Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (518)

Search Parameters:
Keywords = deposited layer number

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8370 KiB  
Article
High-Fructose High-Fat Diet Renders the Retina More Susceptible to Blue Light Photodamage in Mice
by Meng-Wei Kao, Wan-Ju Yeh, Hsin-Yi Yang and Chi-Hao Wu
Antioxidants 2025, 14(8), 898; https://doi.org/10.3390/antiox14080898 - 22 Jul 2025
Viewed by 112
Abstract
Retinal degeneration is associated with dietary factors and environmental light exposure. This study investigated the effects of a high-fructose high-fat (HFHF) diet on susceptibility to blue light (BL)-induced retinal damage. Male ICR mice were randomized into three groups: control, BL alone, and BL [...] Read more.
Retinal degeneration is associated with dietary factors and environmental light exposure. This study investigated the effects of a high-fructose high-fat (HFHF) diet on susceptibility to blue light (BL)-induced retinal damage. Male ICR mice were randomized into three groups: control, BL alone, and BL plus HFHF diet (BL + HFHF). The BL + HFHF group consumed the HFHF diet for 40 weeks, followed by 8 weeks of low-intensity BL exposure (465 nm, 37.7 lux, 0.8 μW/cm2) for 6 h daily. The BL group underwent the same BL exposure while kept on a standard diet. Histopathological analysis showed that, under BL exposure, the HFHF diet significantly reduced the number of photoreceptor nuclei and the thickness of the outer nuclear layer and inner/outer segments compared to the BL group (p < 0.05). While BL exposure alone caused oxidative DNA damage, rhodopsin loss, and Müller cell activation, the combination with an HFHF diet significantly amplified the oxidative DNA damage and Müller cell activation. Moreover, the HFHF diet increased blood–retinal barrier permeability and triggered apoptosis under BL exposure. Mechanistically, the BL + HFHF group exhibited increased retinal advanced glycated end product (AGE) deposition, accompanied by the activation of the receptor for AGE (RAGE), NFκB, and the NLRP3 inflammasome-dependent IL-1β pathway. In conclusion, this study underscores that unhealthy dietary factors, particularly those high in fructose and fat, may intensify the hazard of BL and adversely impact visual health. Full article
(This article belongs to the Special Issue Oxidative Stress in Eye Diseases)
Show Figures

Graphical abstract

9 pages, 902 KiB  
Article
Flat Top Non-Polarizing Optical Bandpass Filtering in Form of Planar Optical Waveguide
by Jianhua Liu and Ping Jiang
Photonics 2025, 12(7), 724; https://doi.org/10.3390/photonics12070724 - 17 Jul 2025
Viewed by 160
Abstract
To obtain a flat top shaped passband in a conventional thin-film-based optical bandpass filter (OBF), it needs a large number of constitutional layers of thin films, which makes the film deposition systems more complicated and accumulates errors in film growth. A flat top [...] Read more.
To obtain a flat top shaped passband in a conventional thin-film-based optical bandpass filter (OBF), it needs a large number of constitutional layers of thin films, which makes the film deposition systems more complicated and accumulates errors in film growth. A flat top and polarization-independent optical bandpass filter structure is proposed based on experimentally verified polarization independency in the form of a prism-pair coupled planar optical waveguide (POW). The POW is composed of two waveguide stacks, which consists of nine planar thin-film layers. Theoretical simulations show that the flat band top spans about 5 nm with transmittance over 97.8%. The passband is designed to be centered at 632.8 nm, the He-Ne laser wavelength, and the FWHM (full width at half maximum) bandwidth is about 35 nm. Within 0.5° tuning for the incident angle of the light, the passband could be shifted within 50 nm, while its transmittance fluctuates only less than 1% and the passband shape distorts only slightly. This type of OBF is potentially applicable in various fields of optical and laser spectroscopies. Full article
Show Figures

Figure 1

18 pages, 2473 KiB  
Article
Experimental Investigations on Microstructure and Mechanical Properties of L-Shaped Structure Fabricated by WAAM Process of NiTi SMA
by Vatsal Vaghasia, Rakesh Chaudhari, Sakshum Khanna, Jash Modi and Jay Vora
J. Manuf. Mater. Process. 2025, 9(7), 239; https://doi.org/10.3390/jmmp9070239 - 11 Jul 2025
Viewed by 359
Abstract
In the present study, an L-shaped multi-walled structure of NiTi shape memory alloy (SMA) was fabricated by using the wire arc additive manufacturing (WAAM) method on a titanium substrate. The present study aims to investigate the fabricated structure for microstructure, macrostructure, and mechanical [...] Read more.
In the present study, an L-shaped multi-walled structure of NiTi shape memory alloy (SMA) was fabricated by using the wire arc additive manufacturing (WAAM) method on a titanium substrate. The present study aims to investigate the fabricated structure for microstructure, macrostructure, and mechanical properties. The 40 layers of L-shaped structure were successfully fabricated at optimized parameters of wire feed speed at 6 m/min, travel speed at 12 mm/s, and voltage at 20 V. The macrographs demonstrated the continuous bonding among the layers with complete fusion. The microstructure in the area between the two middle layers has exhibited a mixture of columnar grains (both coarse and fine), interspersed with dendritic colonies. The microstructure in the topmost layers has exhibited finer colonial structures in relatively greater numbers. The microhardness (MH) test has shown the average values of 283.2 ± 3.67 HV and 371.1 ± 5.81 HV at the bottom and topmost layers, respectively. A tensile test was conducted for specimens extracted from deposition and build directions, which showed consistent mechanical behavior. For the deposition direction, the average ultimate tensile strength (UTS) and elongation (EL) were obtained as 831 ± 22.91 MPa and 14.32 ± 0.55%, respectively, while the build direction has shown average UTS and EL values of 774 ± 6.56 MPa and 14.16 ± 0.21%, respectively. The elongation exceeding 10% in all samples suggests that the fabricated structure demonstrates properties comparable to those of wrought metal. Fractography of all tensile specimens has shown good ductility and toughness. Lastly, a differential scanning calorimetry test was carried out to assess the retention of shape memory effect for the fabricated structure. The authors believe that the findings of this work will be valuable for various industrial applications. Full article
Show Figures

Figure 1

34 pages, 4957 KiB  
Article
Influence of Cooling Lubricants and Structural Parameters on the Tensile Properties of FFF 3D-Printed PLA and PLA/Carbon Fiber Composites
by Aljaž Rogelj, David Liović, Elvis Hozdić, Marina Franulović and Budimir Mijović
Polymers 2025, 17(13), 1797; https://doi.org/10.3390/polym17131797 - 27 Jun 2025
Viewed by 294
Abstract
This study addresses the lack of comprehensive understanding regarding how both structural printing parameters and environmental factors influence the mechanical properties of additively manufactured polymer and composite materials. The main problem stems from insufficient data on the combined effects of infill density, number [...] Read more.
This study addresses the lack of comprehensive understanding regarding how both structural printing parameters and environmental factors influence the mechanical properties of additively manufactured polymer and composite materials. The main problem stems from insufficient data on the combined effects of infill density, number of perimeters, layer height, and exposure to cooling lubricants on the tensile performance of 3D-printed products, which is crucial for their reliable application in demanding environments. In this research, the influence of four critical parameters—infill density, number of perimeters, layer height, and exposure to cooling lubricants—on the tensile properties of specimens produced by fused filament fabrication (FFF), also known as fused deposition modeling (FDM), from polylactic acid (PLA) and polylactic acid reinforced with carbon fibers (PLA+CF) was investigated. Tensile tests were performed in accordance with ISO 527-2 on specimens printed with honeycomb infill structures under controlled process conditions. The results show that increasing infill density from 40% to 100% led to an approximately 60% increase in tensile strength for both PLA (from 30.75 MPa to 49.11 MPa) and PLA reinforced with carbon fibers (PLA+CF; from 17.75 MPa to 28.72 MPa). Similarly, increasing the number of perimeters from 1 to 3 resulted in a 51% improvement in tensile strength for PLA and 50% for PLA+CF. Reducing layer height from 0.40 mm to 0.20 mm improved tensile strength by 5.4% for PLA and 3.1% for PLA+CF, with more pronounced gains in stiffness observed in the composite material. Exposure to cooling lubricants led to mechanical degradation: after 30 days, PLA exhibited a 15.2% decrease in tensile strength and a 3.4% reduction in Young’s modulus, while PLA+CF showed an 18.6% decrease in strength and a 19.5% drop in modulus. These findings underscore the significant impact of both structural printing parameters and environmental exposure on tailoring the mechanical properties of FFF-printed materials, particularly when comparing unfilled PLA with carbon fiber-reinforced PLA. Full article
(This article belongs to the Special Issue Polymer Composites: Structure, Properties and Processing, 2nd Edition)
Show Figures

Figure 1

25 pages, 3478 KiB  
Article
Silicon Oxycarbide Thin Films Produced by Hydrogen-Induced CVD Process from Cyclic Dioxa-Tetrasilacyclohexane
by Agnieszka Walkiewicz-Pietrzykowska, Krzysztof Jankowski, Jan Kurjata, Rafał Dolot, Romuald Brzozowski, Joanna Zakrzewska and Paweł Uznanski
Materials 2025, 18(12), 2911; https://doi.org/10.3390/ma18122911 - 19 Jun 2025
Viewed by 474
Abstract
Silicon oxycarbide coatings are the subject of research due to their exceptional optical, electronic, anti-corrosion, etc., properties, which make them attractive for a number of applications. In this article, we present a study on the synthesis and characterization of thin SiOC:H silicon oxycarbide [...] Read more.
Silicon oxycarbide coatings are the subject of research due to their exceptional optical, electronic, anti-corrosion, etc., properties, which make them attractive for a number of applications. In this article, we present a study on the synthesis and characterization of thin SiOC:H silicon oxycarbide films with the given composition and properties from a new organosilicon precursor octamethyl-1,4-dioxatetrasilacyclohexane (2D2) and its macromolecular equivalent—poly(oxybisdimethylsily1ene) (POBDMS). Layers from 2D2 precursor with different SiOC:H structure, from polymeric to ceramic-like, were produced in the remote microwave hydrogen plasma by CVD method (RHP-CVD) on a heated substrate in the temperature range of 30–400 °C. SiOC:H polymer layers from POEDMS were deposited from solution by spin coating and then crosslinked in RHP via the breaking of the Si-Si silyl bonds initiated by hydrogen radicals. The properties of SiOC:H layers obtained by both methods were compared. The density of the cross-linked materials was determined by the gravimetric method, elemental composition by means of XPS, chemical structure by FTIR spectroscopy, and NMR spectroscopy (13C, 29Si). Photoluminescence analyses and ellipsometric measurements were also performed. Surface morphology was characterized by AFM. Based on the obtained results, a mechanism of initiation, growth, and cross-linking of the CVD layers under the influence of hydrogen radicals was proposed. Full article
(This article belongs to the Special Issue Advances in Plasma Treatment of Materials)
Show Figures

Figure 1

20 pages, 14795 KiB  
Article
Inkjet-Printed Conductive Patterns on Electrospun Substrates for the Modular Fabrication of Nonplanar Circuits
by Fabricio N. Molinari, Emanuel Bilbao and Leandro N. Monsalve
Appl. Nano 2025, 6(2), 10; https://doi.org/10.3390/applnano6020010 - 18 Jun 2025
Viewed by 394
Abstract
Placing printed conductive patterns onto nonplanar substrates is a challenging task. In this work, we tested a simple method for depositing inkjet-printed conductive patterns onto 3D-printed pieces with cavities and sharp edges. First, a silver nanoparticle ink was used to print conductive patterns [...] Read more.
Placing printed conductive patterns onto nonplanar substrates is a challenging task. In this work, we tested a simple method for depositing inkjet-printed conductive patterns onto 3D-printed pieces with cavities and sharp edges. First, a silver nanoparticle ink was used to print conductive patterns onto a flexible and porous substrate made of electrospun polycaprolactone (PCL). Then, the printed patterns were transferred to 3D-printed pieces made of polylactic acid (PLA) by temperature-promoted adhesion. Finally, the printed patterns were cured to render them conductive. The influence of the number of printed layers on their electrical and mechanical properties was evaluated. The printed patterns were also transferred to flexible substrates, such as thermoplastic polyurethane (TPU) and polyethylene terephthalate (PET) sheets, achieving conductivity after curing. Moreover, the printed patterns were effective for modular interconnection among successive transferred patterns, since it was possible to achieve electrical contact between them during the transfer process. Full article
Show Figures

Figure 1

13 pages, 2119 KiB  
Article
Gas-Assisted Spray Fabrication of Reticulated TiO2 Scaffolds for Perovskite Solar Applications
by Sana Handor, Andrei Gabriel Tomulescu, Viorica Stancu, Abdelati Razouk, Aurelian Catalin Galca and Lucia Nicoleta Leonat
Micromachines 2025, 16(6), 685; https://doi.org/10.3390/mi16060685 - 5 Jun 2025
Viewed by 605
Abstract
This study presents a systematic approach to engineering the electron transport layer (ETL) in perovskite solar cells using a spray deposition technique to fabricate sequentially compact and mesoporous titanium dioxide (c-TiO2, m-TiO2) films. The spray coating method leads to [...] Read more.
This study presents a systematic approach to engineering the electron transport layer (ETL) in perovskite solar cells using a spray deposition technique to fabricate sequentially compact and mesoporous titanium dioxide (c-TiO2, m-TiO2) films. The spray coating method leads to the development of a distinct reticulated morphology characterized by well-defined wavy-like surface features and significantly increased roughness—at least twice that of spin-coated mesoporous films. The increased interfacial area between the mesoporous TiO2 and the perovskite layer facilitates more efficient charge transfer, contributing to higher device performance. By optimizing the deposition parameters, particularly the number of spray cycles for the m-TiO2 layer, we achieve a significant enhancement in device performance, with improvements in power conversion efficiency (PCE), reduced series resistance, and minimized hysteresis. Our results demonstrate that an optimal film thickness promotes better perovskite anchoring, while excessive deposition impedes light transmission and increases sheet resistance. These findings advance the practical fabrication of high-performance perovskite solar cells using simple solution-processing techniques and highlights the potential of scalable spray deposition methods for industrial-scale fabrication. Full article
(This article belongs to the Special Issue Prospective Outlook on Perovskite Materials and Devices)
Show Figures

Graphical abstract

22 pages, 9031 KiB  
Article
Effect of Prepreg Composition on the Structure and Shear Strength of PEI/CF Laminates Fabricated by Ultrasonic Additive Manufacturing
by Defang Tian, Vladislav O. Alexenko, Dmitry Yu. Stepanov, Dmitry G. Buslovich, Alexey A. Zelenkov and Sergey V. Panin
Polymers 2025, 17(11), 1468; https://doi.org/10.3390/polym17111468 - 25 May 2025
Viewed by 609
Abstract
In this study, laminates based on polyetherimide (PEI) with contents of carbon fibers (CFs) from 55 to 70 wt.% were fabricated by thermoforming (TF) and ultrasonic additive manufacturing (UAM) methods. The UAM laminates with CF contents above 55 wt.% possessed shear strengths lower [...] Read more.
In this study, laminates based on polyetherimide (PEI) with contents of carbon fibers (CFs) from 55 to 70 wt.% were fabricated by thermoforming (TF) and ultrasonic additive manufacturing (UAM) methods. The UAM laminates with CF contents above 55 wt.% possessed shear strengths lower by 40% in comparison with those of the TF ones, due to insufficient amounts of the binder in the prepregs to form reliable interlaminar joints. For enhancing the shear strength of the laminates with a CF content of 70 wt.%. up to the levels of the TF ones, extra resin layers with thicknesses of 50, 100, and 150 μm were deposited. By ranking the UAM parameters using the Taguchi method, it was possible to increase the shear strengths by 30% as compared to those of the trial laminates. Further improvements were achieved by artificial neural network (ANN) modeling. As a result, the use of the 50 µm thick extra resin layer made it possible to increase the shear strengths up to 50% relative to those of the trial laminates at a CF content of 70 wt.%. This improvement was achieved via minimizing the number of defects at the interlaminar interfaces. The dependences of both mechanical and structural characteristics of the laminates on the UAM parameters were essentially nonlinear. For their analysis and optimization of the UAM parameters, the direct propagation neural networks with the minimal architecture were utilized. Under the ultra-small sample conditions, the use of a priori knowledge enabled us to predict the results rather accurately. Full article
(This article belongs to the Special Issue Advances in Fracture and Failure of Polymers)
Show Figures

Figure 1

23 pages, 9879 KiB  
Article
Carbon-Halloysite Nanocomposites and Their Adsorption Characteristics for Pharmaceuticals—A Naproxen Case Study
by Piotr Słomkiewicz, Beata Szczepanik, Piotr Sakiewicz, Klaudiusz Gołombek and Krzysztof Piotrowski
Materials 2025, 18(11), 2433; https://doi.org/10.3390/ma18112433 - 22 May 2025
Viewed by 640
Abstract
The synthesis of carbon-halloysite nanocomposites was carried out using aqueous sucrose solutions as a carbon precursor. Raw and calcined halloysite with different grain size classes were used as a carbon support. The influence of halloysite grain size and the calcination process on the [...] Read more.
The synthesis of carbon-halloysite nanocomposites was carried out using aqueous sucrose solutions as a carbon precursor. Raw and calcined halloysite with different grain size classes were used as a carbon support. The influence of halloysite grain size and the calcination process on the carbon concentration in the composites and their adsorption characteristics towards the separation of naproxen from aqueous solutions was identified experimentally. The kinetic conditions of the process (pseudo-second-order kinetic model) indicate a favorable increase in the number of active sites formed after the deposition of the carbon layer on the surface of halloysite particles. Validation of the Langmuir multi-center isotherm adsorption model indicates a separation mechanism associated with the occurrence of multiple active centers on the nanocomposite adsorbent surface and the effect of separation without dissociation of naproxen particles. The obtained carbon-halloysite nanocomposite, due to the relatively cheap and simple, environmentally friendly production methodology and the required inexpensive raw materials, can be widely used in effective and common, economical treatment of wastewater streams from naproxen. The observed naproxen separation process effects are significant. Full article
Show Figures

Figure 1

19 pages, 2133 KiB  
Article
Electrodeposited Co Crystalline Islands Shelled with Facile Spontaneously Deposited Pt for Improved Oxygen Reduction
by Jelena Golubović, Lazar Rakočević, Vladimir Rajić, Miloš Milović and Svetlana Štrbac
Catalysts 2025, 15(5), 490; https://doi.org/10.3390/catal15050490 - 18 May 2025
Viewed by 544
Abstract
The cobalt crystalline islands (Cocryst) were electrochemically deposited onto a glassy carbon (GC) support and then modified by a facile spontaneous deposition of platinum. The electrocatalytic activity of the resulting Cocryst-Pt core-shell catalyst was evaluated for the oxygen reduction [...] Read more.
The cobalt crystalline islands (Cocryst) were electrochemically deposited onto a glassy carbon (GC) support and then modified by a facile spontaneous deposition of platinum. The electrocatalytic activity of the resulting Cocryst-Pt core-shell catalyst was evaluated for the oxygen reduction reaction (ORR) in an alkaline medium. The XRD characterization of the Cocryst-Pt islands revealed that the cobalt core had a hexagonal close-packed (hcp) crystalline structure, and that the platinum shell exhibited a crystalline structure with a preferential (111) orientation. SEM images showed that the average lateral size of the Cocryst islands was 1.17 μm, which increased to 1.32 μm after adding platinum. The XPS analysis indicated that the outer layer of the bulk metallic Cocryst islands was fully oxidized. During the spontaneous deposition of platinum, the outer Co(OH)2 layer was dissolved, leaving the cobalt core in a metallic state, while the platinum shell remained only partially oxidized. The high electrochemically active surface area of the Cocryst-Pt/GC electrode, along with a suitable crystalline structure of the Cocryst-Pt islands, contributes to enhancing its ORR activity by providing a greater number of surface active sites for oxygen adsorption and subsequent reduction. The ORR on the Cocryst-Pt catalyst occurs via a four-electron reaction pathway, with onset and half-wave potentials of 1.07 V and 0.87 V, respectively, which exceed those of polycrystalline platinum and a commercial benchmark Pt/C. Full article
(This article belongs to the Special Issue Insight into Electrocatalysts for Oxygen Reduction Reaction)
Show Figures

Figure 1

19 pages, 4494 KiB  
Article
Spacer Loss upon 2D Ruddlesden–Popper Halide Perovskite Annealing Raises Film Properties and Solar Cell Performances
by Tao Zhu, Min Liu, Marie Cresp, Daming Zheng, Karol Vegso, Peter Siffalovic and Thierry Pauporté
Nanomaterials 2025, 15(10), 750; https://doi.org/10.3390/nano15100750 - 16 May 2025
Viewed by 512
Abstract
Using reduced-dimensional halide perovskites is emerging as a promising strategy for enhancing the stability of optoelectronic devices such as solar cells, even if their performances remain a step below those of the 3D halide perovskites. Two-dimensional Ruddlesden–Popper (2D-RP) structures are characterized by the [...] Read more.
Using reduced-dimensional halide perovskites is emerging as a promising strategy for enhancing the stability of optoelectronic devices such as solar cells, even if their performances remain a step below those of the 3D halide perovskites. Two-dimensional Ruddlesden–Popper (2D-RP) structures are characterized by the n parameter that represents the number of PbI6 layers in the spacer-separated perovskite slabs. The present study focuses on formamidinium (FA)-based 2D-RP type perovskites denoted as PMA2FAn−1PbnI3n+1 (PMA = Phenylmethylammonium or benzylammonium). We investigate the effect of n on the one step growth mechanism and the film morphology, microstructure, phase purity, and optoelectronic properties. Our findings demonstrate that the average n is not only determined by the initial spacer content in the precursor solution but also by the thermal annealing process that leads to a partial spacer loss. Depending on n, perovskite solar cells achieving a power conversion efficiency up to 21%, coupled with enhanced film stability compared to 3D perovskites have been prepared. By using MACl additive and an excess of PbI2 in the perovskite precursor solution, we have been able to achieve high efficiency and to stabilize the n = 5 perovskite solar cells. This research represents a significant stride in comprehending the formation of FA-based layered perovskites through one-step sequential deposition, enabling control over their phase distribution, composition, and orientation. Full article
(This article belongs to the Special Issue Advances in Nanomaterials for Optoelectronics: Second Edition)
Show Figures

Graphical abstract

17 pages, 10566 KiB  
Article
Unveiling the Transformative Effects of Forest Restoration on the Soil Chemistry and Biology of Sandy Soils in Southern Nyírség, Hungary
by István Attila Kocsis, Magdolna Tállai, Ágnes Zsuposné Oláh, Zoltán László, Béla Mokos, Ida Kincses, Evelin Kármen Juhász, Daniel A. Lowy and Zsolt Sándor
Agriculture 2025, 15(10), 1030; https://doi.org/10.3390/agriculture15101030 - 9 May 2025
Viewed by 458
Abstract
Protecting humankind’s natural resources and soils, including forestry, represents a top priority in agriculture. Addressing climate change should prioritize preserving and enhancing organic carbon, specifically humus, in soils. In this paper, we examine the impact of soil preparation on soil humus and microbial [...] Read more.
Protecting humankind’s natural resources and soils, including forestry, represents a top priority in agriculture. Addressing climate change should prioritize preserving and enhancing organic carbon, specifically humus, in soils. In this paper, we examine the impact of soil preparation on soil humus and microbial life during the reforestation of Southern Nyírség, Hungary. We determined soil plasticity, pH in distilled water solution, the quantity and quality of humus content, the total number of bacteria and microbial fungi, as well as CO2 production. In addition to stump removal and plowing, the wealthiest layer of organic matter was detached from the surface. A significant decrease in humus content (HU%) was observed at the five experimental sites (loss of 19.20–40.14 HU% at 0–30 cm depth). Soil organic matter is concentrated in the stump depositions. According to the results, the quantity of humus content is strongly correlated with the measured parameters of soil life, specifically with the number of microbial fungi (r = 0.806 **) and the total number of bacteria (r = 0.648 **). Another correlation (r = 0.607 **) was assessed between the humus content and CO2 production. This study helps to understand the importance of the no-tillage methods used in reforestation. Full article
Show Figures

Figure 1

35 pages, 9411 KiB  
Review
A Review of Evaporite Beds Potential for Storage Caverns: Uncovering New Opportunities
by Sheida Sheikheh, Minou Rabiei and Vamegh Rasouli
Appl. Sci. 2025, 15(9), 4685; https://doi.org/10.3390/app15094685 - 23 Apr 2025
Viewed by 660
Abstract
Salt caverns serve as underground storage for crude oil, natural gas, compressed air, carbon dioxide, and hydrogen. Key stages of cavern development for storage purposes include design, construction, storage, and abandonment. The design phase addresses optimal cavern shape, size, pillar dimensions, number of [...] Read more.
Salt caverns serve as underground storage for crude oil, natural gas, compressed air, carbon dioxide, and hydrogen. Key stages of cavern development for storage purposes include design, construction, storage, and abandonment. The design phase addresses optimal cavern shape, size, pillar dimensions, number of caverns, the impact of interbeds, and cyclic loading while considering the creep behavior of salt and the mechanical behavior of surrounding layers. During this phase, geological factors such as depth, thickness, and the quality of salt are considered. For construction, two main methods—direct leaching and reverse leaching—are chosen based on design specifications. The storage stage includes the injection and withdrawal of gases in a cyclic manner with specific injection rates and pressures. After 30 to 50 years, the caverns are plugged and abandoned. The geological limitation of salt domes makes it essential to look for more bedded evaporites. This study provides a comprehensive review of bedded evaporites, including their origin and depositional environment. The stability of caverns in all these stages heavily relies on geomechanical analysis. Factors affecting the geomechanics of bedded salts such as mineralogy, physical properties, and mechanical properties are reviewed. A list of bedded evaporites in the U.S. and Canada, including their depth, thickness, and existing caverns, is provided. Additionally, this study discusses the main geomechanical considerations influencing design, solution mining, cyclic loading, and abandonment of caverns in bedded salt caverns. Full article
Show Figures

Figure 1

17 pages, 5590 KiB  
Article
A Critical Comparison Among High-Resolution Methods for Spatially Resolved Nano-Scale Residual Stress Analysis in Nanostructured Coatings
by Saqib Rashid, Edoardo Rossi, Spyros Diplas, Patricia Almeida Carvalho, Damian Pucicki, Rafal Kuna and Marco Sebastiani
Int. J. Mol. Sci. 2025, 26(7), 3296; https://doi.org/10.3390/ijms26073296 - 2 Apr 2025
Cited by 1 | Viewed by 691
Abstract
Residual stresses in multilayer thin coatings represent a complex multiscale phenomenon arising from the intricate interplay of multiple factors, including the number and thickness of layers, material properties of the layers and substrate, coefficient of thermal expansion (CTE) mismatch, deposition technique and growth [...] Read more.
Residual stresses in multilayer thin coatings represent a complex multiscale phenomenon arising from the intricate interplay of multiple factors, including the number and thickness of layers, material properties of the layers and substrate, coefficient of thermal expansion (CTE) mismatch, deposition technique and growth mechanism, as well as process parameters and environmental conditions. A multiscale approach to residual stress measurement is essential for a comprehensive understanding of stress distribution in such systems. To investigate this, two AlGaN/GaN multilayer coatings with distinct layer architectures were deposited on sapphire substrates using metalorganic vapor phase epitaxy (MOVPE). High-resolution X-ray diffraction (HRXRD) was employed to confirm their epitaxial growth and structural characteristics. Focused ion beam (FIB) cross-sectioning and transmission electron microscopy (TEM) lamella preparation were performed to analyze the coating structure and determine layer thickness. Residual stresses within the multilayer coatings were evaluated using two complementary techniques: High-Resolution Scanning Transmission Electron Microscopy—Graphical Phase Analysis (HRSTEM-GPA) and Focused Ion Beam—Digital Image Correlation (FIB-DIC). HRSTEM-GPA enables atomic-resolution strain mapping, making it particularly suited for investigating interface-related stresses, while FIB-DIC facilitates microscale stress evaluation. The residual strain values obtained using the FIB-DIC and HRSTEM-GPA methods were −3.2 × 10⁻3 and −4.55 × 10⁻3, respectively. This study confirms that residual stress measurements at different spatial resolutions are both reliable and comparable at the required coating depths and locations, provided that a critical assessment of the characteristic scale of each method is performed. Full article
(This article belongs to the Special Issue Nanomaterials in Novel Thin Films and Coatings)
Show Figures

Graphical abstract

18 pages, 3756 KiB  
Article
Advanced Electrochromic Functionality via Layered Cobalt Oxide Deposition on Tungsten Oxide Electrodes
by Pritam J. Morankar, Rutuja U. Amate, Mrunal K. Bhosale, Namita A. Ahir and Chan-Wook Jeon
Coatings 2025, 15(4), 403; https://doi.org/10.3390/coatings15040403 - 28 Mar 2025
Cited by 1 | Viewed by 383
Abstract
The integration of various transition metal oxides into tungsten oxide (WO3) has been widely investigated to enhance its electrochromic (EC) performance. This approach aims to address the inherent limitations of individual metal oxides, such as poor durability, inadequate color neutrality, and [...] Read more.
The integration of various transition metal oxides into tungsten oxide (WO3) has been widely investigated to enhance its electrochromic (EC) performance. This approach aims to address the inherent limitations of individual metal oxides, such as poor durability, inadequate color neutrality, and restricted coloring efficiency and optical properties. The use of mixed metal oxides has emerged as a promising strategy, enabling a synergistic effect that optimizes EC performance and expands the material’s functional capabilities. In this study, we compare single-layer WO3 films with bilayer WO3/cobalt oxide (CoO) (denoted as W@C) composite films, focusing on their structural, morphological, and electrochromic properties. Both films were fabricated using the electrodeposition technique, with a consistent number of deposition cycles. Field emission scanning electron microscopy (FESEM) analysis revealed that the WO3 film presented a tightly packed arrangement of nanogranules. In contrast, the bilayer W@C composite thin film exhibited a highly interconnected and porous granular structure, with morphology evolving into larger spherical aggregates. The optimized bilayer W@C composite demonstrated exceptional electrochromic performance, achieving an optical modulation of 85.0% at 600 nm and a significantly improved coloration efficiency of 96.07 cm2/C. Stability tests confirmed its remarkable durability, showing only a 1.05% decrease in optical contrast after 5000 s of operation. Additionally, a prototype electrochromic device based on the W@C film demonstrated an optical modulation of 52.13% and outstanding long-term stability, with minimal degradation in performance. Full article
(This article belongs to the Special Issue Thermoelectric Thin Films for Thermal Energy Harvesting)
Show Figures

Figure 1

Back to TopTop