Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = delta amino acids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3204 KiB  
Article
Host Shaping Associated Microbiota in Hydrothermal Vent Snails from the Indian Ocean Ridge
by Xiang Zeng, Jianwei Chen, Guilin Liu, Yadong Zhou, Liping Wang, Yaolei Zhang, Shanshan Liu and Zongze Shao
Biology 2025, 14(8), 954; https://doi.org/10.3390/biology14080954 - 29 Jul 2025
Viewed by 241
Abstract
Snails at hydrothermal vents rely on symbiotic bacteria for nutrition; however, the specifics of these associations in adapting to such extreme environments remain underexplored. This study investigated the community structure and metabolic potential of bacteria associated with two Indian Ocean vent snails, Chrysomallon [...] Read more.
Snails at hydrothermal vents rely on symbiotic bacteria for nutrition; however, the specifics of these associations in adapting to such extreme environments remain underexplored. This study investigated the community structure and metabolic potential of bacteria associated with two Indian Ocean vent snails, Chrysomallon squamiferum and Gigantopelta aegis. Using microscopic, phylogenetic, and metagenomic analyses, this study examines bacterial communities inhabiting the foot and gland tissues of these snails. G. aegis exhibited exceptionally low bacterial diversity (Shannon index 0.14–0.18), primarily Gammaproteobacteria (99.9%), including chemosynthetic sulfur-oxidizing Chromatiales using Calvin–Benson–Bassham cycle and methane-oxidizing Methylococcales in the glands. C. squamiferum hosted significantly more diverse symbionts (Shannon indices 1.32–4.60). Its black variety scales were dominated by Campylobacterota (67.01–80.98%), such as Sulfurovum, which perform sulfur/hydrogen oxidation via the reductive tricarboxylic acid cycle, with both Campylobacterota and Gammaproteobacteria prevalent in the glands. The white-scaled variety of C. squamiferum had less Campylobacterota but a higher diversity of heterotrophic bacteria, including Delta-/Alpha-Proteobacteria, Bacteroidetes, and Firmicutes (classified as Desulfobacterota, Pseudomomonadota, Bacteroidota, and Bacillota in GTDB taxonomy). In C. squamiferum, Gammaproteobacteria, including Chromatiales, Thiotrichales, and a novel order “Endothiobacterales,” were chemosynthetic, capable of oxidizing sulfur, hydrogen, or iron, and utilizing the Calvin–Benson–Bassham cycle for carbon fixation. Heterotrophic Delta- and Alpha-Proteobacteria, Bacteroidetes, and Firmicutes potentially utilize organic matter from protein, starch, collagen, amino acids, thereby contributing to the holobiont community and host nutrition accessibility. The results indicate that host species and intra-species variation, rather than the immediate habitat, might shape the symbiotic microbial communities, crucial for the snails’ adaptation to vent ecosystems. Full article
Show Figures

Figure 1

21 pages, 3101 KiB  
Article
Evaluation of the Mutational Preferences Throughout the Whole Genome of the Identified Variants of the SARS-CoV-2 Virus Isolates in Bangladesh
by Laila Anjuman Banu, Nahid Azmin, Mahmud Hossain, Nurun Nahar Nila, Sharadindu Kanti Sinha and Zahid Hassan
Int. J. Mol. Sci. 2025, 26(13), 6118; https://doi.org/10.3390/ijms26136118 - 25 Jun 2025
Viewed by 412
Abstract
The study aimed to identify the variants of SARS-CoV-2 (Severe Acute Respiratory Syndrome related coronavirus-2) virus isolates within the window of March 2021 to February 2022 in Bangladesh and investigate their comparative mutational profiles, preferences and phylogenetics. After the collection of the sample [...] Read more.
The study aimed to identify the variants of SARS-CoV-2 (Severe Acute Respiratory Syndrome related coronavirus-2) virus isolates within the window of March 2021 to February 2022 in Bangladesh and investigate their comparative mutational profiles, preferences and phylogenetics. After the collection of the sample specimen and RNA extraction, the genome was sequenced using Illumina COVID Seq, and NGS data analysis was performed in DRAGEN COVID Lineage software (version 3.5.9). Among the 96 virus isolates, 24 (25%) were from Delta (clade 21A (n = 21) and 21J (n = 3)) and 72 (75%) were from Omicron (clade 20A (n = 6) and 20B (n = 66)). In Omicron and Delta, substitutions were much higher than deletions and insertions. High-frequency nucleotide change patterns were similar (for C > T, and A > G) in both of the variants, but different in some (i.e., G > T, G > A). Preferences for specific amino acids over the other amino acids in substitutions and deletions were observed to vary in different proteins of these variants. Phylogenetic analysis showed that the most ancestral variants were from clade 21A and clade 20A, and then the other variants emerged. The study demonstrates noteworthy variations of Omicron and Delta in mutational pattern and preferences for amino acids and protein, and further study on their biological functional impact might unveil the reason behind their mutational strategies and behavioral changes. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 10130 KiB  
Article
Epidemiological, Clinical, and Molecular Insights into Canine Distemper Virus in the Mekong Delta Region of Vietnam
by Tien My Van, Dao Thi Anh Tran, Chien Tran Phuoc Nguyen, Giang Truong Huynh, Mong Thi Nhu Luu, Trung Quang Le and Bich Ngoc Tran
Viruses 2025, 17(6), 781; https://doi.org/10.3390/v17060781 - 29 May 2025
Viewed by 535
Abstract
Canine distemper virus (CDV) is a highly contagious pathogen and causes a fatal systemic disease in domestic dogs and wild carnivores worldwide. Despite CDV infections being monitored globally, studies on CDV in Vietnam seem to be limited. This study, therefore, investigated the epidemiological, [...] Read more.
Canine distemper virus (CDV) is a highly contagious pathogen and causes a fatal systemic disease in domestic dogs and wild carnivores worldwide. Despite CDV infections being monitored globally, studies on CDV in Vietnam seem to be limited. This study, therefore, investigated the epidemiological, clinical, and molecular characteristics of CDV in the Mekong Delta (MD) region of Vietnam. A total of 6687 ocular/nasal swabs were collected from CDV-suspected dogs across seven cities/provinces. CDV infection was detected in 6.19% (414 dogs) of suspected dogs using a commercially available rapid kit, with infection associated with age, roaming status, and vaccination status. Hematological and blood biochemical analysis of CDV-infected dogs revealed anemia, leukopenia, neutrophilia, thrombocytopenia, a slight increase in aspartate aminotransferase (AST) levels, and a significant increase in blood urea nitrogen (BUN) levels. Molecular characterization of partial hemagglutinin (H) and fusion (F) genes exhibited high nucleotide and amino acid homology with the Asia-1 genotype. Phylogenetic analysis confirmed that the field sequences were clustered into the Asia-1 genotype together with the neighboring countries. These findings provide important insights into the current epidemiological, clinical, and molecular features of CDV circulating in Vietnam. Full article
(This article belongs to the Special Issue Canine Distemper Virus)
Show Figures

Figure 1

22 pages, 6177 KiB  
Article
The Virus Entry Pathway Determines Sensitivity to the Antiviral Peptide TAT-I24
by Eva Kicker, Antonio Kouros, Kurt Zatloukal and Hanna Harant
Viruses 2025, 17(4), 458; https://doi.org/10.3390/v17040458 - 23 Mar 2025
Viewed by 2917
Abstract
The peptide TAT-I24, a fusion of the TAT peptide (amino acids 48–60) and the 9-mer peptide I24, has been previously shown to neutralize several double-stranded (ds) DNA viruses in vitro. We have now extended the testing to potentially sensitive RNA viruses and analyzed [...] Read more.
The peptide TAT-I24, a fusion of the TAT peptide (amino acids 48–60) and the 9-mer peptide I24, has been previously shown to neutralize several double-stranded (ds) DNA viruses in vitro. We have now extended the testing to potentially sensitive RNA viruses and analyzed the antiviral effect of the peptide against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). In Vero E6 cells, TAT-I24 neutralized the human 2019-nCoV isolate (Wuhan variant) in a dose-dependent manner, while it was unable to neutralize two SARS-CoV-2 variants of concern, Delta and Omicron. Moreover, TAT-I24 could not significantly neutralize any of the SARS-CoV-2 variants in the human lung carcinoma cell line Calu-3, which provides an alternative entry route for SARS-CoV-2 by direct membrane fusion. Therefore, a possible dependence on virus uptake by endocytosis was investigated by exposing Vero E6 cells to chloroquine (CQ), an inhibitor of endosomal acidification. The Wuhan variant was highly sensitive to inhibition by CQ, an effect which was further enhanced by TAT-I24, while the Delta variant was less sensitive to inhibition by higher concentrations of CQ compared to the Wuhan variant. The microscopic analysis of COS-7 cells using a rhodamine-labeled TAT-I24 (Rho-TAT-I24) showed the endosomal localization of fluorescent TAT-I24 and co-localization with transfected GFP-Rab14 but not GFP-Rab5. As these proteins are found in distinct endosomal pathways, our results indicate that the virus entry pathway determines sensitivity to the peptide. Full article
(This article belongs to the Special Issue Antiviral Peptide)
Show Figures

Figure 1

19 pages, 3982 KiB  
Article
Comparative Interactome Profiling of Nonstructural Protein 3 Across SARS-CoV-2 Variants Emerged During the COVID-19 Pandemic
by Valeria Garcia Lopez and Lars Plate
Viruses 2025, 17(3), 447; https://doi.org/10.3390/v17030447 - 20 Mar 2025
Viewed by 778
Abstract
SARS-CoV-2 virus and its variants remain a global health threat, due to their capacity for rapid evolution. Variants throughout the COVID-19 pandemic exhibited variations in virulence, impacting vaccine protection and disease severity. Investigating nonstructural protein variants is critical to understanding viral evolution and [...] Read more.
SARS-CoV-2 virus and its variants remain a global health threat, due to their capacity for rapid evolution. Variants throughout the COVID-19 pandemic exhibited variations in virulence, impacting vaccine protection and disease severity. Investigating nonstructural protein variants is critical to understanding viral evolution and manipulation of host protein interactions. We focus on nonstructural protein 3 (nsp3), with multiple domains with different activities, including viral polyprotein cleavage, host deubiquitylation, de-ISGylation, and double-membrane vesicle formation. Using affinity purification–mass spectrometry (AP-MS), we identify differential protein interactions in nsp3 caused by mutations found in variants identified between 2019 and 2024: Alpha 20I, Beta 20H, Delta 21I, Delta 21J, Gamma 20J, Kappa 21B, Lambda 21G, Omicron 21K, and Omicron 21L. A small set of amino acid substitutions in the N-terminal region of nsp3 (nsp3.1) could be traced to increased interactions with RNA-binding proteins, which are vital in viral replication. Meanwhile, variants of the central region of nsp3 (nsp3.2) were found to share interactions with protein quality control machinery, including ER-associated degradation. In this construct, shared trends in interactor enrichment are observed between Omicron 21K and Delta 21I. These results underscore how minor mutations reshape host interactions, emphasizing the evolutionary arms race between the host and virus. We provide a roadmap to track the interaction changes driven by SARS-CoV-2 variant evolution. Full article
(This article belongs to the Special Issue SARS-CoV-2 Variants, Vaccines, and Immune Responses)
Show Figures

Figure 1

14 pages, 2810 KiB  
Article
Epidemiological Study and Genetic Diversity Assessment of Porcine Epidemic Diarrhea Virus (PEDV) in Yunnan Province, China
by Pei Zhu, Hong Yuan, Xianghua Shu, Xue Li, Yaoxing Cui, Lin Gao, Rui Yan, Taoying Yu, Chunlian Song and Jun Yao
Viruses 2025, 17(2), 264; https://doi.org/10.3390/v17020264 - 14 Feb 2025
Viewed by 1020
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly contagious pathogen responsible for devastating enteric disease and lethal watery diarrhea, leading to significant economic losses in the global swine industry. Understanding the epidemiology and genetic diversity of PEDV over the past decade is crucial [...] Read more.
Porcine epidemic diarrhea virus (PEDV) is a highly contagious pathogen responsible for devastating enteric disease and lethal watery diarrhea, leading to significant economic losses in the global swine industry. Understanding the epidemiology and genetic diversity of PEDV over the past decade is crucial for the effective prevention and treatment of porcine epidemic diarrhea. In this study, 1851 fecal samples were collected from pigs exhibiting diarrhea symptoms across 11 cities in Yunnan Province between 2013 and 2022. The prevalence of PEDV, along with other common swine diarrhea viruses, including porcine transmissible gastroenteritis virus (TGEV), porcine rotavirus (PoRV), porcine Sapporo virus (PoSaV), porcine stellate virus (PaStV), and porcine delta coronavirus (PDCoV) was assessed using a polymerase chain reaction (PCR) assay. The results revealed a total detection rate of 52.94% (980/1851) for the six viruses, with PEDV accounting for 25.93% (480/1851) of cases. Further analysis showed that weaned piglets were more susceptible to PEDV than fattening pigs, with the highest prevalence observed in spring (61.52%, 275/447) and the lowest in summer (12.68%, 97/765). Dual infections were also identified, with PEDV + PoSaV being the most common combination (2.81%, 52/1851), followed by PEDV + PoRV, with a detection rate of 1.67% (31/1851). Phylogenetic analysis of the PEDV S genes revealed that the 28 epidemic strains in Yunnan Province shared a nucleotide sequence homology from 91.4% to 98.4% and an amino acid sequence homology ranging from 85.6% to 99.3%. All strains were classified as GII variant strains. This study provides a comprehensive overview of the epidemiology of PEDV and its co-infection patterns with other common diarrhea-causing viruses in the swine herds of Yunnan Province over the past decade. These findings offer valuable insights for the development of effective prevention and control strategies to mitigate the impact of PEDV and other enteroviruses on the swine industry in Yunnan Province. Full article
(This article belongs to the Special Issue Porcine Viruses 2024)
Show Figures

Figure 1

24 pages, 7146 KiB  
Article
Molecular and Functional Analysis of the Stearoyl-CoA Desaturase (SCD) Gene in Buffalo: Implications for Milk Fat Synthesis
by Wenbin Dao, Xinyang Fan, Jianping Liang, Tao Chen, Zaoshang Chang, Yongyun Zhang and Yongwang Miao
Animals 2024, 14(22), 3191; https://doi.org/10.3390/ani14223191 - 7 Nov 2024
Cited by 1 | Viewed by 1598
Abstract
The SCD is a rate-limiting enzyme that catalyzes the synthesis of monounsaturated fatty acids (MUFAs) in dairy cows; however, its role in the mammary gland of buffalo is not well understood. In this study, we isolated and characterized the complete coding sequence (CDS) [...] Read more.
The SCD is a rate-limiting enzyme that catalyzes the synthesis of monounsaturated fatty acids (MUFAs) in dairy cows; however, its role in the mammary gland of buffalo is not well understood. In this study, we isolated and characterized the complete coding sequence (CDS) of the buffalo SCD gene from mammary gland tissue and investigated its effects on milk fat synthesis using bioinformatics analyses, tissue differential expression detection, and cellular functional experiments. The cloned SCD gene has a CDS length of 1080 bp, encoding a protein of 359 amino acids. This protein is hydrophilic, lacks a signal peptide, and contains four transmembrane domains, including 10 conserved motifs and a Delta9-FADS domain, characteristic of the fatty acid desaturase family involved in unsaturated fatty acid biosynthesis within the endoplasmic reticulum. Molecular characterization revealed that the physicochemical properties, conserved domains, structures, and functions of buffalo SCD are highly similar to those in other Bovidae species. Among the tissues analyzed, SCD expression was highest in the mammary gland during lactation and in the cerebellum during dry-off period. Notably, SCD expression in the mammary gland was significantly higher during lactation compared to the dry-off period. Subcellular localization experiments confirmed that SCD functions in the endoplasmic reticulum of buffalo mammary epithelial cells (BuMECs). Functional overexpression and interference experiments in BuMECs demonstrated that SCD promotes milk fat synthesis by affecting the expression of lipid synthesis-related genes such as ACACA, FASN, and DGAT1, as well as milk fat regulatory genes like SREBFs and PPARG, thereby influencing intracellular triglyceride (TAG) content. Additionally, 18 single-nucleotide polymorphisms (SNPs) were identified in the buffalo SCD gene, with a specific SNP at c.-605, showing potential as molecular markers for improving milk production traits. These findings highlight that the SCD gene is a key gene in buffalo milk fat synthesis, involved in the de novo synthesis of milk fatty acids. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

14 pages, 8410 KiB  
Article
Functional Characterization of the Paeonia ostii P5CS Gene under Drought Stress
by Yuting Luan, Honglei An, Zijie Chen, Daqiu Zhao and Jun Tao
Plants 2024, 13(15), 2145; https://doi.org/10.3390/plants13152145 - 2 Aug 2024
Cited by 4 | Viewed by 2012
Abstract
With persistent elevation in global temperature, water scarcity becomes a major threat to plant growth and development, yield security, agricultural sustainability, and food production. Proline, as a key osmolyte and antioxidant, plays a critical role in regulating drought tolerance in plants, especially its [...] Read more.
With persistent elevation in global temperature, water scarcity becomes a major threat to plant growth and development, yield security, agricultural sustainability, and food production. Proline, as a key osmolyte and antioxidant, plays a critical role in regulating drought tolerance in plants, especially its key biosynthetic enzyme, delta-1-pyrroline-5-carboxylate synthase (P5CS), which always positively responds to drought stress. As an important woody oil crop, the expansion of Paeonia ostii cultivation needs to address the issue of plant drought tolerance. Here, we isolated a PoP5CS gene from P. ostii, with an open reading frame of 1842 bp encoding 613 amino acids. PoP5CS expression progressively increased in response to increasing drought stress, and it was localized in the cytoplasm. Silencing of PoP5CS in P. ostii reduced drought tolerance, accompanied by decreased proline content, elevated reactive oxygen species (ROS) accumulation, and increased relative electrical conductivity (REC) and malondialdehyde (MDA) levels. Conversely, overexpression of PoP5CS in Nicotiana tabacum plants enhanced drought resistance, manifested by increased proline levels, reduced ROS accumulation, and lower REC and MDA contents. This study isolates PoP5CS from P. ostii and validates its role in regulating drought tolerance, providing valuable genetic resources and theoretical insights for the development of drought-resistant P. ostii cultivars. Full article
(This article belongs to the Special Issue Growth, Development, and Stress Response of Horticulture Plants)
Show Figures

Figure 1

16 pages, 3114 KiB  
Article
Exploring the PDZ, DUF, and LIM Domains of Pdlim5 in Dendrite Branching
by Yogesh Srivastava, Maxsam Donta, Lydia L. Mireles, Adriana Paulucci-Holthauzen, Leilei Shi, Mark T. Bedford, M. Neal Waxham and Pierre D. McCrea
Int. J. Mol. Sci. 2024, 25(15), 8326; https://doi.org/10.3390/ijms25158326 - 30 Jul 2024
Viewed by 1333
Abstract
The branched architecture of neuronal dendrites is a key factor in how neurons form ordered networks and discoveries continue to be made identifying proteins and protein–protein interactions that direct or execute the branching and extension of dendrites. Our prior work showed that the [...] Read more.
The branched architecture of neuronal dendrites is a key factor in how neurons form ordered networks and discoveries continue to be made identifying proteins and protein–protein interactions that direct or execute the branching and extension of dendrites. Our prior work showed that the molecular scaffold Pdlim5 and delta-catenin, in conjunction, are two proteins that help regulate the branching and elongation of dendrites in cultured hippocampal neurons and do so through a phosphorylation-dependent mechanism triggered by upstream glutamate signaling. In this report we have focused on Pdlim5’s multiple scaffolding domains and how each contributes to dendrite branching. The three identified regions within Pdlim5 are the PDZ, DUF, and a trio of LIM domains; however, unresolved is the intra-molecular conformation of Pdlim5 as well as which domains are essential to regulate dendritic branching. We address Pdlim5’s structure and function by examining the role of each of the domains individually and using deletion mutants in the context of the full-length protein. Results using primary hippocampal neurons reveal that the Pdlim5 DUF domain plays a dominant role in increasing dendritic branching. Neither the PDZ domain nor the LIM domains alone support increased branching. The central role of the DUF domain was confirmed using deletion mutants in the context of full-length Pdlim5. Guided by molecular modeling, additional domain mapping studies showed that the C-terminal LIM domain forms a stable interaction with the N-terminal PDZ domain, and we identified key amino acid residues at the interface of each domain that are needed for this interaction. We posit that the central DUF domain of Pdlim5 may be subject to modulation in the context of the full-length protein by the intra-molecular interaction between the N-terminal PDZ and C-terminal LIM domains. Overall, our studies reveal a novel mechanism for the regulation of Pdlim5’s function in the regulation of neuronal branching and highlight the critical role of the DUF domain in mediating these effects. Full article
(This article belongs to the Collection Feature Papers in Molecular Neurobiology)
Show Figures

Figure 1

19 pages, 6270 KiB  
Article
A Comparative Analysis of SARS-CoV-2 Variants of Concern (VOC) Spike Proteins Interacting with hACE2 Enzyme
by Jiawei Chen, Lingtao Chen, Heng Quan, Soongoo Lee, Kaniz Fatama Khan, Ying Xie, Qiaomu Li, Maria Valero, Zhiyu Dai and Yixin Xie
Int. J. Mol. Sci. 2024, 25(15), 8032; https://doi.org/10.3390/ijms25158032 - 23 Jul 2024
Cited by 2 | Viewed by 1688
Abstract
In late 2019, the emergence of a novel coronavirus led to its identification as SARS-CoV-2, precipitating the onset of the COVID-19 pandemic. Many experimental and computational studies were performed on SARS-CoV-2 to understand its behavior and patterns. In this research, Molecular Dynamic (MD) [...] Read more.
In late 2019, the emergence of a novel coronavirus led to its identification as SARS-CoV-2, precipitating the onset of the COVID-19 pandemic. Many experimental and computational studies were performed on SARS-CoV-2 to understand its behavior and patterns. In this research, Molecular Dynamic (MD) simulation is utilized to compare the behaviors of SARS-CoV-2 and its Variants of Concern (VOC)-Alpha, Beta, Gamma, Delta, and Omicron-with the hACE2 protein. Protein structures from the Protein Data Bank (PDB) were aligned and trimmed for consistency using Chimera, focusing on the receptor-binding domain (RBD) responsible for ACE2 interaction. MD simulations were performed using Visual Molecular Dynamics (VMD) and Nanoscale Molecular Dynamics (NAMD2), and salt bridges and hydrogen bond data were extracted from the results of these simulations. The data extracted from the last 5 ns of the 10 ns simulations were visualized, providing insights into the comparative stability of each variant’s interaction with ACE2. Moreover, electrostatics and hydrophobic protein surfaces were calculated, visualized, and analyzed. Our comprehensive computational results are helpful for drug discovery and future vaccine designs as they provide information regarding the vital amino acids in protein-protein interactions (PPIs). Our analysis reveals that the Original and Omicron variants are the two most structurally similar proteins. The Gamma variant forms the strongest interaction with hACE2 through hydrogen bonds, while Alpha and Delta form the most stable salt bridges; the Omicron is dominated by positive potential in the binding site, which makes it easy to attract the hACE2 receptor; meanwhile, the Original, Beta, Delta, and Omicron variants show varying levels of interaction stability through both hydrogen bonds and salt bridges, indicating that targeted therapeutic agents can disrupt these critical interactions to prevent SARS-CoV-2 infection. Full article
(This article belongs to the Special Issue Structure, Function and Dynamics in Proteins: 2nd Edition)
Show Figures

Figure 1

17 pages, 5117 KiB  
Article
Combined Pretreatment with Bioequivalent Doses of Plant Growth Regulators Alleviates Dehydration Stress in Lactuca sativa
by Irina I. Vaseva, Iskren Sergiev, Dessislava Todorova, Martynas Urbutis, Giedrė Samuolienė and Lyudmila Simova-Stoilova
Horticulturae 2024, 10(6), 544; https://doi.org/10.3390/horticulturae10060544 - 23 May 2024
Viewed by 1743
Abstract
Plant hormones regulate adaptive responses to various biotic and abiotic stress factors. Applied exogenously, they trigger the natural plant defense mechanisms, a feature that could be implemented in strategies for supporting crop resilience. The potential of the exogenous cytokinin-like acting compound (kinetin), the [...] Read more.
Plant hormones regulate adaptive responses to various biotic and abiotic stress factors. Applied exogenously, they trigger the natural plant defense mechanisms, a feature that could be implemented in strategies for supporting crop resilience. The potential of the exogenous cytokinin-like acting compound (kinetin), the auxin analogue 1-naphtyl acetic acid (NAA), abscisic acid (ABA) and the ethyleneprecursor 1-aminocyclopropane-1-carboxylic acid (ACC) to mitigate dehydration was tested on Lactuca sativa (lettuce) grown on 12% polyethylene glycol (PEG). Priming with different blends containing these plant growth regulators (PGRs) applied in bioequivalent concentrations was evaluated through biometric measurements and biochemical analyses. The combined treatment with the four compounds exhibited the best dehydration protective effect. The antioxidative enzyme profiling of the PGR-primed individuals revealed increased superoxide dismutase (SOD), catalase and peroxidase activity in the leaves. Immunodetection of higher levels of the rate-limiting enzyme for proline biosynthesis (delta-pyroline-5-carboxylate synthase) in the primed plants coincided with a significantly higher content of the amino acid measured in the leaves. These plants also accumulated particular dehydrin types, which may have contributed to the observed stress-relieving effect. The four-component mix applied by spraying or through the roots exerted similar stress-mitigating properties on soil-grown lettuce subjected to moderate drought. Full article
(This article belongs to the Special Issue Horticultural Production under Drought Stress)
Show Figures

Graphical abstract

16 pages, 1697 KiB  
Review
Molecular Mechanisms and Therapeutic Potential of Gabapentin with a Focus on Topical Formulations to Treat Ocular Surface Diseases
by Dario Rusciano
Pharmaceuticals 2024, 17(5), 623; https://doi.org/10.3390/ph17050623 - 11 May 2024
Cited by 7 | Viewed by 6946
Abstract
Gabapentin (GBP) was originally developed as a potential agonist for Gamma-Amino-Butyric-Acid (GABA) receptors, aiming to inhibit the activation of pain-signaling neurons. Contrary to initial expectations, it does not bind to GABA receptors. Instead, it exhibits several distinct pharmacological activities, including: (1) binding to [...] Read more.
Gabapentin (GBP) was originally developed as a potential agonist for Gamma-Amino-Butyric-Acid (GABA) receptors, aiming to inhibit the activation of pain-signaling neurons. Contrary to initial expectations, it does not bind to GABA receptors. Instead, it exhibits several distinct pharmacological activities, including: (1) binding to the alpha-2-delta protein subunit of voltage-gated calcium channels in the central nervous system, thereby blocking the excitatory influx of calcium; (2) reducing the expression and phosphorylation of CaMKII via modulation of ERK1/2 phosphorylation; (3) inhibiting glutamate release and interfering with the activation of NMDA receptors; (4) enhancing GABA synthesis; (5) increasing cell-surface expression of δGABA_A receptors, contributing to its antinociceptive, anticonvulsant, and anxiolytic-like effects. Additionally, GBP displays (6) inhibition of NF-kB activation and subsequent production of inflammatory cytokines, and (7) stimulation of the purinergic adenosine A1 receptor, which supports its anti-inflammatory and wound-healing properties. Initially approved for treating seizures and postherpetic neuralgia, GBP is now broadly used for various conditions, including psychiatric disorders, acute and chronic neuropathic pain, and sleep disturbances. Recently, as an eye drop formulation, it has also been explored as a therapeutic option for ocular surface discomfort in conditions such as dry eye, neurotrophic keratitis, corneal ulcers, and neuropathic ocular pain. This review aims to summarize the evidence supporting the molecular effects of GBP, with a special emphasis on its applications in ocular surface diseases. Full article
(This article belongs to the Special Issue Ophthalmic Pharmacology)
Show Figures

Figure 1

25 pages, 4836 KiB  
Article
Genomic Surveillance and Mutation Analysis of SARS-CoV-2 Variants among Patients in Saudi Arabia
by Feda A. Alsuwairi, Asma N. Alsaleh, Dalia A. Obeid, Ahmed A. Al-Qahtani, Reem S. Almaghrabi, Basma M. Alahideb, Maha A. AlAbdulkareem, Madain S. Alsanea, Layla A. Alharbi, Sahar I. Althawadi, Sara A. Altamimi, Abeer N. Alshukairi and Fatimah S. Alhamlan
Microorganisms 2024, 12(3), 467; https://doi.org/10.3390/microorganisms12030467 - 26 Feb 2024
Cited by 5 | Viewed by 2953
Abstract
The genome of severe acute respiratory coronavirus-2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019 (COVID-19), has undergone a rapid evolution, resulting in the emergence of multiple SARS-CoV-2 variants with amino acid changes. This study aimed to sequence the whole genome of SARS-CoV-2 [...] Read more.
The genome of severe acute respiratory coronavirus-2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019 (COVID-19), has undergone a rapid evolution, resulting in the emergence of multiple SARS-CoV-2 variants with amino acid changes. This study aimed to sequence the whole genome of SARS-CoV-2 and detect the variants present in specimens from Saudi Arabia. Furthermore, we sought to analyze and characterize the amino acid changes in the various proteins of the identified SARS-CoV-2 variants. A total of 1161 samples from patients diagnosed with COVID-19 in Saudi Arabia, between 1 April 2021 and 31 July 2023, were analyzed. Whole genome sequencing was employed for variant identification and mutation analysis. The statistical analysis was performed using the Statistical Analytical Software SAS, version 9.4, and GraphPad, version 9.0. This study identified twenty-three variants and subvariants of SARS-CoV-2 within the population, with the Omicron BA.1 (21K) variant (37.0%) and the Delta (21J) variant (12%) being the most frequently detected. Notably, the Omicron subvariants exhibited a higher mean mutation rate. Amino acid mutations were observed in twelve proteins. Among these, the spike (S), ORF1a, nucleocapsid (N), and ORF1b proteins showed a higher frequency of amino acid mutations compared to other the viral proteins. The S protein exhibited the highest incidence of amino acid mutations (47.6%). Conversely, the ORF3a, ORF8, ORF7a, ORF6, and ORF7b proteins appeared more conserved, demonstrating the lowest percentage and frequency of amino acid mutations. The investigation of structural protein regions revealed the N-terminal S1 subunit of the S protein to frequently harbor mutations, while the N-terminal domain of the envelope (E) protein displayed the lowest mutation frequency. This study provides insights into the variants and genetic diversity of SARS-CoV-2, underscoring the need for further research to comprehend its genome evolution and the occurrence of mutations. These findings are pertinent to the development of testing approaches, therapeutics, and vaccine strategies. Full article
Show Figures

Figure 1

31 pages, 2909 KiB  
Article
CLPP-Null Eukaryotes with Excess Heme Biosynthesis Show Reduced L-arginine Levels, Probably via CLPX-Mediated OAT Activation
by Jana Key, Suzana Gispert, Arvind Reddy Kandi, Daniela Heinz, Andrea Hamann, Heinz D. Osiewacz, David Meierhofer and Georg Auburger
Biomolecules 2024, 14(2), 241; https://doi.org/10.3390/biom14020241 - 19 Feb 2024
Cited by 1 | Viewed by 2678
Abstract
The serine peptidase CLPP is conserved among bacteria, chloroplasts, and mitochondria. In humans and mice, its loss causes Perrault syndrome, which presents with growth deficits, infertility, deafness, and ataxia. In the filamentous fungus Podospora anserina, CLPP loss leads to longevity. CLPP substrates [...] Read more.
The serine peptidase CLPP is conserved among bacteria, chloroplasts, and mitochondria. In humans and mice, its loss causes Perrault syndrome, which presents with growth deficits, infertility, deafness, and ataxia. In the filamentous fungus Podospora anserina, CLPP loss leads to longevity. CLPP substrates are selected by CLPX, an AAA+ unfoldase. CLPX is known to target delta-aminolevulinic acid synthase (ALAS) to promote pyridoxal phosphate (PLP) binding. CLPX may also influence cofactor association with other enzymes. Here, the evaluation of P. anserina metabolomics highlighted a reduction in arginine/histidine levels. In Mus musculus cerebellum, reductions in arginine/histidine and citrulline occurred with a concomitant accumulation of the heme precursor protoporphyrin IX. This suggests that the increased biosynthesis of 5-carbon (C5) chain deltaALA consumes not only C4 succinyl-CoA and C1 glycine but also specific C5 delta amino acids. As enzymes responsible for these effects, the elevated abundance of CLPX and ALAS is paralleled by increased OAT (PLP-dependent, ornithine delta-aminotransferase) levels. Possibly as a consequence of altered C1 metabolism, the proteome profiles of P. anserina CLPP-null cells showed strong accumulation of a methyltransferase and two mitoribosomal large subunit factors. The reduced histidine levels may explain the previously observed metal interaction problems. As the main nitrogen-storing metabolite, a deficiency in arginine would affect the urea cycle and polyamine synthesis. Supplementation of arginine and histidine might rescue the growth deficits of CLPP-mutant patients. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

21 pages, 3632 KiB  
Article
Differential Expression of Stress Adaptation Genes in a Diatom Ulnaria acus under Different Culture Conditions
by Elvira Bayramova, Darya Petrova, Artyom Marchenkov, Alexey Morozov, Yuri Galachyants, Yulia Zakharova, Yekaterina Bedoshvili and Yelena Likhoshway
Int. J. Mol. Sci. 2024, 25(4), 2314; https://doi.org/10.3390/ijms25042314 - 15 Feb 2024
Cited by 1 | Viewed by 2115
Abstract
Diatoms are a group of unicellular eukaryotes that are essential primary producers in aquatic ecosystems. The dynamic nature of their habitat necessitates a quick and specific response to various stresses. However, the molecular mechanisms of their physiological adaptations are still underexplored. In this [...] Read more.
Diatoms are a group of unicellular eukaryotes that are essential primary producers in aquatic ecosystems. The dynamic nature of their habitat necessitates a quick and specific response to various stresses. However, the molecular mechanisms of their physiological adaptations are still underexplored. In this work, we study the response of the cosmopolitan freshwater diatom Ulnaria acus (Bacillariophyceae, Fragilariophycidae, Licmophorales, Ulnariaceae, Ulnaria) in relation to a range of stress factors, namely silica deficiency, prolonged cultivation, and interaction with an algicidal bacterium. Fluorescent staining and light microscopy were used to determine the physiological state of cells under these stresses. To explore molecular reactions, we studied the genes involved in the stress response—type III metacaspase (MC), metacaspase-like proteases (MCP), death-specific protein (DSP), delta-1-pyrroline-5-carboxylate dehydrogenase (ALDH12), and glutathione synthetase (GSHS). We have described the structure of these genes, analyzed the predicted amino acid sequences, and measured their expression dynamics in vitro using qRT-PCR. We demonstrated that the expression of UaMC1, UaMC3, and UaDSP increased during the first five days of silicon starvation. On the seventh day, it was replaced with the expression of UaMC2, UaGSHS, and UaALDH. After 45 days of culture, cells stopped growing, and the expression of UaMC1, UaMC2, UaGSHS, and UaDSP increased. Exposure to an algicidal bacterial filtrate induced a higher expression of UaMC1 and UaGSHS. Thus, we can conclude that these proteins are involved in diatoms’ adaptions to environmental changes. Further, these data show that the molecular adaptation mechanisms in diatoms depend on the nature and exposure duration of a stress factor. Full article
(This article belongs to the Special Issue Molecular Metabolisms and Regulations of Algae)
Show Figures

Figure 1

Back to TopTop