Reduced Soil Moisture Decreases Nectar Sugar Resources Offered to Pollinators in the Popular White Mustard (Brassica alba L.) Crop: Experimental Evidence from Poland
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Plants and Study Location
2.2. Experimental Set-Up and Protocols
2.3. Soil Moisture Levels
2.4. Flowering Observations
2.5. Nectar Collection
2.6. Flower Attractiveness to Insect Visitors
2.7. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barret, K.; Blanco, G. Climate Change 2023: Synthesis Report, Summary for Policymakers; Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 1–34. [Google Scholar]
- European Environment Agency. Trends and Projections in Europe 2023; European Environment Agency: Copenhagen, Denmark, 2023. [Google Scholar]
- Kozyra, J.; Król-Badziak, A.; Żyłowski, T.; Koza, P.; Pudełko, R. Zmiany klimatu i ich wpływ na gospodarkę wodną i rolnictwo. In Konferencja Adaptacja Gospodarki Wodnej w Rolnictwie do Zmieniającego się Klimatu; IUNG-PIB: Puławy, Poland, 2020. [Google Scholar]
- Tabari, H.; Willems, P. Sustainable development substantially reduces the risk of future drought impacts. Commun. Earth Environ. 2023, 4, 180. [Google Scholar] [CrossRef]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Ollerton, J.; Winfree, R.; Tarrant, S. How many flowering plants are pollinated by animals? Oikos 2011, 120, 321–326. [Google Scholar] [CrossRef]
- Burkle, L.A.; Runyon, J.B. Drought and leaf herbivory influence floral volatiles and pollinator attraction. Glob. Change Biol. 2016, 22, 1644–1654. [Google Scholar] [CrossRef] [PubMed]
- Descamps, C.; Quinet, M.; Baijot, A.; Jacquemart, A. Temperature and water stress affect plant–pollinator interactions in Borago officinalis (Boraginaceae). Ecol. Evol. 2018, 8, 3443–3456. [Google Scholar] [CrossRef]
- Cohen, I.; Zandalinas, S.I.; Huck, C.; Fritschi, F.B.; Mittler, R. Meta-analysis of drought and heat stress combination impact on crop yield and yield components. Physiol. Plant. 2021, 171, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Burkle, L.; Irwin, R. Nectar sugar limits larval growth of solitary bees (Hymenoptera: Megachilidae). Environ. Entomol. 2009, 38, 1293–1300. [Google Scholar] [CrossRef]
- Somme, L.; Vanderplanck, M.; Michez, D.; Lombaerde, I.; Moerman, R.; Wathelet, B.; Wattiez, R.; Lognay, G.; Jacquemart, A.-L. Pollen and nectar quality drive the major and minor floral choices of bumble bees. Apidologie 2015, 46, 92–106. [Google Scholar] [CrossRef]
- Petanidou, T.; Smets, E. Does temperature stress induce nectar secretion in Mediterranean plants? New Phytol. 1996, 133, 513–518. [Google Scholar] [CrossRef]
- Waser, N.M.; Price, M.V. Drought, pollen and nectar availability, and pollination success. Ecology 2016, 97, 1400–1409. [Google Scholar] [CrossRef]
- Liu, Y.; Dunker, S.; Durka, W.; Dominik, C.; Heuschele, J.M.; Honchar, H.; Hoffmann, P.; Musche, M.; Paxton, R.J.; Settele, J. Eco-evolutionary processes shaping floral nectar sugar composition. Sci. Rep. 2024, 14, 13856. [Google Scholar] [CrossRef] [PubMed]
- Borghi, M.; Perez de Souza, L.; Yoshida, T.; Fernie, A.R. Flowers and climate change: A metabolic perspective. New Phytol. 2019, 224, 1425–1441. [Google Scholar] [CrossRef] [PubMed]
- Pacini, E.; Nepi, M. Nectar production and presentation. In Nectaries and Nectar; Springer: Berlin/Heidelberg, Germany, 2007; pp. 167–214. [Google Scholar]
- Descamps, C.; Marée, S.; Hugon, S.; Quinet, M.; Jacquemart, A. Species-specific responses to combined water stress and increasing temperatures in two bee-pollinated congeners (Echium, Boraginaceae). Ecol. Evol. 2020, 10, 6549–6561. [Google Scholar] [CrossRef]
- Descamps, C.; Quinet, M.; Jacquemart, A.-L. The effects of drought on plant–pollinator interactions: What to expect? Environ. Exp. Bot. 2021, 182, 104297. [Google Scholar] [CrossRef]
- Takkis, K.; Tscheulin, T.; Petanidou, T. Differential effects of climate warming on the nectar secretion of early-and late-flowering Mediterranean plants. Front. Plant Sci. 2018, 9, 874. [Google Scholar] [CrossRef]
- Roth, N.; Kimberley, A.; Guasconi, D.; Hugelius, G.; Cousins, S.A. Floral resources in Swedish grasslands remain relatively stable under an experimental drought and are enhanced by soil amendments if regularly mown. Ecol. Solut. Evid. 2023, 4, e12231. [Google Scholar] [CrossRef]
- Akter, A.; Klečka, J. Water stress and nitrogen supply affect floral traits and pollination of the white mustard, Sinapis alba (Brassicaceae). PeerJ 2022, 10, e13009. [Google Scholar] [CrossRef]
- Secchi, M.A.; Fernandez, J.A.; Stamm, M.J.; Durrett, T.; Prasad, P.V.; Messina, C.D.; Ciampitti, I.A. Effects of heat and drought on canola (Brassica napus L.) yield, oil, and protein: A meta-analysis. Field Crops Res. 2023, 293, 108848. [Google Scholar] [CrossRef]
- Badora, D.; Borek, R.; Doroszewski, A.; Jończyk, K.; Koza, P.; Kozyra, J.; Nowocień, E.; Skowron, P.; Smagacz, J.; Wach, D.; et al. Gospodarka Wodna w Rolnictwie Jako Element Adaptacji do Zmian Klimatu; Instytut Uprawy, Nawożenia i Gleboznawstwa Państwowy Instytut Badawczy; Studia i Raporty IUNG-PIB; Dział Upowszechniania i Wydawnictw IUNG PIB w Puławach: Puławy, Poland, 2023; Volume 71, ISBN 978-83-7562-403-8. [Google Scholar]
- Gamage, A.; Gangahagedara, R.; Subasinghe, S.; Gamage, J.; Guruge, C.; Senaratne, S.; Randika, T.; Rathnayake, C.; Hameed, Z.; Madhujith, T. Advancing sustainability: The impact of emerging technologies in agriculture. Curr. Plant Biol. 2024, 40, 100420. [Google Scholar] [CrossRef]
- Srisawat, T.; Tarasuk, T.; Kaosuwan, S.; Chimpud, W.; Chumkaew, P.; Samala, S.; Sukolrat, A. Natural farming negatively influences the growth of Sangyod Muang Phatthalung rice (Oryza sativa L.) but not its grain production or quality in preliminary comparison to conventional farming. Acta Agrobot. 2024, 77, 185310. [Google Scholar] [CrossRef]
- Jayaraman, S.; Dang, Y.P.; Naorem, A.; Page, K.L.; Dalal, R.C. Conservation agriculture as a system to enhance ecosystem services. Agriculture 2021, 11, 718. [Google Scholar] [CrossRef]
- Bożek, M.; Denisow, B.; Strzałkowska-Abramek, M.; Chrzanowska, E.; Winiarczyk, K. Non-forest woody vegetation: A critical resource for pollinators in agricultural landscapes—A review. Sustainability 2023, 15, 8751. [Google Scholar] [CrossRef]
- Jachuła, J.; Denisow, B.; Wrzesień, M. Habitat heterogeneity helps to mitigate pollinator nectar sugar deficit and discontinuity in an agricultural landscape. Sci. Total Environ. 2021, 782, 146909. [Google Scholar] [CrossRef]
- Brunet, J.; Fragoso, F.P. What Are the Main Reasons for the Worldwide Decline in Pollinator Populations? CABI Reviews: Wallingford, UK, 2024. [Google Scholar]
- Aizen, M.A.; Harder, L.D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 2009, 19, 915–918. [Google Scholar] [CrossRef]
- Gallai, N.; Salles, J.-M.; Settele, J.; Vaissière, B.E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 2009, 68, 810–821. [Google Scholar] [CrossRef]
- Garrity, D.P.; Akinnifesi, F.K.; Ajayi, O.C.; Weldesemayat, S.G.; Mowo, J.G.; Kalinganire, A.; Larwanou, M.; Bayala, J. Evergreen Agriculture: A robust approach to sustainable food security in Africa. Food Secur. 2010, 2, 197–214. [Google Scholar] [CrossRef]
- Semeraro, T.; Scarano, A.; Leggieri, A.; Calisi, A.; De Caroli, M. Impact of climate change on agroecosystems and potential adaptation strategies. Land 2023, 12, 1117. [Google Scholar] [CrossRef]
- Mitrović, P.M.; Stamenković, O.S.; Banković-Ilić, I.; Djalović, I.G.; Nježić, Z.B.; Farooq, M.; Siddique, K.H.; Veljković, V.B. White mustard (Sinapis alba L.) oil in biodiesel production: A review. Front. Plant Sci. 2020, 11, 299. [Google Scholar] [CrossRef]
- Jalas, J.; Suominen, J. Atlas Florae Europaeae: Volume 3: Distribution of Vascular Plants in Europe; Cambridge University Press: Cambridge, UK, 1988; Volume 3, ISBN 0-521-34272-4. [Google Scholar]
- Butenko, S.; Melnyk, A.; Melnyk, T.; Jia, P.; Kolosok, V. Influence of Growth Regulators with Anti–Stress Activity on Productivity Parameters of Sinapis alba L. J. Ecol. Eng. 2022, 23, 128–135. [Google Scholar] [CrossRef]
- Katepa-Mupondwa, F.; Gugel, R.; Raney, J. Genetic diversity for agronomic, morphological and seed quality traits in Sinapis alba L. (yellow mustard). Can. J. Plant Sci. 2006, 86, 1015–1025. [Google Scholar] [CrossRef]
- Kisielewska, W.; Harasimowicz-Hermann, G. Sowing value of white mustard (Sinapis alba L.) seeds collected from plants sown in different times. Rośliny Oleiste-Oilseed Crops 2006, 27, 223–230. [Google Scholar]
- Mena, G.T.; Gospodarek, J. White mustard, Sweet alyssum, and Coriander as insectary plants in agricultural systems: Impacts on ecosystem services and yield of crops. Agriculture 2024, 14, 550. [Google Scholar] [CrossRef]
- Jaime, R.; Alcantara, J.M.; Manzaneda, A.J.; Rey, P.J. Climate change decreases suitable areas for rapeseed cultivation in Europe but provides new opportunities for white mustard as an alternative oilseed for biofuel production. PLoS ONE 2018, 13, e0207124. [Google Scholar] [CrossRef] [PubMed]
- Kos, B.; Greman, H.; Lestan, D. Phytoextraction of lead, zinc and cadmium from soil by selected plants. Plant Soil Environ. 2003, 49, 548–553. [Google Scholar] [CrossRef]
- Masierowska, M.L. Floral nectaries and nectar production in brown mustard (Brassica juncea) and white mustard (Sinapis alba) (Brassicaceae). Plant Syst. Evol. 2003, 238, 97–107. [Google Scholar] [CrossRef]
- Farkas, Á.; Zajácz, E. Nectar production for the Hungarian honey industry. Eur. J. Plant Sci. Biotechnol. 2007, 1, 125–151. [Google Scholar]
- Masierowska, M.; Piętka, T. Variability in nectar and pollen production in flowers of double-low lines of white mustard (Sinapis alba L.) and their attractiveness to honey bees. Acta Sci. Pol. Hortorum Cultus 2014, 13, 197–209. [Google Scholar]
- Flacher, F.; Raynaud, X.; Hansart, A.; Geslin, B.; Motard, E.; Verstraet, S.; Bataille, M.; Dajoz, I. Below-ground competition alters attractiveness of an insect-pollinated plant to pollinators. AoB Plants 2020, 12, plaa022. [Google Scholar] [CrossRef]
- Kołtowski, Z.; Miśkiewicz, I. Wielki Atlas Roślin miododajnych; Przedsiębiorstwo Wydawnicze Rzeczpospolita: Warsaw, Poland, 2006; ISBN 83-60192-13-8. [Google Scholar]
- Dorsainvil, F.; Dürr, C.; Justes, E.; Carrera, A. Characterisation and modelling of white mustard (Sinapis alba L.) emergence under several sowing conditions. Eur. J. Agron. 2005, 23, 146–158. [Google Scholar] [CrossRef]
- Francesca, V.; Osvaldo, F.; Stefano, P.; Paola, R.P. Soil moisture measurements: Comparison of instrumentation performances. J. Irrig. Drain. Eng. 2010, 136, 81–89. [Google Scholar] [CrossRef]
- Dmitruk, M.; Denisow, B.; Chrzanowska, E.; Dąbrowska, A.; Bożek, M. Comparison of nectar and pollen resources in various Tilia species. A case study from southern Poland. Trees 2024, 38, 953–967. [Google Scholar] [CrossRef]
- Masierowska, M. Floral Display and Reproductive System in Brown Mustard Brassica juncea (L.) Czern. et Coss. and White Mustard Sinapis alba; Brassicaceae; Università di Scienze di Lublino: Lubin, Poland, 2012; 366p. [Google Scholar]
- Jabłonski, B. Notes on the method to investigate nectar secretion rate in flowers. J. Apic. Sci. 2002, 46. [Google Scholar]
- Dmitruk, M.; Strzałkowska-Abramek, M.; Bożek, M.; Denisow, B. Plants enhancing urban pollinators: Nectar rather than pollen attracts pollinators of Cotoneaster species. Urban For. Urban Green. 2022, 74, 127651. [Google Scholar] [CrossRef]
- Jabłońska, K.; Kwiatkowska-Falińska, A.; Czernecki, B.; Walawender, J.P. Changes in Spring and Summer Phenology in Poland—Responses of Selected Plant Species to Air Temperature Variations. Pol. J. Ecol. 2015, 63, 311–319. [Google Scholar] [CrossRef]
- Ashraf, M.; Mehmood, S. Response of four Brassica species to drought stress. Environ. Exp. Bot. 1990, 30, 93–100. [Google Scholar] [CrossRef]
- Fletcher, R.S.; Mullen, J.L.; Heiliger, A.; McKay, J.K. QTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus. J. Exp. Bot. 2015, 66, 245–256. [Google Scholar] [CrossRef]
- Retuerto, R.; Woodward, F.I. Compensatory responses in growth and fecundity traits of Sinapis alba L. following release from wind and density stress. Int. J. Plant Sci. 2001, 162, 171–179. [Google Scholar] [CrossRef]
- Cho, L.-H.; Pasriga, R.; Yoon, J.; Jeon, J.-S.; An, G. Roles of sugars in controlling flowering time. J. Plant Biol. 2018, 61, 121–130. [Google Scholar] [CrossRef]
- Lemoine, R.; Camera, S.L.; Atanassova, R.; Dédaldéchamp, F.; Allario, T.; Pourtau, N.; Bonnemain, J.-L.; Laloi, M.; Coutos-Thévenot, P.; Maurousset, L. Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 2013, 4, 272. [Google Scholar] [CrossRef]
- Franks, S.J.; Weis, A.E. Climate change alters reproductive isolation and potential gene flow in an annual plant. Evol. Appl. 2009, 2, 481–488. [Google Scholar] [CrossRef]
- Galen, C.; Sherry, R.A.; Carroll, A.B. Are flowers physiological sinks or faucets? Costs and correlates of water use by flowers of Polemonium viscosum. Oecologia 1999, 118, 461–470. [Google Scholar] [CrossRef]
- Kazan, K.; Lyons, R. The link between flowering time and stress tolerance. J. Exp. Bot. 2016, 67, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, D.W. Photosynthesis, productivity and environment. J. Exp. Bot. 1995, 46, 1449–1461. [Google Scholar] [CrossRef]
- Gan, Y.; Angadi, S.; Cutforth, H.; Potts, D.; Angadi, V.; McDonald, C. Canola and mustard response to short periods of temperature and water stress at different developmental stages. Can. J. Plant Sci. 2004, 84, 697–704. [Google Scholar] [CrossRef]
- Muhl, Q.E.; du Toit, E.S.; Steyn, J.M.; Apostolides, Z. Bud development, flowering and fruit set of Moringa oleifera Lam. (Horseradish Tree) as affected by various irrigation levels. J. Agric. Rural Dev. Trop. Subtrop. JARTS 2013, 114, 79–87. [Google Scholar]
- Glenny, W.R.; Runyon, J.B.; Burkle, L.A. Drought and increased CO2 alter floral visual and olfactory traits with context-dependent effects on pollinator visitation. N. Phytol. 2018, 220, 785–798. [Google Scholar] [CrossRef]
- Carroll, A.B.; Pallardy, S.G.; Galen, C. Drought stress, plant water status, and floral trait expression in fireweed, Epilobium angustifolium (Onagraceae). Am. J. Bot. 2001, 88, 438–446. [Google Scholar] [CrossRef]
- Bernardello, G. A systematic survey of floral nectaries. In Nectaries and Nectar; Springer: Berlin/Heidelberg, Germany, 2007; pp. 19–128. [Google Scholar]
- Thom, M.D.; Eberle, C.A.; Forcella, F.; Gesch, R.; Weyers, S.; Lundgren, J.G. Nectar production in oilseeds: Food for pollinators in an agricultural landscape. Crop Sci. 2016, 56, 727–739. [Google Scholar] [CrossRef]
- Markiewicz, J.; Ogórek, S. Gospodarcze Koszty Suszy dla Polskiego Rolnictwa; Working paper/Polski Instytut Ekonomiczny; Polski Instytut Ekonomiczny: Warsaw, Poland, 2022; ISBN 978-83-66698-96-3. [Google Scholar]
- Corbet, S.A. Bee visits and the nectar of Echium vulgare L. and Sinapis alba L. Ecol. Entomol. 1978, 3, 25–37. [Google Scholar]
- Hegland, S.J.; Nielsen, A.; Lázaro, A.; Bjerknes, A.; Totland, Ø. How does climate warming affect plant-pollinator interactions? Ecol. Lett. 2009, 12, 184–195. [Google Scholar] [CrossRef]
- Rering, C.C.; Franco, J.G.; Yeater, K.M.; Mallinger, R.E. Drought stress alters floral volatiles and reduces floral rewards, pollinator activity, and seed set in a global plant. Ecosphere 2020, 11, e03254. [Google Scholar] [CrossRef]
- Bie, M.; Song, K.; Dong, H.; Zhao, W.; Lin, H.; Shi, D.; Liu, D. Advancing Sustainable Agriculture Through Bumblebee Pollination: Bibliometric Insights and Future Directions. Sustainability 2025, 17, 2177. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, G.; Long, W.; Zou, X.; Li, F.; Nishio, T. Recent progress in drought and salt tolerance studies in Brassica crops. Breed. Sci. 2014, 64, 60–73. [Google Scholar] [CrossRef]
Nectar Mass Per Flower | |||||
---|---|---|---|---|---|
Estimate | Std. Error | T-Value | p | ||
(Intercept) | 587.17 | 74.05 | 7.93 | *** | |
Treatment | |||||
Irrigation (I) | 0.36 | 0.03 | 12.71 | *** | |
Drought (D) | −0.62 | 0.05 | −12.62 | *** | |
Short-term meteorological factors | Relative humidity [%] | ||||
on the day of nectar collection | 0.02 | 0.00 | 7.55 | *** | |
two days before nectar collection | 0.01 | 0.00 | 2.59 | * | |
Rainfall [mm] | |||||
a day before nectar collection | −0.03 | 0.00 | −7.32 | *** | |
two days before nectar collection | −0.05 | 0.01 | −4.52 | *** | |
Sugar concentration | |||||
Estimate | Std. Error | T value | p | ||
(Intercept) | 259.56 | 84.22 | 3.08 | ** | |
Treatment | |||||
Irrigation (I) | −0.37 | 0.04 | −8.40 | *** | |
Drought (D) | 0.04 | 0.03 | 1.18 | ns | |
Short-term meteorological factors | Temperature [°C] | ||||
a day before nectar collection | 0.01 | 0.01 | 1.32 | ns | |
Relative humidity [%] | |||||
two days before nectar collection | 0.01 | 0.00 | 3.05 | ** | |
Rainfall [mm] | |||||
two days before nectar collection | −0.04 | 0.01 | −3.39 | ** | |
Year | −0.13 | 0.04 | −3.05 | ** | |
Sugar mass per flower | |||||
Estimate | Std. Error | T value | p | ||
(Intercept) | −0.96 | 0.50 | −1.92 | ns | |
Treatment | |||||
Irrigation (I) | 0.01 | 0.05 | 0.27 | ns | |
Drought (D) | −0.57 | 0.07 | −8.38 | *** | |
Short-term meteorological factors | Temperature [°C] | ||||
on the day of nectar collection | 0.09 | 0.02 | 5.79 | *** | |
a day before nectar collection | −0.04 | 0.02 | −2.64 | * | |
two days before nectar collection | −0.12 | 0.01 | −10.28 | *** | |
Relative humidity [%] | |||||
a day before nectar collection | 0.03 | 0.00 | 6.92 | *** | |
two days before nectar collection | −0.01 | 0.01 | −1.77 | ns | |
Rainfall [mm] | |||||
a day before nectar collection | −0.03 | 0.01 | −6.41 | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Denisow, B.; Michałek, S.; Strzałkowska-Abramek, M.; Bronowicka-Mielniczuk, U. Reduced Soil Moisture Decreases Nectar Sugar Resources Offered to Pollinators in the Popular White Mustard (Brassica alba L.) Crop: Experimental Evidence from Poland. Sustainability 2025, 17, 6550. https://doi.org/10.3390/su17146550
Denisow B, Michałek S, Strzałkowska-Abramek M, Bronowicka-Mielniczuk U. Reduced Soil Moisture Decreases Nectar Sugar Resources Offered to Pollinators in the Popular White Mustard (Brassica alba L.) Crop: Experimental Evidence from Poland. Sustainability. 2025; 17(14):6550. https://doi.org/10.3390/su17146550
Chicago/Turabian StyleDenisow, Bożena, Sławomir Michałek, Monika Strzałkowska-Abramek, and Urszula Bronowicka-Mielniczuk. 2025. "Reduced Soil Moisture Decreases Nectar Sugar Resources Offered to Pollinators in the Popular White Mustard (Brassica alba L.) Crop: Experimental Evidence from Poland" Sustainability 17, no. 14: 6550. https://doi.org/10.3390/su17146550
APA StyleDenisow, B., Michałek, S., Strzałkowska-Abramek, M., & Bronowicka-Mielniczuk, U. (2025). Reduced Soil Moisture Decreases Nectar Sugar Resources Offered to Pollinators in the Popular White Mustard (Brassica alba L.) Crop: Experimental Evidence from Poland. Sustainability, 17(14), 6550. https://doi.org/10.3390/su17146550