing on a critical review of foundational and contemporary literature, this study articulates a conceptual and methodological shift: from investigating the experiential perspective of agents (“what it is like to be a bat”) to analyzing the informational, self-regulatory, and adaptive structures that enable purposive behavior. The approach combines theoretical analysis with a comparative review of major cognitive architectures, evaluating their capacity to implement access consciousness and internal monitoring. Findings indicate that several state-of-the-art systems already display core features associated with functional consciousness—such as self-explanation, context-sensitive adaptation, and performance evaluation—without invoking subjective states. These results support the thesis that cognitive engineering may progress more effectively by focusing on operational definitions of consciousness that are amenable to implementation and empirical validation. In conclusion, this perspective enables the development of artificial agents capable of autonomous reasoning and self-assessment, grounded in technical clarity rather than speculative constructs. Full article
Show Figures

Figure 1

21 pages, 10296 KiB  
Article
Spatiotemporal Mechanical Effects of Framework–Slope Systems Under Frost Heave Conditions
by Wendong Li, Xiaoqiang Hou, Jixian Ren and Chaoyang Wu
Appl. Sci. 2025, 15(14), 7877; https://doi.org/10.3390/app15147877 - 15 Jul 2025
Viewed by 333
Abstract
To investigate the slope instability caused by differential frost heaving mechanisms from the slope crest to the toe during frost heave processes, this study takes a typical silty clay slope in Xinjiang, China, as the research object. Through indoor triaxial consolidated undrained shear [...] Read more.
To investigate the slope instability caused by differential frost heaving mechanisms from the slope crest to the toe during frost heave processes, this study takes a typical silty clay slope in Xinjiang, China, as the research object. Through indoor triaxial consolidated undrained shear tests, eight sets of natural and frost-heaved specimens were prepared under confining pressure conditions ranging from 100 to 400 kPa. The geotechnical parameters of the soil in both natural and frost-heaved states were obtained, and a spatiotemporal thermo-hydro-mechanical coupled numerical model was established to reveal the dynamic evolution law of anchor rod axial forces and the frost heave response mechanism between the frame and slope soil. The analytical results indicate that (1) the frost heave process is influenced by slope boundaries, resulting in distinct spatial variations in the temperature field response across the slope surface—namely pronounced responses at the crest and toe but a weaker response in the mid-slope. (2) Under the coupled drive of the water potential gradient and gravitational potential gradient, the ice content in the toe area increases significantly, and the horizontal frost heave force exhibits exponential growth, reaching its peak value of 92 kPa at the toe in February. (3) During soil freezing, the reverse stress field generated by soil arching shows consistent temporal variation trends with the temperature field. Along the height of the soil arch, the intensity of the reverse frost heave force field displays a nonlinear distribution characteristic of initial strengthening followed by attenuation. (4) By analyzing the changes in anchor rod axial forces during frost heaving, it was found that axial forces during the frost heave period are approximately 1.3 times those under natural conditions, confirming the frost heave period as the most critical condition for frame anchor design. Furthermore, through comparative analysis with 12 months of on-site anchor rod axial force monitoring data, the reliability and accuracy of the numerical simulation model were validated. These research outcomes provide a theoretical basis for the design of frame anchor support systems in seasonally frozen regions. Full article
Show Figures

Figure 1

13 pages, 1650 KiB  
Article
Isolation of a Monoclonal Human scFv Against Cytomegalovirus pp71 Antigen Using Yeast Display
by Kazuhisa Aoki, Rikio Yabe, Sayaka Ono, Mayumi Saeki, Yuri Tanno and Hidetaka Tanno
Antibodies 2025, 14(3), 57; https://doi.org/10.3390/antib14030057 - 10 Jul 2025
Viewed by 567
Abstract
Background: Human cytomegalovirus (CMV) is a major pathogen that poses significant risks to immunocompromised individuals and neonates. The tegument protein pp71, encoded by the UL82 gene, plays a pivotal role in initiating viral lytic replication and evading host immune responses. Despite its clinical [...] Read more.
Background: Human cytomegalovirus (CMV) is a major pathogen that poses significant risks to immunocompromised individuals and neonates. The tegument protein pp71, encoded by the UL82 gene, plays a pivotal role in initiating viral lytic replication and evading host immune responses. Despite its clinical relevance, standardized monoclonal antibodies (mAbs) for pp71 remain limited, prompting the need to expand the available repertoire of antibodies targeting this critical protein. Methods: In this study, we constructed a diverse human single-chain variable fragment (scFv) library using RNA derived from the B cells of four healthy donors. The library was expressed in Saccharomyces cerevisiae, and iterative rounds of magnetic-activated cell sorting (MACS) were performed against recombinant pp71. Clonal enrichment was monitored using flow cytometry. Results: Among the isolated clones, one designated ID2 exhibited high sensitivity and specificity for pp71, as demonstrated by flow cytometry, immunofluorescence, an enzyme-linked immunosorbent assay (ELISA), and biolayer interferometry (BLI). Conclusions: Collectively, these findings establish a novel pp71-specific mAb and underscore the utility of yeast surface display combined with MACS for expanding the antibody toolkit available for CMV research and diagnostics. Full article
(This article belongs to the Section Antibody Discovery and Engineering)
Show Figures

Graphical abstract

19 pages, 26396 KiB  
Article
Development of a Networked Multi-Participant Driving Simulator with Synchronized EEG and Telemetry for Traffic Research
by Poorendra Ramlall, Ethan Jones and Subhradeep Roy
Systems 2025, 13(7), 564; https://doi.org/10.3390/systems13070564 - 10 Jul 2025
Viewed by 546
Abstract
This paper presents a multi-participant driving simulation framework designed to support traffic experiments involving the simultaneous collection of vehicle telemetry and cognitive data. The system integrates motion-enabled driving cockpits, high-fidelity steering and pedal systems, immersive visual displays (monitor or virtual reality), and the [...] Read more.
This paper presents a multi-participant driving simulation framework designed to support traffic experiments involving the simultaneous collection of vehicle telemetry and cognitive data. The system integrates motion-enabled driving cockpits, high-fidelity steering and pedal systems, immersive visual displays (monitor or virtual reality), and the Assetto Corsa simulation engine. To capture cognitive states, dry-electrode EEG headsets are used alongside a custom-built software tool that synchronizes EEG signals with vehicle telemetry across multiple drivers. The primary contribution of this work is the development of a modular, scalable, and customizable experimental platform with robust data synchronization, enabling the coordinated collection of neural and telemetry data in multi-driver scenarios. The synchronization software developed through this study is freely available to the research community. This architecture supports the study of human–human interactions by linking driver actions with corresponding neural activity across a range of driving contexts. It provides researchers with a powerful tool to investigate perception, decision-making, and coordination in dynamic, multi-participant traffic environments. Full article
(This article belongs to the Special Issue Modelling and Simulation of Transportation Systems)
Show Figures

Figure 1

17 pages, 1598 KiB  
Article
Comparative Analysis of Diel and Circadian Eclosion Rhythms and Clock Gene Expression Between Sexes in the Migratory Moth Spodoptera frugiperda
by Changning Lv, Yibo Ren, Viacheslav V. Krylov, Yumeng Wang, Yuanyuan Li, Weidong Pan, Gao Hu, Fajun Chen and Guijun Wan
Insects 2025, 16(7), 705; https://doi.org/10.3390/insects16070705 - 9 Jul 2025
Viewed by 614
Abstract
The circadian clock orchestrates behavioral and molecular processes such as eclosion. Understanding eclosion timing may offer insights into circadian mechanisms underlying migratory timing. Here, we characterize the diel and circadian patterns of eclosion and core clock gene expression in the fall armyworm (FAW), [...] Read more.
The circadian clock orchestrates behavioral and molecular processes such as eclosion. Understanding eclosion timing may offer insights into circadian mechanisms underlying migratory timing. Here, we characterize the diel and circadian patterns of eclosion and core clock gene expression in the fall armyworm (FAW), Spodoptera frugiperda, a globally distributed migratory moth. Using a custom-designed eclosion monitoring system under 14 h light: 10 h dark (L14: D10) and constant darkness (DD) conditions, we observed robust diel eclosion rhythms peaking shortly after lights-off under L14: D10, which became delayed and damped over three consecutive days in DD. Males showed a tendency toward more dispersed emergence patterns and exhibited statistically distinguishable eclosion distributions from females under both conditions. Expression of five canonical clock genes (cyc, clk, tim, per, cry2) displayed significant 24 h rhythmicity, with generally higher mesors in males. However, sex-specific differences in amplitude and phase were detected only for clk and cyc under L14: D10, not in DD. These findings suggest that sex-specific differences in circadian regulation are limited. Nonetheless, subtle variations in clock gene output and emergence timing in the FAW population established in China may contribute to sex-specific ecological strategies in the novel migratory arena. Full article
(This article belongs to the Special Issue Travelers on the Wind: Migratory Insects as Emerging Research Models)
Show Figures

Figure 1

Back to TopTop