Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,274)

Search Parameters:
Keywords = dependent service times

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 400 KiB  
Article
Assessing Functional Independence and Associated Factors in Older Populations of Kazakhstan: Implications for Long-Term Care
by Gulzhainar Yeskazina, Ainur Yeshmanova, Gulnara Temirova, Elmira Myrzakhmet, Maya Alibekova, Aigul Tazhiyeva, Shynar Ryspekova, Akmaral Abdykulova, Ainur Nuftieva, Tamara Abdirova, Zhanar Mombiyeva and Indira Omarova
Healthcare 2025, 13(15), 1878; https://doi.org/10.3390/healthcare13151878 - 31 Jul 2025
Viewed by 210
Abstract
Background/Objectives: Accurately assessing the independence level of older adults using useful assessment tools is an important step toward providing them with the necessary care while preserving their dignity. These tools allow older adults to receive effective, personalized home care, which improves their [...] Read more.
Background/Objectives: Accurately assessing the independence level of older adults using useful assessment tools is an important step toward providing them with the necessary care while preserving their dignity. These tools allow older adults to receive effective, personalized home care, which improves their quality of life. This study aimed to clarify the current prevalence of severe and complete functional dependence and associated factors among Kazakhstan’s older adults aged >60 years. Methods: This cross-sectional study was conducted in several polyclinics and geriatric service care centers in two cities of Kazakhstan from March to May 2024. Functional status was assessed by the Barthel Index. We combined the selection into two categories: total dependency and severe dependency in the category “dependent”, and moderate dependency, slight dependency, and total independence in the category “active patients”. Results: Among the 642 older people in this study, 43.3% were dependent patients, and 56.7% were active patients. The odds of severe and total functional dependence are significantly higher for frail participants (adjusted odds ratio (AOR) = 2.96, 95% confidence interval (CI) [1.70, 5.16], p < 0.001) compared to those that are not frail; eleven times higher for those at home (AOR =11.90, 95% CI [5.77, 24.55], p < 0.001) than those in nursing homes; two times higher for participants with sarcopenia (AOR =2.61, 95% CI [1.49, 4.55], p < 0.001) compared to those with no sarcopenia; and three times higher for participants with high risk of fracture (AOR =3.30, 95% CI [1.94, 5.61], p < 0.001) compared to those with low risk. The odds of having severe and total functional dependence are significantly higher for participants with low dynamometry (AOR =1.05, 95% CI [1.03, 1.07], p < 0.001) compared to those with normal dynamometry. Conclusions: Old age, low dynamometry (for men ≤ 29 kg, for women ≤ 17 kg), frailty, being at home, high risk of fracture and osteoporosis, and sarcopenia were associated with increased risk of severe and total functional dependence. Full article
Show Figures

Figure 1

29 pages, 1917 KiB  
Perspective
A Perspective on Software-in-the-Loop and Hardware-in-the-Loop Within Digital Twin Frameworks for Automotive Lighting Systems
by George Balan, Philipp Neninger, Enrique Ruiz Zúñiga, Elena Serea, Dorin-Dumitru Lucache and Alexandru Sălceanu
Appl. Sci. 2025, 15(15), 8445; https://doi.org/10.3390/app15158445 - 30 Jul 2025
Viewed by 222
Abstract
The increasing complexity of modern automotive lighting systems requires advanced validation strategies that ensure both functional performance and regulatory compliance. This study presents a structured integration of Software-in-the-Loop (SiL) and Hardware-in-the-Loop (HiL) testing within a digital twin (DT) framework for validating headlamp systems. [...] Read more.
The increasing complexity of modern automotive lighting systems requires advanced validation strategies that ensure both functional performance and regulatory compliance. This study presents a structured integration of Software-in-the-Loop (SiL) and Hardware-in-the-Loop (HiL) testing within a digital twin (DT) framework for validating headlamp systems. A gated validation process (G10–G120) is proposed, aligning each development phase with corresponding simulation stages from early requirements and concept validation to real-world scenario testing and continuous integration. A key principle of this approach is the adoption of a framework built upon the V-Cycle, adapted to integrate DT technology with SiL and HiL workflows. This architectural configuration ensures a continuous data flow between the physical system, the digital twin, and embedded software components, enabling real-time feedback, iterative model refinement, and traceable system verification throughout the development lifecycle. The paper also explores strategies for effective DT integration, such as digital twin-as-a-service, which combines virtual testing with physical validation to support earlier fault detection, streamlined simulation workflows, and reduced dependency on physical prototypes during lighting system development. Unlike the existing literature, which often treats SiL, HiL, and DTs in isolation, this work proposes a unified, domain-specific validation framework. The methodology addresses a critical gap by aligning simulation-based testing with development milestones and regulatory standards, offering a foundation for industrial adoption. Full article
Show Figures

Figure 1

16 pages, 1795 KiB  
Article
Hospital Coordination and Protocols Using Serum and Peripheral Blood Cells from Patients and Healthy Donors in a Longitudinal Study of Guillain–Barré Syndrome
by Raquel Díaz, Javier Blanco-García, Javier Rodríguez-Gómez, Eduardo Vargas-Baquero, Carmen Fernández-Alarcón, José Rafael Terán-Tinedo, Lorenzo Romero-Ramírez, Jörg Mey, José de la Fuente, Margarita Villar, Angela Beneitez, María del Carmen Muñoz-Turrillas, María Zurdo-López, Miriam Sagredo del Río, María del Carmen Lorenzo-Lozano, Carlos Marsal-Alonso, Maria Isabel Morales-Casado, Javier Parra-Serrano and Ernesto Doncel-Pérez
Diagnostics 2025, 15(15), 1900; https://doi.org/10.3390/diagnostics15151900 - 29 Jul 2025
Viewed by 207
Abstract
Background/Objectives: Guillain–Barré syndrome (GBS) is a rare autoimmune peripheral neuropathy that affects both the myelin sheaths and axons of the peripheral nervous system. It is the leading cause of acute neuromuscular paralysis worldwide, with an annual incidence of less than two cases per [...] Read more.
Background/Objectives: Guillain–Barré syndrome (GBS) is a rare autoimmune peripheral neuropathy that affects both the myelin sheaths and axons of the peripheral nervous system. It is the leading cause of acute neuromuscular paralysis worldwide, with an annual incidence of less than two cases per 100,000 people. Although most patients recover, a small proportion do not regain mobility and even remain dependent on mechanical ventilation. In this study, we refer to the analysis of samples collected from GBS patients at different defined time points during hospital recovery and performed by a medical or research group. Methods: The conditions for whole blood collection, peripheral blood mononuclear cell isolation, and serum collection from GBS patients and volunteer donors are explained. Aliquots of these human samples have been used for red blood cell phenotyping, transcriptomic and proteomic analyses, and serum biochemical parameter studies. Results: The initial sporadic preservation of human samples from GBS patients and control volunteers enabled the creation of a biobank collection for current and future studies related to the diagnosis and treatment of GBS. Conclusions: In this article, we describe the laboratory procedures and the integration of a GBS biobank collection, local medical services, and academic institutions collaborating in its respective field. The report establishes the intra-disciplinary and inter-institutional network to conduct long-term longitudinal studies on GBS. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

22 pages, 825 KiB  
Article
Conformal Segmentation in Industrial Surface Defect Detection with Statistical Guarantees
by Cheng Shen and Yuewei Liu
Mathematics 2025, 13(15), 2430; https://doi.org/10.3390/math13152430 - 28 Jul 2025
Viewed by 256
Abstract
Detection of surface defects can significantly elongate mechanical service time and mitigate potential risks during safety management. Traditional defect detection methods predominantly rely on manual inspection, which suffers from low efficiency and high costs. Some machine learning algorithms and artificial intelligence models for [...] Read more.
Detection of surface defects can significantly elongate mechanical service time and mitigate potential risks during safety management. Traditional defect detection methods predominantly rely on manual inspection, which suffers from low efficiency and high costs. Some machine learning algorithms and artificial intelligence models for defect detection, such as Convolutional Neural Networks (CNNs), present outstanding performance, but they are often data-dependent and cannot provide guarantees for new test samples. To this end, we construct a detection model by combining Mask R-CNN, selected for its strong baseline performance in pixel-level segmentation, with Conformal Risk Control. The former evaluates the distribution that discriminates defects from all samples based on probability. The detection model is improved by retraining with calibration data that is assumed to be independent and identically distributed (i.i.d) with the test data. The latter constructs a prediction set on which a given guarantee for detection will be obtained. First, we define a loss function for each calibration sample to quantify detection error rates. Subsequently, we derive a statistically rigorous threshold by optimization of error rates and a given guarantee significance as the risk level. With the threshold, defective pixels with high probability in test images are extracted to construct prediction sets. This methodology ensures that the expected error rate on the test set remains strictly bounded by the predefined risk level. Furthermore, our model shows robust and efficient control over the expected test set error rate when calibration-to-test partitioning ratios vary. Full article
Show Figures

Figure 1

23 pages, 1734 KiB  
Article
Design and Implementation of a Cost-Effective Failover Mechanism for Containerized UPF
by Kiem Nguyen Trung and Younghan Kim
Electronics 2025, 14(15), 2991; https://doi.org/10.3390/electronics14152991 - 27 Jul 2025
Viewed by 256
Abstract
Private 5G networks offer exclusive, secure wireless communication with full control deployments for many clients, such as enterprises and campuses. In these networks, edge computing plays a critical role by hosting both application services and the User Plane Functions (UPFs) as containerized workloads [...] Read more.
Private 5G networks offer exclusive, secure wireless communication with full control deployments for many clients, such as enterprises and campuses. In these networks, edge computing plays a critical role by hosting both application services and the User Plane Functions (UPFs) as containerized workloads close to end devices, reducing latency and ensuring stringent Quality of Service (QoS). However, edge environments often face resource constraints and unpredictable failures such as network disruptions or hardware malfunctions, which can severely affect the reliability of the network. In addition, existing redundancy-based UPF resilience strategies, which maintain standby instances, incur substantial overheads and degrade resource efficiency and scalability for the applications. To address this issue, this study introduces a novel design that enables quick detection of UPF failures and two failover mechanisms to restore failed UPF instances either within the cluster hosting the failed UPF or across multiple clusters, depending on that cluster’s resource availability and health. We implemented and evaluated our proposed approach on a Kubernetes-based testbed, and the results demonstrate that our approach reduces UPF redeployment time by up to 37% compared to baseline methods and lowers system cost by up to 50% under high-reliability requirements compared to traditional redundancy-based failover methods. These findings demonstrate that our design can serve as a complementary solution alongside traditional resilience strategies, offering a particularly cost-effective and resource-efficient alternative for edge computing and other constrained environments. Full article
(This article belongs to the Special Issue Advances in Intelligent Systems and Networks, 2nd Edition)
Show Figures

Figure 1

32 pages, 1444 KiB  
Article
Enhancing Airport Resource Efficiency Through Statistical Modeling of Heavy-Tailed Service Durations: A Case Study on Potable Water Trucks
by Changcheng Li, Minghua Hu, Yuxin Hu, Zheng Zhao and Yanjun Wang
Aerospace 2025, 12(7), 643; https://doi.org/10.3390/aerospace12070643 - 21 Jul 2025
Viewed by 262
Abstract
In airport operations management, accurately estimating the service durations of ground support equipment such as Potable Water Trucks (PWTs) is essential for improving resource allocation efficiency and ensuring timely aircraft turnaround. Traditional estimation methods often use fixed averages or assume normal distributions, failing [...] Read more.
In airport operations management, accurately estimating the service durations of ground support equipment such as Potable Water Trucks (PWTs) is essential for improving resource allocation efficiency and ensuring timely aircraft turnaround. Traditional estimation methods often use fixed averages or assume normal distributions, failing to capture real-world variability and extreme scenarios effectively. To address these limitations, this study performs a comprehensive statistical analysis of PWT service durations using operational data from Beijing Daxing International Airport (ZBAD) and Shanghai Pudong International Airport (ZSPD). Employing chi-square goodness-of-fit tests, twenty probability distributions—including several heavy-tailed candidates—were rigorously evaluated under segmented scenarios, such as peak versus non-peak periods, varying temperature conditions, and different aircraft sizes. Results reveal that heavy-tailed distributions offer context-dependent advantages: the stable distribution exhibits superior modeling performance during peak operational periods, whereas the Burr distribution excels under non-peak conditions. Interestingly, contrary to existing operational assumptions, service durations at extremely high and low temperatures showed no significant statistical differences, prompting a reconsideration of temperature-dependent planning practices. Additionally, analysis by aircraft category showed that the Burr distribution best described service durations for large aircraft, while stable and log-logistic distributions were optimal for medium-sized aircraft. Numerical simulations confirmed these findings, demonstrating that the proposed heavy-tailed probabilistic models significantly improved resource prediction accuracy, reducing estimation errors by 13% to 25% compared to conventional methods. This research uniquely demonstrates the practical effectiveness of employing context-sensitive heavy-tailed distributions, substantially enhancing resource efficiency and operational reliability in airport ground handling management. Full article
(This article belongs to the Section Air Traffic and Transportation)
Show Figures

Figure 1

22 pages, 4484 KiB  
Article
Automated Parcel Locker Configuration Using Discrete Event Simulation
by Eugen Rosca, Floriana Cristina Oprea, Anamaria Ilie, Stefan Burciu and Florin Rusca
Systems 2025, 13(7), 613; https://doi.org/10.3390/systems13070613 - 20 Jul 2025
Viewed by 518
Abstract
Automated parcel lockers (APLs) are transforming urban last-mile delivery by reducing failed distributions, decoupling delivery from recipient availability, optimizing carrier routes, reducing carbon foot-print and mitigating traffic congestion. The paper investigates the optimal design of APLs systems under stochastic demand and operational constraints, [...] Read more.
Automated parcel lockers (APLs) are transforming urban last-mile delivery by reducing failed distributions, decoupling delivery from recipient availability, optimizing carrier routes, reducing carbon foot-print and mitigating traffic congestion. The paper investigates the optimal design of APLs systems under stochastic demand and operational constraints, formulating the problem as a resource allocation optimization with service-level guarantees. We proposed a data-driven discrete-event simulation (DES) model implemented in ARENA to (i) determine optimal locker configurations that ensure customer satisfaction under stochastic parcel arrivals and dwell times, (ii) examine utilization patterns and spatial allocation to enhance system operational efficiency, and (iii) characterize inventory dynamics of undelivered parcels and evaluate system resilience. The results show that the configuration of locker types significantly influences the system’s ability to maintain high customers service levels. While flexibility in locker allocation helps manage excess demand in some configurations, it may also create resource competition among parcel types. The heterogeneity of locker utilization gradients underscores that optimal APLs configurations must balance locker units with their size-dependent functional interdependencies. The Dickey–Fuller GLS test further validates that postponed parcels exhibit stationary inventory dynamics, ensuring scalability for logistics operators. As a theoretical contribution, the paper demonstrates how DES combined with time-series econometrics can address APLs capacity planning in city logistics. For practitioners, the study provides a decision-support framework for locker sizing, emphasizing cost–service trade-offs. Full article
(This article belongs to the Special Issue Modelling and Simulation of Transportation Systems)
Show Figures

Figure 1

17 pages, 5116 KiB  
Article
Impact of Real-Time Boundary Conditions from the CAMS Database on CHIMERE Model Predictions
by Anita Tóth and Zita Ferenczi
Air 2025, 3(3), 19; https://doi.org/10.3390/air3030019 - 18 Jul 2025
Viewed by 195
Abstract
Air quality forecasts play a crucial role in informing the public about atmospheric pollutant levels that pose risks to human health and the environment. The accuracy of these forecasts strongly depends on the quality and resolution of the input data used in the [...] Read more.
Air quality forecasts play a crucial role in informing the public about atmospheric pollutant levels that pose risks to human health and the environment. The accuracy of these forecasts strongly depends on the quality and resolution of the input data used in the modelling process. At HungaroMet, the Hungarian Meteorological Service, the CHIMERE chemical transport model is used to provide two-day air quality forecasts for the territory of Hungary. This study compares two configurations of the CHIMERE model: the current operational setup, which uses climatological averages from the LMDz-INCA database for boundary conditions, and a test configuration that incorporates real-time boundary conditions from the CAMS global forecast. The primary objective of this work was to assess how the use of real-time versus climatological boundary conditions affects modelled concentrations of key pollutants, including NO2, O3, PM10, and PM2.5. The model results were evaluated against observational data from the Hungarian Air Quality Monitoring Network using a range of statistical metrics. The results indicate that the use of real-time boundary conditions, particularly for aerosol-type pollutants, improves the accuracy of PM10 forecasts. This improvement is most significant under meteorological conditions that favour the long-range transport of particulate matter, such as during Saharan dust or wildfire episodes. These findings highlight the importance of incorporating dynamic, up-to-date boundary data, especially for particulate matter forecasting—given the increasing frequency of transboundary dust events. Full article
Show Figures

Figure 1

15 pages, 1097 KiB  
Article
Reduced Soil Moisture Decreases Nectar Sugar Resources Offered to Pollinators in the Popular White Mustard (Brassica alba L.) Crop: Experimental Evidence from Poland
by Bożena Denisow, Sławomir Michałek, Monika Strzałkowska-Abramek and Urszula Bronowicka-Mielniczuk
Sustainability 2025, 17(14), 6550; https://doi.org/10.3390/su17146550 - 17 Jul 2025
Viewed by 337
Abstract
Climate change can severely impact plant-pollinator interactions and have serious effects on ecosystem services such as pollination. This study was carried out in 2023 and 2024, and it examined the effects of drought on flowering and nectar production in one cultivar of white [...] Read more.
Climate change can severely impact plant-pollinator interactions and have serious effects on ecosystem services such as pollination. This study was carried out in 2023 and 2024, and it examined the effects of drought on flowering and nectar production in one cultivar of white mustard (Brassica alba cv. Palma), an important entomophilous crop of the temperate zone with several attributes that make it promising for sustainable agricultural practices. Drought-stressed plants delayed the flowering time, shortened the flowering duration, and developed significantly fewer flowers. Nectar production in white mustard depends on soil moisture levels and short-term changes in meteorological conditions (e.g., air humidity, air temperature). At reduced soil moisture, the total sugar yield per plant decreased by 60%, compared to control plants, resulting in lower availability of caloric food resources, which should be considered when developing strategies supporting pollinators. Changes in floral traits resulted in differences in the frequency of insect visits, which may exert a negative impact on white mustard pollination under drought stress and may have indirect consequences for seed yield resulting from increased drought intensity associated with climate change. The results provide important data for the management of the white mustard crop and indicate the need for broader evaluation of cultivars to promote drought-resistant B. alba cultivars. Full article
Show Figures

Figure 1

26 pages, 4067 KiB  
Article
Performance-Based Classification of Users in a Containerized Stock Trading Application Environment Under Load
by Tomasz Rak, Jan Drabek and Małgorzata Charytanowicz
Electronics 2025, 14(14), 2848; https://doi.org/10.3390/electronics14142848 - 16 Jul 2025
Viewed by 216
Abstract
Emerging digital technologies are transforming how consumers participate in financial markets, yet their benefits depend critically on the speed, reliability, and transparency of the underlying platforms. Online stock trading platforms must maintain high efficiency underload to ensure a good user experience. This paper [...] Read more.
Emerging digital technologies are transforming how consumers participate in financial markets, yet their benefits depend critically on the speed, reliability, and transparency of the underlying platforms. Online stock trading platforms must maintain high efficiency underload to ensure a good user experience. This paper presents performance analysis under various load conditions based on the containerized stock exchange system. A comprehensive data logging pipeline was implemented, capturing metrics such as API response times, database query times, and resource utilization. We analyze the collected data to identify performance patterns, using both statistical analysis and machine learning techniques. Preliminary analysis reveals correlations between application processing time and database load, as well as the impact of user behavior on system performance. Association rule mining is applied to uncover relationships among performance metrics, and multiple classification algorithms are evaluated for their ability to predict user activity class patterns from system metrics. The insights from this work can guide optimizations in similar distributed web applications to improve scalability and reliability under a heavy load. By framing performance not merely as a technical property but as a determinant of financial decision-making and well-being, the study contributes actionable insights for designers of consumer-facing fintech services seeking to meet sustainable development goals through trustworthy, resilient digital infrastructure. Full article
Show Figures

Figure 1

22 pages, 1534 KiB  
Article
Predictability of Air Pollutants Based on Detrended Fluctuation Analysis: Ekibastuz Сoal-Mining Center in Northeastern Kazakhstan
by Oleksandr Kuchanskyi, Andrii Biloshchytskyi, Yurii Andrashko, Alexandr Neftissov, Svitlana Biloshchytska and Sergiy Bronin
Urban Sci. 2025, 9(7), 273; https://doi.org/10.3390/urbansci9070273 - 16 Jul 2025
Viewed by 582
Abstract
Environmental comfort and air pollution are among the most important indicators for assessing the population’s quality of life in urban agglomerations. This study aims to explore long-term memory in air pollution time series by analyzing the dynamics of the Hurst exponent and evaluating [...] Read more.
Environmental comfort and air pollution are among the most important indicators for assessing the population’s quality of life in urban agglomerations. This study aims to explore long-term memory in air pollution time series by analyzing the dynamics of the Hurst exponent and evaluating the predictability index. This type of statistical pre-forecast analysis is essential for developing accurate forecasting models for such time series. The effectiveness of air quality monitoring systems largely depends on the precision of these forecasts. The Ekibastuz coal-mining center, which houses one of the largest coal-fired power stations in Kazakhstan and the world, with a capacity of about 4000 MW, was chosen as an example for the study. Data for the period from 1 March 2023 to 31 December 2024 were collected and analyzed at the Ekibastuz coal-fired power station. During the specified period, 14 indicators (67,527 observations) were collected at 10 min intervals, including mass concentrations of CO, NO, NO2, SO2, PM2.5, and PM10, as well as current mass consumption of CO, NO, NO2, SO2, dust, and NOx. The detrended fluctuation analysis of a time series of air pollution indicators was used to calculate the Hurst exponent and identify long-term memory. Changes in the Hurst exponent in regards to dynamics were also investigated, and a predictability index was calculated to monitor emissions of pollutants in the air. Long-term memory is recorded in the structure of all the time series of air pollution indicators. Dynamic analysis of the Hurst exponent confirmed persistent time series characteristics, with an average Hurst exponent of about 0.7. Identifying the time series plots for which the Hurst exponent is falling (analysis of the indicator of dynamics), along with the predictability index, is a sign of an increase in the influence of random factors on the time series. This is a sign of changes in the dynamics of the pollutant release concentrations and may indicate possible excess emissions that need to be controlled. Calculating the dynamic changes in the Hurst exponent for the emission time series made it possible to identify two distinct clusters corresponding to periods of persistence and randomness in the operation of the coal-fired power station. The study shows that evaluating the predictability index helps fine-tune the parameters of time series forecasting models, which is crucial for developing reliable air pollution monitoring systems. The results obtained in this study allow us to conclude that the method of trended fluctuation analysis can be the basis for creating an indicator of the level of air pollution, which allows us to quickly respond to possible deviations from the established standards. Environmental services can use the results to build reliable monitoring systems for air pollution from coal combustion emissions, especially near populated areas. Full article
Show Figures

Figure 1

17 pages, 1301 KiB  
Article
Carbon-Aware, Energy-Efficient, and SLA-Compliant Virtual Machine Placement in Cloud Data Centers Using Deep Q-Networks and Agglomerative Clustering
by Maraga Alex, Sunday O. Ojo and Fred Mzee Awuor
Computers 2025, 14(7), 280; https://doi.org/10.3390/computers14070280 - 15 Jul 2025
Viewed by 337
Abstract
The fast expansion of cloud computing has raised carbon emissions and energy usage in cloud data centers, so creative solutions for sustainable resource management are more necessary. This work presents a new algorithm—Carbon-Aware, Energy-Efficient, and SLA-Compliant Virtual Machine Placement using Deep Q-Networks (DQNs) [...] Read more.
The fast expansion of cloud computing has raised carbon emissions and energy usage in cloud data centers, so creative solutions for sustainable resource management are more necessary. This work presents a new algorithm—Carbon-Aware, Energy-Efficient, and SLA-Compliant Virtual Machine Placement using Deep Q-Networks (DQNs) and Agglomerative Clustering (CARBON-DQN)—that intelligibly balances environmental sustainability, service level agreement (SLA), and energy efficiency. The method combines a deep reinforcement learning model that learns optimum placement methods over time, carbon-aware data center profiling, and the hierarchical clustering of virtual machines (VMs) depending on resource constraints. Extensive simulations show that CARBON-DQN beats conventional and state-of-the-art algorithms like GRVMP, NSGA-II, RLVMP, GMPR, and MORLVMP very dramatically. Among many virtual machine configurations—including micro, small, high-CPU, and extra-large instances—it delivers the lowest carbon emissions, lowered SLA violations, and lowest energy usage. Driven by real-time input, the adaptive decision-making capacity of the algorithm allows it to dynamically react to changing data center circumstances and workloads. These findings highlight how well CARBON-DQN is a sustainable and intelligent virtual machine deployment system for cloud systems. To improve scalability, environmental effect, and practical applicability even further, future work will investigate the integration of renewable energy forecasts, dynamic pricing models, and deployment across multi-cloud and edge computing environments. Full article
Show Figures

Figure 1

18 pages, 3585 KiB  
Article
Dynamic Event-Triggered Switching of LFC Scheme Under DoS Attacks Based on a Predictive Model
by De-Tao Guo, Yong-Xin Zhao, Kai-Bo Shi and Ming Zhu
Electronics 2025, 14(14), 2838; https://doi.org/10.3390/electronics14142838 - 15 Jul 2025
Viewed by 208
Abstract
In this paper, a dynamic event-triggering mechanism (DETM) for load frequency control (LFC) of Denial-of-Service (DoS) attacks based on a predictive model is studied, which has important applications in discrete power systems. Firstly, the prediction model predicts subsequent signals based on observed system [...] Read more.
In this paper, a dynamic event-triggering mechanism (DETM) for load frequency control (LFC) of Denial-of-Service (DoS) attacks based on a predictive model is studied, which has important applications in discrete power systems. Firstly, the prediction model predicts subsequent signals based on observed system states. Secondly, by constructing an improved discrete signal event-triggering scheme, the influence of DoS attacks on the system is weakened. The dynamic trigger condition depends on the past few changes in the system state, rather than real-time sampling values. At the same time, the waiting time of DETM is set to avoid the Zeno phenomenon. Additionally, based on the update period and timestamp technology of the actuator, a control mechanism to resist DoS attacks is implemented in the actuator component. Furthermore, the method uses a double-loop open communication platform to improve reliability and flexibility. Full article
Show Figures

Figure 1

22 pages, 1199 KiB  
Article
Less Is More: Analyzing Text Abstraction Levels for Gender and Age Recognition Across Question-Answering Communities
by Alejandro Figueroa
Information 2025, 16(7), 602; https://doi.org/10.3390/info16070602 - 13 Jul 2025
Viewed by 182
Abstract
In social networks like community Question-Answering (cQA) services, members interact with each other by asking and answering each other’s questions. This way they find counsel and solutions to very specific real-life situations. Thus, it is safe to say that community fellows log into [...] Read more.
In social networks like community Question-Answering (cQA) services, members interact with each other by asking and answering each other’s questions. This way they find counsel and solutions to very specific real-life situations. Thus, it is safe to say that community fellows log into this kind of social network with the goal of satisfying information needs that cannot be readily resolved via traditional web searches. And in order to expedite this process, these platforms also allow registered, and many times unregistered, internauts to browse their archives. As a means of encouraging fruitful interactions, these websites need to be efficient when displaying contextualized/personalized material and when connecting unresolved questions to people willing to help. Here, demographic factors (i.e., gender) together with frontier deep neural networks have proved to be instrumental in adequately overcoming these challenges. In fact, current approaches have demonstrated that it is perfectly plausible to achieve high gender classification rates by inspecting profile images or textual interactions. This work advances this body of knowledge by leveraging lexicalized dependency paths to control the level of abstraction across texts. Our qualitative results suggest that cost-efficient approaches exploit distilled frontier deep architectures (i.e., DistillRoBERTa) and coarse-grained semantic information embodied in the first three levels of the respective dependency tree. Our outcomes also indicate that relative/prepositional clauses conveying geographical locations, relationships, and finance yield a marginal contribution when they show up deep in dependency trees. Full article
(This article belongs to the Section Information Applications)
Show Figures

Figure 1

17 pages, 2103 KiB  
Article
Optimizing Time-Sensitive Traffic Scheduling in Low-Earth-Orbit Satellite Networks
by Wei Liu, Nan Xiao, Bo Liu, Yuxian Zhang and Taoyong Li
Sensors 2025, 25(14), 4327; https://doi.org/10.3390/s25144327 - 10 Jul 2025
Viewed by 327
Abstract
In contrast to terrestrial networks, the rapid movement of low-earth-orbit (LEO) satellites causes frequent changes in the topology of intersatellite links (ISLs), resulting in dynamic shifts in transmission paths and fluctuations in multi-hop latency. Moreover, limited onboard resources such as buffer capacity and [...] Read more.
In contrast to terrestrial networks, the rapid movement of low-earth-orbit (LEO) satellites causes frequent changes in the topology of intersatellite links (ISLs), resulting in dynamic shifts in transmission paths and fluctuations in multi-hop latency. Moreover, limited onboard resources such as buffer capacity and bandwidth competition contribute to the instability of these links. As a result, providing reliable quality of service (QoS) for time-sensitive flows (TSFs) in LEO satellite networks becomes a challenging task. Traditional terrestrial time-sensitive networking methods, which depend on fixed paths and static priority scheduling, are ill-equipped to handle the dynamic nature and resource constraints typical of satellite environments. This often leads to congestion, packet loss, and excessive latency, especially for high-priority TSFs. This study addresses the primary challenges faced by time-sensitive satellite networks and introduces a management framework based on software-defined networking (SDN) tailored for LEO satellites. An advanced queue management and scheduling system, influenced by terrestrial time-sensitive networking approaches, is developed. By incorporating differentiated forwarding strategies and priority-based classification, the proposed method improves the efficiency of transmitting time-sensitive traffic at multiple levels. To assess the scheme’s performance, simulations under various workloads are conducted, and the results reveal that it significantly boosts network throughput, reduces packet loss, and maintains low latency, thus optimizing the performance of time-sensitive traffic in LEO satellite networks. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

Back to TopTop