Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,553)

Search Parameters:
Keywords = design for assembly

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 18533 KiB  
Article
Modeling of Marine Assembly Logistics for an Offshore Floating Photovoltaic Plant Subject to Weather Dependencies
by Lu-Jan Huang, Simone Mancini and Minne de Jong
J. Mar. Sci. Eng. 2025, 13(8), 1493; https://doi.org/10.3390/jmse13081493 (registering DOI) - 2 Aug 2025
Abstract
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to [...] Read more.
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to open offshore environments, particularly within offshore wind farm areas. This development is motivated by the synergistic benefits of increasing site energy density and leveraging the existing offshore grid infrastructure. The deployment of offshore floating photovoltaic (OFPV) systems involves assembling multiple modular units in a marine environment, introducing operational risks that may give rise to safety concerns. To mitigate these risks, weather windows must be considered prior to the task execution to ensure continuity between weather-sensitive activities, which can also lead to additional time delays and increased costs. Consequently, optimizing marine logistics becomes crucial to achieving the cost reductions necessary for making OFPV technology economically viable. This study employs a simulation-based approach to estimate the installation duration of a 5 MWp OFPV plant at a Dutch offshore wind farm site, started in different months and under three distinct risk management scenarios. Based on 20 years of hindcast wave data, the results reveal the impacts of campaign start months and risk management policies on installation duration. Across all the scenarios, the installation duration during the autumn and winter period is 160% longer than the one in the spring and summer period. The average installation durations, based on results from 12 campaign start months, are 70, 80, and 130 days for the three risk management policies analyzed. The result variation highlights the additional time required to mitigate operational risks arising from potential discontinuity between highly interdependent tasks (e.g., offshore platform assembly and mooring). Additionally, it is found that the weather-induced delays are mainly associated with the campaigns of pre-laying anchors and platform and mooring line installation compared with the other campaigns. In conclusion, this study presents a logistics modeling methodology for OFPV systems, demonstrated through a representative case study based on a state-of-the-art truss-type design. The primary contribution lies in providing a framework to quantify the performance of OFPV installation strategies at an early design stage. The findings of this case study further highlight that marine installation logistics are highly sensitive to local marine conditions and the chosen installation strategy, and should be integrated early in the OFPV design process to help reduce the levelized cost of electricity. Full article
(This article belongs to the Special Issue Design, Modeling, and Development of Marine Renewable Energy Devices)
13 pages, 3774 KiB  
Article
Design of TEMPO-Based Polymer Cathode Materials for pH-Neutral Aqueous Organic Redox Flow Batteries
by Yanwen Ren, Qianqian Zheng, Cuicui He, Jingjing Nie and Binyang Du
Materials 2025, 18(15), 3624; https://doi.org/10.3390/ma18153624 (registering DOI) - 1 Aug 2025
Abstract
Aqueous organic redox flow batteries (AORFBs) represent an advancing class of electrochemical energy storage systems showing considerable promise for large-scale grid integration due to their unique aqueous organic chemistry. However, the use of small-molecule active materials in AORFBs is significantly limited by the [...] Read more.
Aqueous organic redox flow batteries (AORFBs) represent an advancing class of electrochemical energy storage systems showing considerable promise for large-scale grid integration due to their unique aqueous organic chemistry. However, the use of small-molecule active materials in AORFBs is significantly limited by the issue of stability and crossover. To address these challenges, we designed a high-water-solubility polymer cathode material, P-T-S, which features a polyvinylimidazole backbone functionalized with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and sulfonate groups. P-T-S exhibits a solubility of 34 Ah L−1 in water and 31 Ah L−1 in 1.0 M NaCl aqueous solution (NaClaq). When paired with methyl viologen to assemble a pH-neutral AORFB with a theoretical capacity of 15 Ah L−1, the system exhibits a material utilization rate of 92.0%, an average capacity retention rate of 99.74% per cycle (99.74% per hour), and an average Coulombic efficiency of 98.69% over 300 consecutive cycles at 30 mA cm−2. This work provides a new design strategy for polymer materials for high-performance AORFBs. Full article
Show Figures

Graphical abstract

29 pages, 6397 KiB  
Article
Task Travel Time Prediction Method Based on IMA-SURBF for Task Dispatching of Heterogeneous AGV System
by Jingjing Zhai, Xing Wu, Qiang Fu, Ya Hu, Peihuang Lou and Haining Xiao
Biomimetics 2025, 10(8), 500; https://doi.org/10.3390/biomimetics10080500 (registering DOI) - 1 Aug 2025
Abstract
The heterogeneous automatic guided vehicle (AGV) system, composed of several AGVs with different load capability and handling function, has good flexibility and agility to operational requirements. Accurate task travel time prediction (T3P) is vital for the efficient operation of heterogeneous AGV systems. However, [...] Read more.
The heterogeneous automatic guided vehicle (AGV) system, composed of several AGVs with different load capability and handling function, has good flexibility and agility to operational requirements. Accurate task travel time prediction (T3P) is vital for the efficient operation of heterogeneous AGV systems. However, T3P remains a challenging problem due to individual task correlations and dynamic changes in model input/output dimensions. To address these challenges, a biomimetics-inspired learning framework based on a radial basis function (RBF) neural network with an improved mayfly algorithm and a selective update strategy (IMA-SURBF) is proposed. Firstly, a T3P model is constructed by using travel-influencing factors as input and task travel time as output of the RBF neural network, where the input/output dimension is determined dynamically. Secondly, the improved mayfly algorithm (IMA), a biomimetic metaheuristic method, is adopted to optimize the initial parameters of the RBF neural network, while a selective update strategy is designed for parameter updates. Finally, simulation experiments on model design, parameter initialization, and comparison with deep learning-based models are conducted in a complex assembly line scenario to validate the accuracy and efficiency of the proposed method. Full article
(This article belongs to the Section Biological Optimisation and Management)
Show Figures

Figure 1

25 pages, 2451 KiB  
Article
Complexation and Thermal Stabilization of Protein–Polyelectrolyte Systems via Experiments and Molecular Simulations: The Poly(Acrylic Acid)/Lysozyme Case
by Sokratis N. Tegopoulos, Sisem Ektirici, Vagelis Harmandaris, Apostolos Kyritsis, Anastassia N. Rissanou and Aristeidis Papagiannopoulos
Polymers 2025, 17(15), 2125; https://doi.org/10.3390/polym17152125 - 1 Aug 2025
Abstract
Protein–polyelectrolyte nanostructures assembled via electrostatic interactions offer versatile applications in biomedicine, tissue engineering, and food science. However, several open questions remain regarding their intermolecular interactions and the influence of external conditions—such as temperature and pH—on their assembly, stability, and responsiveness. This study explores [...] Read more.
Protein–polyelectrolyte nanostructures assembled via electrostatic interactions offer versatile applications in biomedicine, tissue engineering, and food science. However, several open questions remain regarding their intermolecular interactions and the influence of external conditions—such as temperature and pH—on their assembly, stability, and responsiveness. This study explores the formation and stability of networks between poly(acrylic acid) (PAA) and lysozyme (LYZ) at the nanoscale upon thermal treatment, using a combination of experimental and simulation measures. Experimental techniques of static and dynamic light scattering (SLS and DLS), Fourier transform infrared spectroscopy (FTIR), and circular dichroism (CD) are combined with all-atom molecular dynamics simulations. Model systems consisting of multiple PAA and LYZ molecules explore collective assembly and complexation in aqueous solution. Experimental results indicate that electrostatic complexation occurs between PAA and LYZ at pH values below LYZ’s isoelectric point. This leads to the formation of nanoparticles (NPs) with radii ranging from 100 to 200 nm, most pronounced at a PAA/LYZ mass ratio of 0.1. These complexes disassemble at pH 12, where both LYZ and PAA are negatively charged. However, when complexes are thermally treated (TT), they remain stable, which is consistent with earlier findings. Atomistic simulations demonstrate that thermal treatment induces partially reversible structural changes, revealing key microscopic features involved in the stabilization of the formed network. Although electrostatic interactions dominate under all pH and temperature conditions, thermally induced conformational changes reorganize the binding pattern, resulting in an increased number of contacts between LYZ and PAA upon thermal treatment. The altered hydration associated with conformational rearrangements emerges as a key contributor to the stability of the thermally treated complexes, particularly under conditions of strong electrostatic repulsion at pH 12. Moreover, enhanced polymer chain associations within the network are observed, which play a crucial role in complex stabilization. These insights contribute to the rational design of protein–polyelectrolyte materials, revealing the origins of association under thermally induced structural rearrangements. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

12 pages, 2261 KiB  
Communication
Technological Challenges for a 60 m Long Prototype of Switched Reluctance Linear Electromagnetic Actuator
by Jakub Rygał, Roman Rygał and Stan Zurek
Actuators 2025, 14(8), 380; https://doi.org/10.3390/act14080380 (registering DOI) - 1 Aug 2025
Abstract
In this research project a large linear electromagnetic actuator (LLEA) was designed and manufactured. The electromagnetic performance was published in previous works, but in this paper we focus on the technological challenges related to the manufacturing in particular. This LLEA was based on [...] Read more.
In this research project a large linear electromagnetic actuator (LLEA) was designed and manufactured. The electromagnetic performance was published in previous works, but in this paper we focus on the technological challenges related to the manufacturing in particular. This LLEA was based on the magnet-free switched-reluctance principle, having six effective energised stator “teeth” and four passive mover parts (4:6 ratio). Various aspects and challenges encountered during the manufacturing, transport, and assembly are discussed. Thermal expansion of steel contributed to the decision of the modular design, with each module having 1.3 m in length, with a 2 mm longitudinal dilatation gap. The initial prototype was tested with a 10.6 m length, with plans to extend the test track to 60 m, which was fully achievable due to the modular design and required 29 tons of electrical steel to be built. The stator laminations were cut by a bespoke progressive tool with stamping, and other parts by a CO2 laser. Mounting was based on welding (back of the stator) and clamping plates (through insulated bolts). The linear longitudinal force was on the order of 8 kN, with the main air gap of 7.5–10 mm on either side of the mover. The lateral forces could exceed 40 kN and were supported by appropriate construction steel members bolted to the concrete floor. The overall mechanical tolerances after installation remained below 0.5 mm. The technology used for constructing this prototype demonstrated the cost-effective way for a semi-industrial manufacturing scale. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

36 pages, 6545 KiB  
Review
MXene-Based Composites for Energy Harvesting and Energy Storage Devices
by Jorge Alexandre Alencar Fotius and Helinando Pequeno de Oliveira
Solids 2025, 6(3), 41; https://doi.org/10.3390/solids6030041 (registering DOI) - 1 Aug 2025
Abstract
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in [...] Read more.
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in MXene-based composites, focusing on their integration into electrode architectures for the development of supercapacitors, batteries, and multifunctional devices, including triboelectric nanogenerators. It serves as a comprehensive overview of the multifunctional capabilities of MXene-based composites and their role in advancing efficient, flexible, and sustainable energy and sensing technologies, outlining how MXene-based systems are poised to redefine multifunctional energy platforms. Electrochemical performance optimization strategies are discussed by considering surface functionalization, interlayer engineering, scalable synthesis techniques, and integration with advanced electrolytes, with particular attention paid to the development of hybrid supercapacitors, triboelectric nanogenerators (TENGs), and wearable sensors. These applications are favored due to improved charge storage capability, mechanical properties, and the multifunctionality of MXenes. Despite these aspects, challenges related to long-term stability, sustainable large-scale production, and environmental degradation must still be addressed. Emerging approaches such as three-dimensional self-assembly and artificial intelligence-assisted design are identified as key challenges for overcoming these issues. Full article
Show Figures

Figure 1

16 pages, 4770 KiB  
Article
Developing a CeS2/ZnS Quantum Dot Composite Nanomaterial as a High-Performance Cathode Material for Supercapacitor
by Shan-Diao Xu, Li-Cheng Wu, Muhammad Adil, Lin-Feng Sheng, Zi-Yue Zhao, Kui Xu and Xin Chen
Batteries 2025, 11(8), 289; https://doi.org/10.3390/batteries11080289 (registering DOI) - 1 Aug 2025
Abstract
To develop high-performance electrode materials for supercapacitors, in this paper, a heterostructured composite material of cerium sulfide and zinc sulfide quantum dots (CeS2/ZnS QD) was successfully prepared by hydrothermal method. Characterization through scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission [...] Read more.
To develop high-performance electrode materials for supercapacitors, in this paper, a heterostructured composite material of cerium sulfide and zinc sulfide quantum dots (CeS2/ZnS QD) was successfully prepared by hydrothermal method. Characterization through scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM) showed that ZnS QD nanoparticles were uniformly composited with CeS2, effectively increasing the active sites surface area and shortening the ion diffusion path. Electrochemical tests show that the specific capacitance of this composite material reaches 2054 F/g at a current density of 1 A/g (specific capacity of about 256 mAh/g), significantly outperforming the specific capacitance of pure CeS2 787 F/g at 1 A/g (specific capacity 98 mAh/g). The asymmetric supercapacitor (ASC) assembled with CeS2/ZnS QD and activated carbon (AC) retained 84% capacitance after 10,000 charge–discharge cycles. Benefited from the synergistic effect between CeS2 and ZnS QDs, the significantly improved electrochemical performance of the composite material suggests a promising strategy for designing rare-earth and QD-based advanced energy storage materials. Full article
Show Figures

Graphical abstract

14 pages, 3346 KiB  
Article
DES-Mediated Mild Synthesis of Synergistically Engineered 3D FeOOH-Co2(OH)3Cl/NF for Enhanced Oxygen Evolution Reaction
by Bingxian Zhu, Yachao Liu, Yue Yan, Hui Wang, Yu Zhang, Ying Xin, Weijuan Xu and Qingshan Zhao
Catalysts 2025, 15(8), 725; https://doi.org/10.3390/catal15080725 (registering DOI) - 30 Jul 2025
Viewed by 91
Abstract
Hydrogen energy is a pivotal carrier for achieving carbon neutrality, requiring green and efficient production via water electrolysis. However, the anodic oxygen evolution reaction (OER) involves a sluggish four-electron transfer process, resulting in high overpotentials, while the prohibitive cost and complex preparation of [...] Read more.
Hydrogen energy is a pivotal carrier for achieving carbon neutrality, requiring green and efficient production via water electrolysis. However, the anodic oxygen evolution reaction (OER) involves a sluggish four-electron transfer process, resulting in high overpotentials, while the prohibitive cost and complex preparation of precious metal catalysts impede large-scale commercialization. In this study, we develop a FeCo-based bimetallic deep eutectic solvent (FeCo-DES) as a multifunctional reaction medium for engineering a three-dimensional (3D) coral-like FeOOH-Co2(OH)3Cl/NF composite via a mild one-step impregnation approach (70 °C, ambient pressure). The FeCo-DES simultaneously serves as the solvent, metal source, and redox agent, driving the controlled in situ assembly of FeOOH-Co2(OH)3Cl hybrids on Ni(OH)2/NiOOH-coated nickel foam (NF). This hierarchical architecture induces synergistic enhancement through geometric structural effects combined with multi-component electronic interactions. Consequently, the FeOOH-Co2(OH)3Cl/NF catalyst achieves a remarkably low overpotential of 197 mV at 100 mA cm−2 and a Tafel slope of 65.9 mV dec−1, along with 98% current retention over 24 h chronopotentiometry. This study pioneers a DES-mediated strategy for designing robust composite catalysts, establishing a scalable blueprint for high-performance and low-cost OER systems. Full article
Show Figures

Graphical abstract

23 pages, 6315 KiB  
Article
A Kansei-Oriented Morphological Design Method for Industrial Cleaning Robots Integrating Extenics-Based Semantic Quantification and Eye-Tracking Analysis
by Qingchen Li, Yiqian Zhao, Yajun Li and Tianyu Wu
Appl. Sci. 2025, 15(15), 8459; https://doi.org/10.3390/app15158459 - 30 Jul 2025
Viewed by 101
Abstract
In the context of Industry 4.0, user demands for industrial robots have shifted toward diversification and experience-orientation. Effectively integrating users’ affective imagery requirements into industrial-robot form design remains a critical challenge. Traditional methods rely heavily on designers’ subjective judgments and lack objective data [...] Read more.
In the context of Industry 4.0, user demands for industrial robots have shifted toward diversification and experience-orientation. Effectively integrating users’ affective imagery requirements into industrial-robot form design remains a critical challenge. Traditional methods rely heavily on designers’ subjective judgments and lack objective data on user cognition. To address these limitations, this study develops a comprehensive methodology grounded in Kansei engineering that combines Extenics-based semantic analysis, eye-tracking experiments, and user imagery evaluation. First, we used web crawlers to harvest user-generated descriptors for industrial floor-cleaning robots and applied Extenics theory to quantify and filter key perceptual imagery features. Second, eye-tracking experiments captured users’ visual-attention patterns during robot observation, allowing us to identify pivotal design elements and assemble a sample repository. Finally, the semantic differential method collected users’ evaluations of these design elements, and correlation analysis mapped emotional needs onto stylistic features. Our findings reveal strong positive correlations between four core imagery preferences—“dignified,” “technological,” “agile,” and “minimalist”—and their corresponding styling elements. By integrating qualitative semantic data with quantitative eye-tracking metrics, this research provides a scientific foundation and novel insights for emotion-driven design in industrial floor-cleaning robots. Full article
(This article belongs to the Special Issue Intelligent Robotics in the Era of Industry 5.0)
Show Figures

Figure 1

15 pages, 288 KiB  
Systematic Review
Interventions to Improve Vaccination Uptake Among Adults: A Systematic Review and Meta-Analysis
by Anelisa Jaca, Lindi Mathebula, Thobile Malinga, Kimona Rampersadh, Masibulele Zulu, Ameer Steven-Jorg Hohlfeld, Charles Shey Wiysonge, Julie C. Jacobson Vann and Duduzile Ndwandwe
Vaccines 2025, 13(8), 811; https://doi.org/10.3390/vaccines13080811 (registering DOI) - 30 Jul 2025
Viewed by 103
Abstract
Background: Immunization is a highly effective intervention for controlling over 20 life-threatening infectious diseases, significantly reducing both morbidity and mortality rates. One notable achievement in vaccination efforts was the global eradication of smallpox, which the World Health Assembly declared on 8 May 1980. [...] Read more.
Background: Immunization is a highly effective intervention for controlling over 20 life-threatening infectious diseases, significantly reducing both morbidity and mortality rates. One notable achievement in vaccination efforts was the global eradication of smallpox, which the World Health Assembly declared on 8 May 1980. Additionally, there has been a remarkable 99.9% reduction in wild poliovirus cases since 1988, decreasing from more than 350,000 cases that year to just 30 cases in 2022. Objectives: The objective of this review was to assess the effects of various interventions designed to increase vaccination uptake among adults. Search Methods: A thorough search was conducted in the CENTRAL, Embase Ovid, Medline Ovid, PubMed, Web of Science, and Global Index Medicus databases for primary studies. This search was conducted in August 2021 and updated in November 2024. Selection Criteria: Randomized trials were eligible for inclusion in this review, regardless of publication status or language. Data Analysis: Two authors independently screened the search outputs to select potentially eligible studies. Risk ratios (RR) with 95% confidence intervals (CI) were calculated for each randomized controlled trial (RCT). A meta-analysis was conducted using a random-effects model, and the quality of the evidence was assessed using the GRADE approach. Main Results: A total of 35 randomized controlled trials met the inclusion criteria and were included in this review, with the majority conducted in the United States. The interventions targeted adults aged 18 and older who were eligible for vaccination, involving a total of 403,709 participants. The overall pooled results for interventions aimed at increasing influenza vaccination showed a risk ratio of 1.41 (95% CI: 1.15, 1.73). Most studies focused on influenza vaccination (18 studies), while the remaining studies examined various other vaccines, including those for hepatitis A, COVID-19, hepatitis B, pneumococcal disease, tetanus, diphtheria, pertussis (Tdap), herpes zoster, and human papillomavirus (HPV). The results indicate that letter reminders were slightly effective in increasing influenza vaccination uptake compared to the control group (RR: 1.75, 95% CI: 0.97, 1.16; 6 studies; 161,495 participants; low-certainty evidence). Additionally, participants who received education interventions showed increased levels of influenza vaccination uptake compared to those in the control group (RR: 1.88, 95% CI: 0.61, 5.76; 3 studies; 1318 participants; low-certainty evidence). Furthermore, tracking and outreach interventions also led to an increase in influenza vaccination uptake (RR: 1.87, 95% CI: 0.78, 4.46; 2 studies; 33,752 participants; low-certainty evidence). Conclusions: Letter reminders and educational interventions targeted at recipients are effective in increasing vaccination uptake compared to control groups. Full article
23 pages, 3577 KiB  
Article
Prediction and Interpretability Study of the Glass Transition Temperature of Polyimide Based on Machine Learning and Molecular Dynamics Simulations
by Wenjia Huo, Boyang Liang, Xiang Wu, Zhenchang Zhang, Weichao Zhou, Haihong Wang, Xupeng Ran, Yaoyao Bai and Rongrong Zheng
Polymers 2025, 17(15), 2083; https://doi.org/10.3390/polym17152083 - 30 Jul 2025
Viewed by 192
Abstract
The utilization of machine learning (ML) has brought more opportunities for the discovery of high-performance materials with specific properties to replace traditional engineering materials. The glass transition temperature (Tg) is a crucial characteristic of polyimide (PI). But small datasets can only [...] Read more.
The utilization of machine learning (ML) has brought more opportunities for the discovery of high-performance materials with specific properties to replace traditional engineering materials. The glass transition temperature (Tg) is a crucial characteristic of polyimide (PI). But small datasets can only partially reveal structural information and decrease the ability of the models to learn from the observed data. In this investigation, a dataset comprising 1261 PIs was assembled. A quantitative structure–property relationship targeting Tg was constructed using nine regression algorithms, with the Categorical Boosting demonstrating the highest accuracy, achieving a coefficient of determination of 0.895 for the test set. SHapley Additive exPlanations analysis identified the NumRotatableBonds descriptor had a significantly negative impact on Tg. Finally, all-atom molecular dynamics (MD) simulations calculated eight PI structures to verify the accuracy of the prediction model. The ML prediction was consistent with the MD simulation, with the lowest prediction deviation of approximately 6.75%, but the time and resource consumption were tremendously reduced. These findings emphasize the significance of utilizing extensive datasets for model training. This available and interpretable ML framework provides impressive acceleration over the MD simulation and serves as a reference for the structural design of PI with the desired Tg in the future. Full article
(This article belongs to the Section Artificial Intelligence in Polymer Science)
Show Figures

Figure 1

53 pages, 5030 KiB  
Review
Molecular Engineering of Recombinant Protein Hydrogels: Programmable Design and Biomedical Applications
by He Zhang, Jiangning Wang, Jiaona Wei, Xueqi Fu, Junfeng Ma and Jing Chen
Gels 2025, 11(8), 579; https://doi.org/10.3390/gels11080579 - 26 Jul 2025
Viewed by 581
Abstract
Recombinant protein hydrogels have emerged as transformative biomaterials that overcome the bioinertness and unpredictable degradation of traditional synthetic systems by leveraging genetically engineered backbones, such as elastin-like polypeptides, SF, and resilin-like polypeptides, to replicate extracellular matrix (ECM) dynamics and enable programmable functionality. Constructed [...] Read more.
Recombinant protein hydrogels have emerged as transformative biomaterials that overcome the bioinertness and unpredictable degradation of traditional synthetic systems by leveraging genetically engineered backbones, such as elastin-like polypeptides, SF, and resilin-like polypeptides, to replicate extracellular matrix (ECM) dynamics and enable programmable functionality. Constructed through a hierarchical crosslinking strategy, these hydrogels integrate reversible physical interactions with covalent crosslinking approaches, collectively endowing the system with mechanical strength, environmental responsiveness, and controlled degradation behavior. Critically, molecular engineering strategies serve as the cornerstone for functional precision: domain-directed self-assembly exploits coiled-coil or β-sheet motifs to orchestrate hierarchical organization, while modular fusion of bioactive motifs through genetic encoding or site-specific conjugation enables dynamic control over cellular interactions and therapeutic release. Such engineered designs underpin advanced applications, including immunomodulatory scaffolds for diabetic wound regeneration, tumor-microenvironment-responsive drug depots, and shear-thinning bioinks for vascularized bioprinting, by synergizing material properties with biological cues. By uniting synthetic biology with materials science, recombinant hydrogels deliver unprecedented flexibility in tuning physical and biological properties. This review synthesizes emerging crosslinking paradigms and molecular strategies, offering a framework for engineering next-generation, adaptive biomaterials poised to address complex challenges in regenerative medicine and beyond. Full article
(This article belongs to the Special Issue Recent Advances in Protein Gels)
Show Figures

Figure 1

31 pages, 3024 KiB  
Review
Synthetic and Functional Engineering of Bacteriophages: Approaches for Tailored Bactericidal, Diagnostic, and Delivery Platforms
by Ola Alessa, Yoshifumi Aiba, Mahmoud Arbaah, Yuya Hidaka, Shinya Watanabe, Kazuhiko Miyanaga, Dhammika Leshan Wannigama and Longzhu Cui
Molecules 2025, 30(15), 3132; https://doi.org/10.3390/molecules30153132 - 25 Jul 2025
Viewed by 297
Abstract
Bacteriophages (phages), the most abundant biological entities on Earth, have long served as both model systems and therapeutic tools. Recent advances in synthetic biology and genetic engineering have revolutionized the capacity to tailor phages with enhanced functionality beyond their natural capabilities. This review [...] Read more.
Bacteriophages (phages), the most abundant biological entities on Earth, have long served as both model systems and therapeutic tools. Recent advances in synthetic biology and genetic engineering have revolutionized the capacity to tailor phages with enhanced functionality beyond their natural capabilities. This review outlines the current landscape of synthetic and functional engineering of phages, encompassing both in-vivo and in-vitro strategies. We describe in-vivo approaches such as phage recombineering systems, CRISPR-Cas-assisted editing, and bacterial retron-based methods, as well as synthetic assembly platforms including yeast-based artificial chromosomes, Gibson, Golden Gate, and iPac assemblies. In addition, we explore in-vitro rebooting using TXTL (transcription–translation) systems, which offer a flexible alternative to cell-based rebooting but are less effective for large genomes or structurally complex phages. Special focus is given to the design of customized phages for targeted applications, including host range expansion via receptor-binding protein modifications, delivery of antimicrobial proteins or CRISPR payloads, and the construction of biocontained, non-replicative capsid systems for safe clinical use. Through illustrative examples, we highlight how these technologies enable the transformation of phages into programmable bactericidal agents, precision diagnostic tools, and drug delivery vehicles. Together, these advances establish a powerful foundation for next-generation antimicrobial platforms and synthetic microbiology. Full article
Show Figures

Figure 1

22 pages, 6823 KiB  
Article
Design Optimization of Valve Assemblies in Downhole Rod Pumps to Enhance Operational Reliability in Oil Production
by Seitzhan Zaurbekov, Kadyrzhan Zaurbekov, Doszhan Balgayev, Galina Boiko, Ertis Aksholakov, Roman V. Klyuev and Nikita V. Martyushev
Energies 2025, 18(15), 3976; https://doi.org/10.3390/en18153976 - 25 Jul 2025
Viewed by 252
Abstract
This study focuses on the optimization of valve assemblies in downhole rod pumping units (DRPUs), which remain the predominant artificial lift technology in oil production worldwide. The research addresses the critical issue of premature failures in DRPUs caused by leakage in valve pairs, [...] Read more.
This study focuses on the optimization of valve assemblies in downhole rod pumping units (DRPUs), which remain the predominant artificial lift technology in oil production worldwide. The research addresses the critical issue of premature failures in DRPUs caused by leakage in valve pairs, i.e., a problem that accounts for approximately 15% of all failures, as identified in a statistical analysis of the 2022 operational data from the Uzen oilfield in Kazakhstan. The leakage is primarily attributed to the accumulation of mechanical impurities and paraffin deposits between the valve ball and seat, leading to concentrated surface wear and compromised sealing. To mitigate this issue, a novel valve assembly design was developed featuring a flow turbulizer positioned beneath the valve seat. The turbulizer generates controlled vortex motion in the fluid flow, which increases the rotational frequency of the valve ball during operation. This motion promotes more uniform wear across the contact surfaces and reduces the risk of localized degradation. The turbulizers were manufactured using additive FDM technology, and several design variants were tested in a full-scale laboratory setup simulating downhole conditions. Experimental results revealed that the most effective configuration was a spiral plate turbulizer with a 7.5 mm width, installed without axis deviation from the vertical, which achieved the highest ball rotation frequency and enhanced lapping effect between the ball and the seat. Subsequent field trials using valves with duralumin-based turbulizers demonstrated increased operational lifespans compared to standard valves, confirming the viability of the proposed solution. However, cases of abrasive wear were observed under conditions of high mechanical impurity concentration, indicating the need for more durable materials. To address this, the study recommends transitioning to 316 L stainless steel for turbulizer fabrication due to its superior tensile strength, corrosion resistance, and wear resistance. Implementing this design improvement can significantly reduce maintenance intervals, improve pump reliability, and lower operating costs in mature oilfields with high water cut and solid content. The findings of this research contribute to the broader efforts in petroleum engineering to enhance the longevity and performance of artificial lift systems through targeted mechanical design improvements and material innovation. Full article
(This article belongs to the Special Issue Petroleum and Natural Gas Engineering)
Show Figures

Figure 1

23 pages, 6498 KiB  
Article
Design and Testing of Miniaturized Electrically Driven Plug Seedling Transplanter
by Meng Chen, Yang Xu, Changjie Han, Desheng Li, Binning Yang, Shilong Qiu, Yan Luo, Hanping Mao and Xu Ma
Agriculture 2025, 15(15), 1589; https://doi.org/10.3390/agriculture15151589 - 24 Jul 2025
Viewed by 300
Abstract
To address the issues of bulky structure and complex transmission systems in current transplanters, a compact, electric-driven automatic transplanter was designed. Using pepper plug seedlings as the test subject, this study investigated plug tray dimensions and planting patterns. According to the design requirement [...] Read more.
To address the issues of bulky structure and complex transmission systems in current transplanters, a compact, electric-driven automatic transplanter was designed. Using pepper plug seedlings as the test subject, this study investigated plug tray dimensions and planting patterns. According to the design requirement that the width of the single-row transplanter must be less than 62.5 cm, a three-dimensional transplanter model was constructed. The transplanter comprises a coaxially installed dual-layer seedling conveying device and a sector-expanding automatic seedling picking and depositing device. The structural dimensions, drive configurations, and driving forces of the transplanter were also determined. Finally, the circuit and pneumatic system were designed, and the transplanter was assembled. Both bench and field tests were conducted to select the optimal working parameters. The test results demonstrated that the seedling picking and depositing mechanism met the required operational efficiency. In static seedling picking and depositing tests, at three transplanting speeds of 120 plants/min, 160 plants/min, and 200 plants/min, the success rates of seedling picking and depositing were 100%, 100%, and 97.5%, respectively. In the field test, at three transplanting speeds of 80 plants/min, 100 plants/min, and 120 plants/min, the transplanting success rates were 94.17%, 90.83%, and 88.33%, respectively. These results illustrate that the compact, electric-driven seedling conveying and picking and depositing devices meet the operational demands of automatic transplanting, providing a reference for the miniaturization and electrification of transplanters. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

Back to TopTop