Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,004)

Search Parameters:
Keywords = density contrast

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7480 KB  
Article
Structure—Property—Performance Relationships in Thermoplastic Polyurethane: Influence of Infill Density and Surface Texture
by Patricia Isabela Brăileanu, Marius-Teodor Mocanu, Tiberiu Gabriel Dobrescu, Dan Dobrotă and Nicoleta Elisabeta Pascu
Polymers 2025, 17(19), 2716; https://doi.org/10.3390/polym17192716 - 9 Oct 2025
Abstract
This study investigates the structure–property–performance (SPP) relationships of two thermoplastic polyurethanes (TPUs), FILAFLEX FOAMY 70A and SMARTFIL® FLEX 98A, manufactured by fused filament fabrication (FFF). Disc specimens were produced with varying gyroid infill densities (10–100%) and Archimedean surface textures, and their tribological [...] Read more.
This study investigates the structure–property–performance (SPP) relationships of two thermoplastic polyurethanes (TPUs), FILAFLEX FOAMY 70A and SMARTFIL® FLEX 98A, manufactured by fused filament fabrication (FFF). Disc specimens were produced with varying gyroid infill densities (10–100%) and Archimedean surface textures, and their tribological and surface characteristics were analyzed through Ball-on-Disc tests, profilometry, and optical microscopy. SMARTFIL® FLEX 98A exhibited a sharp reduction in the coefficient of friction (μ) with increasing infill, from 1.174 at 10% to 0.371 at 100%, linked to improved structural stability at higher densities. In contrast, FILAFLEX FOAMY 70A maintained a stable but generally higher coefficient of friction (0.585–0.729) across densities, reflecting its foamed microstructure and bulk yielding behavior. Surface analysis revealed significantly higher roughness in SMARTFIL® FLEX 98A, while FILAFLEX FOAMY 70A showed consistent roughness across infill levels. Both TPUs resisted inducing abrasive wear on the steel counterpart, but their stress-accommodation mechanisms diverged. These findings highlight distinct application profiles: SMARTFIL® FLEX 98A for energy-absorbing, deformable components, and FILAFLEX FOAMY 70A for applications requiring stable surface finish and low adhesive wear. The results advance the design of functionally graded TPU materials through the controlled tuning of infill and surface features. Full article
Show Figures

Figure 1

18 pages, 1473 KB  
Article
Asymmetric Response of Grassland Greenhouse Gases to Nitrogen Addition: A Global Meta-Analysis
by Xiaoqing Cui, Yu Zhang and Xiping Song
Agronomy 2025, 15(10), 2365; https://doi.org/10.3390/agronomy15102365 - 9 Oct 2025
Abstract
Grassland ecosystems, a major component of the global carbon (C) and nitrogen (N) cycles, are increasingly impacted by anthropogenic N addition. However, a comprehensive, integrated assessment of all three major greenhouse gas (GHG) responses in grasslands is lacking. Here, we present the first [...] Read more.
Grassland ecosystems, a major component of the global carbon (C) and nitrogen (N) cycles, are increasingly impacted by anthropogenic N addition. However, a comprehensive, integrated assessment of all three major greenhouse gas (GHG) responses in grasslands is lacking. Here, we present the first global meta-analysis to evaluate the effects of N addition on all three major GHGs (i.e., nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) fluxes) in grasslands. Our results show that N addition significantly and consistently stimulates N2O emissions, a response primarily modulated by key drivers such as grassland type, management, N addition rate and forms, humidity index (HI), and soil pH, clay, and total nitrogen (TN) content. In contrast, N addition has a minimal and non-significant overall effect on soil CO2 fluxes. For CH4, N addition causes a context-dependent reduction in uptake, an effect that is exacerbated by high mean annual precipitation (MAP) and soil bulk density (BD) but alleviated by high soil organic carbon (SOC) content. Notably, both CO2 and N2O showed a dose-dependent effect, while soil CO2 fluxes were unexpectedly suppressed by nitrate nitrogen (NO3) addition. Our findings indicate that the pronounced and consistent increase in N2O emissions is the dominant factor in GHG-related impacts in grasslands, implying a net positive climate forcing in grasslands from N enrichment, even if there is insufficient data to calculate net climate forcing directly. Our study highlights the heterogeneous nature of grassland GHG responses and provides critical insights for developing sustainable N management strategies to mitigate climate change. Full article
(This article belongs to the Section Grassland and Pasture Science)
18 pages, 454 KB  
Article
Associations Between Sedentary Behaviors and Sedentary Patterns with Metabolic Syndrome in Children and Adolescents: The UP&DOWN Longitudinal Study
by Alejandro Sánchez-Delgado, Alejandro Perez-Bey, Julio Conde-Caveda, Rocío Izquierdo-Gómez, Sonia Gómez-Martínez, Oscar L. Veiga, Ascensión Marcos and José Castro-Piñero
Healthcare 2025, 13(19), 2544; https://doi.org/10.3390/healthcare13192544 - 9 Oct 2025
Abstract
Background/Objectives: The longitudinal associations between different modalities of sedentary behaviors (SBs) and sedentary patterns (SPs) with metabolic syndrome (MetS) in children and adolescents are unclear. We aimed to analyze the cross-sectional and longitudinal (2-year follow-up) association between SB and SP with the MetS [...] Read more.
Background/Objectives: The longitudinal associations between different modalities of sedentary behaviors (SBs) and sedentary patterns (SPs) with metabolic syndrome (MetS) in children and adolescents are unclear. We aimed to analyze the cross-sectional and longitudinal (2-year follow-up) association between SB and SP with the MetS score in Spanish children and adolescents. Methods: 76 children (34 females) and 186 adolescents (94 females) were included for SB analyses, and 175 children (82 females) and 188 adolescents (95 females) for SP. Children and adolescents were aged 6–11.9 years and 12–17.9 years, respectively. SB were assessed by a self-reported questionnaire and SP were determined by accelerometry. The MetS score was computed from the waist circumference, systolic blood pressure, triglycerides, high-density lipoprotein cholesterol, and glucose levels. Different linear regression models were implemented to examine cross-sectional, longitudinal, and change associations of SB and SP with MetS. Results: Total daily SB, educative daily SB, and mean SB were longitudinal and inversely associated with MetS (β = −0.001, all p < 0.05) in male adolescents, while other daily SB was longitudinal and inversely associated with MetS (β = −0.002, all p < 0.05) in female adolescents. Changes in screen and other daily SB were directly associated with MetS in female adolescents (β = 0.001 to 0.002, all p < 0.05). In contrast, changes in educative daily SB were inversely associated with MetS in female adolescents (β = −0.001, all p < 0.05). Conclusions: Few associations between SB modalities and the MetS score were found, mainly in adolescents and often in unexpected directions. In male adolescents, total and educative daily SB were negatively associated with MetS. In female adolescents, other daily SB and changes in educative daily SB showed negative associations, while changes in screen-based and other daily SB were positively associated with MetS. No associations were found between SP and MetS. Given the low evidence available to date, more longitudinal studies analyzing SB and SP simultaneously are needed to reach solid conclusions. Full article
Show Figures

Figure 1

26 pages, 6711 KB  
Article
Vegetation–Debris Synergy in Alternate Sandbar Morphodynamics: Flume Experiments on the Impacts of Density, Layout, and Debris Geometry
by Saqib Habib, Muhammad Rizwan and Norio Tanaka
Water 2025, 17(19), 2915; https://doi.org/10.3390/w17192915 - 9 Oct 2025
Abstract
Predicting how vegetation–debris interactions reshape alternate sandbars under a steady subcritical flow remains poorly understood in laboratory-to-field scaling. This study quantified how vegetation density and layout interact with debris geometry to control scouring and deposition and developed an empirical tool to predict normalized [...] Read more.
Predicting how vegetation–debris interactions reshape alternate sandbars under a steady subcritical flow remains poorly understood in laboratory-to-field scaling. This study quantified how vegetation density and layout interact with debris geometry to control scouring and deposition and developed an empirical tool to predict normalized bed-level changes. Flume experiments investigated how vegetation–debris interactions regulate the hydromorphodynamics of non-migrating alternate sandbars under a steady subcritical flow (Q = 0.003 m3/s; slope = 1/200). Vegetation patches were configured in two spatial layouts—upstream (apex) and river line (edge), at varying densities, with and without debris (I-type: wall-like; U-type: horseshoe-shaped). Results indicated that dense upstream vegetation combined with I-type debris produced the strongest morphodynamic response, generating maximum scour, corresponding to the maximum bed-elevation changes (Δz) normalized by water depth (h) (dimensionless Δz/h) values of −1.55 and 1.05, and sustaining more than 70% of the downstream morphodynamic amplitude. In contrast, U-type debris promoted distributed deposition with a milder scour, while sparse vegetation yielded weaker, more transient responses. Debris geometry-controlled flow partitioning: the I-type enhanced frontal acceleration, whereas the U-type facilitated partial penetration and redistribution. To integrate these findings into predictive frameworks, an empirical regression model was developed to estimate Δz/h from the vegetation density, distribution, and debris geometry, with an additional blockage index to capture synergistic effects. The model achieved 87.5% prediction within ±20% error, providing a practical tool for anticipating scour and deposition intensity across eco-hydraulic configurations. These insights advance intelligent water management by linking morphodynamic responses with predictive modeling, supporting flood-resilient river engineering, adaptive channel stability assessments, and nature-based solutions. Full article
Show Figures

Figure 1

13 pages, 2477 KB  
Article
Field-Gated Anion Transport in Nanoparticle Superlattices Controlled by Charge Density and Ion Geometry: Insights from Molecular Dynamics Simulations
by Yuexin Su, Jianxiang Huang, Zaixing Yang, Yangwei Jiang and Ruhong Zhou
Biomolecules 2025, 15(10), 1427; https://doi.org/10.3390/biom15101427 - 8 Oct 2025
Abstract
Nanoparticle superlattices—periodic assemblies of uniformly spaced nanocrystals—bridge the nanoscale precision of individual particles with emergent collective properties akin to those of bulk materials. Recent advances demonstrate that multivalent ions and charged polymers can guide the co-assembly of nanoparticles, imparting electrostatic gating and enabling [...] Read more.
Nanoparticle superlattices—periodic assemblies of uniformly spaced nanocrystals—bridge the nanoscale precision of individual particles with emergent collective properties akin to those of bulk materials. Recent advances demonstrate that multivalent ions and charged polymers can guide the co-assembly of nanoparticles, imparting electrostatic gating and enabling semiconductor-like behavior. However, the specific roles of anion geometry, valency, and charge density in mediating ion transport remain unclear. Here, we employ coarse-grained molecular dynamics simulations to investigate how applied electric fields (0–0.40 V/nm) modulate ionic conductivity and spatial distribution in trimethylammonium-functionalized gold nanoparticle superlattices assembled with four phosphate anions of distinct geometries and charges. Our results reveal that linear anions outperform ring-shaped analogues in conductivity due to higher charge densities and weaker interfacial binding. Notably, charge density exerts a greater influence on ion mobility than size alone. Under strong fields, anions accumulate at nanoparticle interfaces, where interfacial adsorption and steric constraints suppress transport. In contrast, local migration is governed by geometrical confinement and field strength. Analyses of transition probability and residence time further indicate that the rigidity and delocalized charge of cyclic anions act as mobility barriers. These findings provide mechanistic insights into the structure–function relationship governing ion transport in superlattices, offering guidance for designing next-generation ion conductors, electrochemical sensors, and energy storage materials through anion engineering. Full article
(This article belongs to the Special Issue Nanomaterials and Their Applications in Biomedicine)
Show Figures

Figure 1

18 pages, 2806 KB  
Article
Polylactide (PLA) Composites Reinforced with Natural Fibrous Filler Recovered from the Biomass of Sorghum Leaves or Stems
by Ryszard Gąsiorowski, Danuta Matykiewicz and Dominika Janiszewska-Latterini
Materials 2025, 18(19), 4634; https://doi.org/10.3390/ma18194634 - 8 Oct 2025
Abstract
In response to environmental pressures and the growing demand for sustainable materials, this study investigates the use of lignocellulosic fillers derived from sorghum (Sorghum bicolor L. Moench) biomass, specifically stems and leaves, as reinforcements in biodegradable polylactic acid (PLA) composites. The aim [...] Read more.
In response to environmental pressures and the growing demand for sustainable materials, this study investigates the use of lignocellulosic fillers derived from sorghum (Sorghum bicolor L. Moench) biomass, specifically stems and leaves, as reinforcements in biodegradable polylactic acid (PLA) composites. The aim was to assess the effect of filler type and content (5, 10, and 15 wt.%) on the physicochemical properties of the composites. Sorghum was manually harvested in Greater Poland, separated, dried, milled, and fractionated to particles <0.25 mm. Composites were produced via extrusion and injection molding, followed by characterization using differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), thermogravimetric analysis (TGA), tensile and impact testing, density measurements, optical microscopy, and scanning electron microscopy (SEM). Results showed that stem-based fillers provided a better balance between stiffness and ductility, along with improved dispersion and interfacial adhesion. In contrast, leaf-based fillers led to higher stiffness but greater brittleness and agglomeration. All composites exhibited decreased impact strength and thermal stability compared to neat PLA, with the extent of these decreases depending on the filler type and loading. The study highlights the potential of sorghum stems as a viable, renewable reinforcement in biopolymer composites, aligning with circular economy and bioeconomy strategies. Full article
(This article belongs to the Special Issue Manufacturing and Recycling of Natural Fiber-Reinforced Composites)
Show Figures

Figure 1

24 pages, 4080 KB  
Article
El Niño-Driven Changes in Zooplankton Community Structure in an Amazonian Tropical Estuarine Ecosystem (Taperaçu, Northern Brazil)
by Thaynara Raelly da Costa Silva, André Magalhães, Adria Davis Procópio, Marcela Pimentel de Andrade, Luci Cajueiro Carneiro Pereira and Rauquírio Marinho da Costa
Coasts 2025, 5(4), 39; https://doi.org/10.3390/coasts5040039 - 8 Oct 2025
Abstract
Given the high sensitivity of small estuaries to environmental changes, the present study aimed to investigate how climate-induced stressors—particularly rainfall and salinity—affect zooplankton community structure in the Amazonian Taperaçu estuary (northern Brazil), where limited spatial scale amplifies ecological responses. This study evaluated the [...] Read more.
Given the high sensitivity of small estuaries to environmental changes, the present study aimed to investigate how climate-induced stressors—particularly rainfall and salinity—affect zooplankton community structure in the Amazonian Taperaçu estuary (northern Brazil), where limited spatial scale amplifies ecological responses. This study evaluated the effects of the extremely dry 2015–2016 El Niño period on hydrological patterns and zooplankton dynamics in this shallow tropical estuary. Eight sampling campaigns were conducted, with water and zooplankton samples analyzed using standard methods. Salinity, dissolved inorganic nutrients, and chlorophyll-a concentrations were affected by the marked decrease in rainfall caused by the El Niño event. These changes significantly impacted zooplankton community dynamics, especially the densities of marine-estuarine species Acartia lilljeborgii, Euterpina acutifrons, and Oikopleura dioica, which peaked during months of highest salinity. High recruitment of copepod larval stages was also observed, with peak densities coinciding with dominant adult forms. In contrast, coastal and estuarine species such as Acartia tonsa, Pseudodiaptomus marshi, Oithona oswaldocruzi, and Oithona hebes were negatively affected by reduced rainfall. Species richness, diversity, and evenness during the El Niño period were relatively high compared to previously reported values under normal conditions in the same ecosystem. Environmental and temporal variables accounted for over half the variance in predominant taxa density, indicating that El Niño–driven changes influenced zooplankton structure over time. This suggests that El Niño may have strong impacts at the secondary trophic level, likely to cascade throughout the estuarine food web, altering its dynamics and the flow of carbon and energy through the system. Full article
Show Figures

Figure 1

29 pages, 2258 KB  
Review
Powder Bed Fabrication of Copper: A Comprehensive Literature Review
by Vi Ho, Leila Ladani, Jafar Razmi, Samira Gruber, Anthony Bruce Murphy, Cherry Chen, Daniel East and Elena Lopez
Metals 2025, 15(10), 1114; https://doi.org/10.3390/met15101114 - 8 Oct 2025
Abstract
Powder bed fusion of copper has been extensively investigated using both laser-based (PBF-LB/M) and electron beam-based (PBF-EB/M) additive manufacturing technologies. Each technique offers unique benefits as well as specific limitations. Near-infrared (NIR) laser-based LPBF is widely accessible; however, the high reflectivity of copper [...] Read more.
Powder bed fusion of copper has been extensively investigated using both laser-based (PBF-LB/M) and electron beam-based (PBF-EB/M) additive manufacturing technologies. Each technique offers unique benefits as well as specific limitations. Near-infrared (NIR) laser-based LPBF is widely accessible; however, the high reflectivity of copper limits energy absorption, thereby resulting in a narrow processing window. Although optimized parameters can yield relative densities above 97%, issues such as keyhole porosity, incomplete melting, and anisotropy remain concerns. Green lasers, with higher absorptivity in copper, offer broader process windows and enable more consistent fabrication of high-density parts with superior electrical conductivity, often reaching or exceeding 99% relative density and 100% International Annealed Copper Standard (IACS). Mechanical properties, including tensile and yield strength, are also improved, though challenges remain in surface finish and geometrical resolution. In contrast, Electron Beam Powder Bed Fusion (EB-PBF) uses high-energy electron beams in a vacuum, eliminating oxidation and leveraging copper’s high conductivity to achieve high energy absorption at lower volumetric energy densities (~80 J/mm3). This results in consistently high relative densities (>99.5%) and excellent electrical and thermal conductivity, with additional benefits including faster scanning speeds and in situ monitoring capabilities. However, EB-PBF faces its own limitations, such as surface roughness and powder smoking. This paper provides a comprehensive review of the current state of laser-based (PBF-LB/M) and electron beam-based (PBF-EB/M) powder bed fusion processes for the additive manufacturing of copper, summarizing key trends, material properties, and process innovations. Both approaches continue to evolve, with ongoing research aimed at refining these technologies to enable the reliable and efficient additive manufacturing of high-performance copper components. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Figure 1

14 pages, 2155 KB  
Article
Analysis of Stator Material Influence on BLDC Motor Performance
by Daniel Ziemiański, Gabriela Chwalik-Pilszyk and Grzegorz Dudzik
Materials 2025, 18(19), 4630; https://doi.org/10.3390/ma18194630 - 7 Oct 2025
Abstract
Brushless DC (BLDC) motors are increasingly used in industrial applications due to their high efficiency, reliability, and low weight. However, their performance strongly depends on the electromagnetic properties of stator and rotor core materials. This study evaluates six BLDC motor configurations, employing materials [...] Read more.
Brushless DC (BLDC) motors are increasingly used in industrial applications due to their high efficiency, reliability, and low weight. However, their performance strongly depends on the electromagnetic properties of stator and rotor core materials. This study evaluates six BLDC motor configurations, employing materials such as M19 electrical steel, 1010 low-carbon steel, magnetic PLA, and ABS, and analyzes their impact using FEMM 4.2 finite element simulations. Key electromagnetic characteristics—including flux linkage, Back-EMF, torque, and torque ripple—were compared across configurations. The reference motor with M19 steel stator and 1010 steel rotor achieved ~7 mWb flux linkage, ~39 V pk–pk Back-EMF, and 1.44 Nm torque with ~49% ripple, confirming the suitability of laminated steels for high-power-density designs. Substituting M19 with 1010 steel in the stator reduced torque by less than 10%, indicating material interchangeability with minimal performance loss. By contrast, polymer-based designs exhibited drastic degradation: magnetic PLA yielded only 3.5% of the baseline torque with sixfold ripple increase, while ABS delivered nearly zero torque and >700% ripple. Hybrid configurations improved PLA-based results by 15–20%, though they remained far below ferromagnetic cores. Overall, results demonstrate a nearly linear relationship between material permeability and both flux linkage and Back-EMF, alongside a sharp rise in torque ripple at low permeability. The findings highlight the advantages of ferromagnetic and laminated steel cores for efficiency and stability, while polymer and hybrid cores are limited to lightweight demonstrator applications. Full article
Show Figures

Figure 1

14 pages, 1338 KB  
Article
Response of Depth-Stratified Soil Quality to Land-Use Conversion and Its Limiting Factors in Tropical Ecosystems
by Yanmin Li, Tianqi Zhang and Shihang Wang
Land 2025, 14(10), 2010; https://doi.org/10.3390/land14102010 - 7 Oct 2025
Abstract
Land degradation is known to alter soil properties and quality; however, its depth-dependent effects across contrasting land-use types and the key factors limiting soil recovery remain poorly quantified in tropical ecosystems. This study established a forest degradation gradient on Hainan Island, China, encompassing [...] Read more.
Land degradation is known to alter soil properties and quality; however, its depth-dependent effects across contrasting land-use types and the key factors limiting soil recovery remain poorly quantified in tropical ecosystems. This study established a forest degradation gradient on Hainan Island, China, encompassing mature forest, secondary forest, rubber plantation, and areca plantation. Soil physical (e.g., bulk density, porosity, water content, field capacity) and chemical (e.g., organic matter, nitrogen, phosphorus, and potassium fractions) properties were measured at three depths (0–20 cm, 20–40 cm, and 40–60 cm). A soil quality index (SQI) was constructed using principal component analysis, and obstacle degree modeling was applied to identify major limiting factors. The results showed that degradation of mature forests significantly reduced topsoil (0–20 cm) quality regardless of subsequent land-use type. In contrast, changes in medium (20–40 cm) and deep (40–60 cm) soil quality were land-use dependent. Conversion to secondary forests and areca plantations resulted in negligible effects, whereas transformation into rubber plantations significantly enhanced soil quality at medium and deep depths. Obstacle degree analysis identified available phosphorus, rather than nitrogen, as the primary limiting factor for soil quality in the region, accounting for 39.7% of all limitations across land-use types. This study demonstrates that the effects of tropical forest degradation on soil quality exhibit dual dependence on both soil depth and land-use type in tropical settings. Furthermore, it highlights the essential role of available phosphorus management in guiding soil restoration and sustainable land-use strategies in these vulnerable ecosystems. Full article
(This article belongs to the Special Issue Land Resource Use Efficiency and Sustainable Land Use)
Show Figures

Figure 1

12 pages, 1354 KB  
Article
Street Planted Trees Alter Leaf Functional Traits to Maintain Their Photosynthetic Activity
by Nicole Dziedzic, Miquel A. Gonzalez-Meler and Ahram Cho
Environments 2025, 12(10), 361; https://doi.org/10.3390/environments12100361 - 7 Oct 2025
Viewed by 72
Abstract
Urban expansion alters environmental conditions, influencing tree physiology and performance. Urban trees provide cooling, sequester carbon, support biodiversity, filter contaminants, and enhance human health. This study examines how two common urban trees—Norway Maple (Acer platanoides L.) and Little-leaved Linden (Tilia cordata [...] Read more.
Urban expansion alters environmental conditions, influencing tree physiology and performance. Urban trees provide cooling, sequester carbon, support biodiversity, filter contaminants, and enhance human health. This study examines how two common urban trees—Norway Maple (Acer platanoides L.) and Little-leaved Linden (Tilia cordata Mill.)—respond to urban site conditions by assessing leaf morphology, stomatal, and gas exchange traits across street and urban park sites in Chicago, IL. Street trees exhibited structural trait adjustments, including smaller leaf area, reduced specific leaf area, and increased stomatal density, potentially reflecting acclimation to more compact and impervious conditions. Norway Maple showed stable photosynthetic assimilation (A), stomatal conductance (gs), and transpiration (E) across sites, alongside higher intrinsic water-use efficiency (iWUE), indicating a conservative water-use strategy. In contrast, Little-leaved Linden maintained A and gs but showed elevated E and iWUE at street sites, suggesting adaptive shifts in water-use dynamics under street microenvironments. These findings highlight how species-specific physiological strategies and local site conditions interact to shape tree function in cities and underscore the importance of incorporating functional traits into urban forestry planning to improve ecosystem services and climate resilience. Full article
Show Figures

Figure 1

17 pages, 1470 KB  
Article
Stem-Centered Drought Tolerance in Mikania micrantha During the Dry Season
by Minling Cai, Minghao Chen, Junjie Zhang and Changlian Peng
Int. J. Mol. Sci. 2025, 26(19), 9722; https://doi.org/10.3390/ijms26199722 - 6 Oct 2025
Viewed by 142
Abstract
Mikania micrantha, commonly known as mile-a-minute weed, is listed among the world’s top 10 worst weeds. Although native to humid regions of South America, it has recently been found to colonize arid habitats as well. Despite pronounced seasonal hydroclimatic variations in South [...] Read more.
Mikania micrantha, commonly known as mile-a-minute weed, is listed among the world’s top 10 worst weeds. Although native to humid regions of South America, it has recently been found to colonize arid habitats as well. Despite pronounced seasonal hydroclimatic variations in South China and increasing drought due to global climate change, the mechanisms underlying M. micrantha’s drought tolerance remain poorly understood. In this study, we compared the photosynthetic responses of M. micrantha leaves and stems between the dry (June) and wet (December) seasons through field experiments. We measured changes in phenotype, photosynthetic characteristics, and the content of antioxidant and osmotic adjustment substances, using the co-occurring native vine Paederia scandens as a control. The results revealed that during the dry season, M. micrantha leaves exhibited wilting, along with significant reductions in relative water content (RWC), chlorophyll (Chl), soluble sugar (SS), and soluble protein (SP). In contrast, the stems of M. micrantha maintained relatively stable phenotypes and chlorophyll levels compared to those of P. scandens. Notably, M. micrantha stems exhibited significant increases in vessel wall thickness, vessel density, total phenol content, and the activities of peroxidase (POD) and ascorbate peroxidase (APX). Furthermore, compared to P. scandens, M. micrantha stems displayed a greater increase in cortex proportion, flavonoid content, and soluble protein content. Expression analysis of bZIP transcription factors further revealed drought-responsive upregulation of specific genes (bZIP60, ZIP42-1), suggesting their potential involvement in drought response. These results indicate that although the leaves of M. micrantha are susceptible to prolonged drought, the stems exhibit considerable resilience, which may be attributed to a combination of traits including structural modifications in stem anatomy, enhanced antioxidant capacity, and osmotic adjustment. These insights suggest that stem-specific adaptations are key to its drought tolerance, providing a theoretical foundation for understanding the habitat distribution of M. micrantha and informing effective management strategies. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

14 pages, 5454 KB  
Article
The Role of the Transition Metal in M2P (M = Fe, Co, Ni) Phosphides for Methane Activation and C–C Coupling Selectivity
by Abdulrahman Almithn
Catalysts 2025, 15(10), 954; https://doi.org/10.3390/catal15100954 - 5 Oct 2025
Viewed by 267
Abstract
Achieving selective, direct conversion of methane into value-added chemicals requires catalysts that can navigate the intrinsic trade-off between C–H bond activation and over-dehydrogenation. Transition metal phosphides (TMPs) have emerged as promising catalysts that can tune this selectivity. This work utilizes density functional theory [...] Read more.
Achieving selective, direct conversion of methane into value-added chemicals requires catalysts that can navigate the intrinsic trade-off between C–H bond activation and over-dehydrogenation. Transition metal phosphides (TMPs) have emerged as promising catalysts that can tune this selectivity. This work utilizes density functional theory (DFT) to systematically assess how the transition metal’s identity (M = Fe, Co, Ni) in isostructural M2P phosphides governs this balance. The findings reveal that the high reactivity of Fe2P and Co2P, which facilitates initial methane activation, also promotes facile deep dehydrogenation pathways to coke precursors like CH*. In stark contrast, Ni2P exhibits a moderated reactivity that kinetically hinders CH* formation while simultaneously exhibiting the lowest activation barrier for the C–C coupling of CH2* intermediates to form ethylene. This revealed trade-off between the high reactivity of Fe/Co phosphides and the high selectivity of Ni2P offers a guiding principle for the rational design of advanced bimetallic phosphides for efficient methane upgrading. Full article
(This article belongs to the Special Issue Advanced Catalysis for Energy and a Sustainable Environment)
Show Figures

Figure 1

15 pages, 5237 KB  
Article
Effect of Pressure on Pyrolytic and Oxidative Coking of JP-10 in Near-Isothermal Flowing Reactor
by Qian Zhang, Maogang He, Yabin Jin, Zizhen Huang, Tiantian Xu and Long Li
Energies 2025, 18(19), 5276; https://doi.org/10.3390/en18195276 - 4 Oct 2025
Viewed by 229
Abstract
JP-10 (exo-tetrahydrodicyclopentadiene) is a high-energy-density hydrocarbon broadly used in advanced aerospace propulsion as a regenerative cooling fluid; in this study, we aimed to clarify how fuel pressure affects its thermal degradation (oxidative and pyrolytic) in near-isothermal flowing reactor. Experiments were performed under oxidative [...] Read more.
JP-10 (exo-tetrahydrodicyclopentadiene) is a high-energy-density hydrocarbon broadly used in advanced aerospace propulsion as a regenerative cooling fluid; in this study, we aimed to clarify how fuel pressure affects its thermal degradation (oxidative and pyrolytic) in near-isothermal flowing reactor. Experiments were performed under oxidative conditions (wall temperature 623.15 K, p = 0.708–6.816 MPa) and pyrolytic conditions (wall temperature 793.15 K, p = 2.706–7.165 MPa); carbon deposits were quantified by LECO analysis, oxidation activity was assessed by temperature-programmed oxidation (TPO), and morphology was performed by FESEM and EDS. Results show that oxidative coking is minimal (5.37–14.95 μg·cm2) and largely insensitive to pressure in the liquid phase (1.882–6.816 MPa), whereas at 0.708 MPa (gas/phase-change conditions), deposition increases, implicating phase and local heat-transfer effects. Under oxidative conditions, deposits are predominantly amorphous carbon with a disordered structure, formed at relatively low temperatures, with only a few fiber-like metal sulfides identified by EDS. In contrast, under pyrolysis conditions, the deposits are predominantly carbon nanotubes, exhibiting well-defined tubular morphology formed at elevated temperatures via metal-catalyzed growth. The pyrolysis coking yield is substantially higher (66.88–221.89 μg·cm−2) and increases with pressure. The findings imply that the pressure influences the coking of JP-10 via phase state under oxidative conditions and residence time under pyrolytic conditions, while basic morphologies of coke deposits remain similar; operationally, maintaining the working pressure higher than the saturated vapor pressure can mitigate oxidation coking associated with phase transitions, and minimizing residence time can mitigate pyrolytic coking. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

22 pages, 3046 KB  
Article
Ecophysiological Adaptations of Musa haekkinenii to Light Intensity and Water Quality
by Milagros Ninoska Munoz-Salas, Adam B. Roddy, Arezoo Dastpak, Bárbara Nogueira Souza Costa and Amir Ali Khoddamzadeh
Horticulturae 2025, 11(10), 1188; https://doi.org/10.3390/horticulturae11101188 - 2 Oct 2025
Viewed by 332
Abstract
Musa haekkinenii is a compact wild banana species with emerging value in ornamental horticulture, yet its adaptive responses to environmental factors remain underexplored. This study investigated the morpho-physiological and anatomical responses of M. haekkinenii to contrasting light regimes and irrigation water qualities to [...] Read more.
Musa haekkinenii is a compact wild banana species with emerging value in ornamental horticulture, yet its adaptive responses to environmental factors remain underexplored. This study investigated the morpho-physiological and anatomical responses of M. haekkinenii to contrasting light regimes and irrigation water qualities to identify optimal cultivation conditions. A 210-day factorial experiment was conducted under subtropical greenhouse conditions using a split-plot design, with light intensity (full sun vs. shade) and irrigation water quality (reverse osmosis vs. well water) as treatment factors. Plants grown under shaded conditions and irrigated with reverse osmosis water exhibited significant increases in plant height, pseudostem diameter, leaf number, and sucker production, alongside enhanced pigment accumulation and photosynthetic performance. In contrast, full-sun plants irrigated with well water showed reduced growth, lower photosynthetic efficiency, and increased substrate salinity, indicating additive effects of light and osmotic stress. Leaf anatomical analysis revealed greater stomatal size and density under shade, particularly when combined with high-quality irrigation. Multivariate analysis further supported the association of favorable trait expression with shaded conditions and reverse osmosis water. These findings highlight the importance of microenvironmental management in enhancing the physiological stability and ornamental quality of M. haekkinenii, supporting its potential application in sustainable urban landscaping. Full article
(This article belongs to the Special Issue Management of Artificial Light in Horticultural Crops)
Show Figures

Graphical abstract

Back to TopTop