Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (637)

Search Parameters:
Keywords = degree of a polynomial

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8409 KiB  
Article
Airborne Lidar Refines Georeferencing Austro-Hungarian Maps from the First and Second Military Surveys
by Tibor Lieskovský, Tadeáš Kotleba, Jakub Šperka and Renata Ďuračiová
ISPRS Int. J. Geo-Inf. 2025, 14(7), 274; https://doi.org/10.3390/ijgi14070274 - 15 Jul 2025
Viewed by 38
Abstract
This paper explores ways to improve the coordinate transformation of maps from the First and Second Military Surveys of the Austro-Hungarian Monarchy using airborne laser scanning (ALS) data. The paper analyses the current positional accuracy of georeferenced maps from the first two military [...] Read more.
This paper explores ways to improve the coordinate transformation of maps from the First and Second Military Surveys of the Austro-Hungarian Monarchy using airborne laser scanning (ALS) data. The paper analyses the current positional accuracy of georeferenced maps from the first two military mappings from available spatial data sources. Several areas of interest with different terrain ruggedness (plain, undulated terrain, mountains) were selected for analysis to investigate whether terrain ruggedness has an impact on the accuracy of these maps. The next part of the paper deals with the georeferencing of military mapping maps using current, mid-20th-century maps and ALS data using affine and second-degree polynomial transformations. The paper concludes with a statistical analysis and evaluation of the potential of ALS data for solving this type of problem. The results obtained in the paper indicate that ALS data can be a suitable source for finding control points to transform early topographic maps. Full article
Show Figures

Figure 1

20 pages, 917 KiB  
Article
Numerical Investigation of Buckling Behavior of MWCNT-Reinforced Composite Plates
by Jitendra Singh, Ajay Kumar, Barbara Sadowska-Buraczewska, Wojciech Andrzejuk and Danuta Barnat-Hunek
Materials 2025, 18(14), 3304; https://doi.org/10.3390/ma18143304 - 14 Jul 2025
Viewed by 149
Abstract
The current study demonstrates the buckling properties of composite laminates reinforced with MWCNT fillers using a novel higher-order shear and normal deformation theory (HSNDT), which considers the effect of thickness in its mathematical formulation. The hybrid HSNDT combines polynomial and hyperbolic functions that [...] Read more.
The current study demonstrates the buckling properties of composite laminates reinforced with MWCNT fillers using a novel higher-order shear and normal deformation theory (HSNDT), which considers the effect of thickness in its mathematical formulation. The hybrid HSNDT combines polynomial and hyperbolic functions that ensure the parabolic shear stress profile and zero shear stress boundary condition at the upper and lower surface of the plate, hence removing the need for a shear correction factor. The plate is made up of carbon fiber bounded together with polymer resin matrix reinforced with MWCNT fibers. The mechanical properties are homogenized by a Halpin–Tsai scheme. The MATLAB R2019a code was developed in-house for a finite element model using C0 continuity nine-node Lagrangian isoparametric shape functions. The geometric nonlinear and linear stiffness matrices are derived using the principle of virtual work. The solution of the eigenvalue problem enables estimation of the critical buckling loads. A convergence study was carried out and model efficiency was corroborated with the existing literature. The model contains only seven degrees of freedom, which significantly reduces computation time, facilitating the comprehensive parametric studies for the buckling stability of the plate. Full article
(This article belongs to the Special Issue Mechanical Behavior of Advanced Composite Materials and Structures)
Show Figures

Figure 1

18 pages, 1184 KiB  
Article
A Confidential Transmission Method for High-Speed Power Line Carrier Communications Based on Generalized Two-Dimensional Polynomial Chaotic Mapping
by Zihan Nie, Zhitao Guo and Jinli Yuan
Appl. Sci. 2025, 15(14), 7813; https://doi.org/10.3390/app15147813 - 11 Jul 2025
Viewed by 186
Abstract
The deep integration of smart grid and Internet of Things technologies has made high-speed power line carrier communication a key communication technology in energy management, industrial monitoring, and smart home applications, owing to its advantages of requiring no additional wiring and offering wide [...] Read more.
The deep integration of smart grid and Internet of Things technologies has made high-speed power line carrier communication a key communication technology in energy management, industrial monitoring, and smart home applications, owing to its advantages of requiring no additional wiring and offering wide coverage. However, the inherent characteristics of power line channels, such as strong noise, multipath fading, and time-varying properties, pose challenges to traditional encryption algorithms, including low key distribution efficiency and weak anti-interference capabilities. These issues become particularly pronounced in high-speed transmission scenarios, where the conflict between data security and communication reliability is more acute. To address this problem, a secure transmission method for high-speed power line carrier communication based on generalized two-dimensional polynomial chaotic mapping is proposed. A high-speed power line carrier communication network is established using a power line carrier routing algorithm based on the minimal connected dominating set. The autoregressive moving average model is employed to determine the degree of transmission fluctuation deviation in the high-speed power line carrier communication network. Leveraging the complex dynamic behavior and anti-decoding capability of generalized two-dimensional polynomial chaotic mapping, combined with the deviation, the communication key is generated. This process yields encrypted high-speed power line carrier communication ciphertext that can resist power line noise interference and signal attenuation, thereby enhancing communication confidentiality and stability. By applying reference modulation differential chaotic shift keying and integrating the ciphertext of high-speed power line carrier communication, a secure transmission scheme is designed to achieve secure transmission in high-speed power line carrier communication. The experimental results demonstrate that this method can effectively establish a high-speed power line carrier communication network and encrypt information. The maximum error rate obtained by this method is 0.051, and the minimum error rate is 0.010, confirming its ability to ensure secure transmission in high-speed power line carrier communication while improving communication confidentiality. Full article
Show Figures

Figure 1

18 pages, 2433 KiB  
Article
Thermodynamic Assessment of the Pyrometallurgical Recovery of a Pb-Ag Alloy from a Mixture of Ammonium Jarosite–Lead Paste Wastes
by Jose Enrique Sanchez Vite, Alejandro Cruz Ramírez, Manuel Eduardo Flores Favela, Ricardo Gerardo Sánchez Alvarado, José Antonio Romero Serrano, Margarita García Hernández, Teresita del Refugio Jiménez Romero and Juan Cancio Jiménez Lugos
Recycling 2025, 10(4), 136; https://doi.org/10.3390/recycling10040136 - 8 Jul 2025
Viewed by 247
Abstract
A previously pyrometallurgical process, developed to obtain a Pb-Ag alloy and a slag rich in sulfur from the recycling of a mixture of industrial wastes of jarosite and lead paste, was thermodynamically assessed at 1200 °C. The industrial jarosite sourced from a Mexican [...] Read more.
A previously pyrometallurgical process, developed to obtain a Pb-Ag alloy and a slag rich in sulfur from the recycling of a mixture of industrial wastes of jarosite and lead paste, was thermodynamically assessed at 1200 °C. The industrial jarosite sourced from a Mexican zinc hydrometallurgical plant corresponded to an ammonium jarosite with a measurable silver content. The specific heat capacity (Cp) of the ammonium jarosite was obtained from TGA and DSC measurements, as well as the thermodynamic functions of enthalpy, entropy, and Gibbs free energy. The Cp was successfully modeled using polynomial regression, with a second-degree polynomial employed to describe the low-temperature behavior. The thermodynamic data generated were input into the thermodynamic software FactSage 8.2 for modeling of the lead paste–ammonium jarosite-Na2CO3-SiC system and represented by stability phase diagrams. The thermodynamic assessment of the pyrometallurgical process predicted compounds formed at high temperatures, showing that a Pb-Ag alloy and a slag rich in Na, S, and Fe (NaFeS2 and NaFeO2) were obtained. The compounds formed evidence of the effective sulfur retention in the slag, which is crucial for mitigating SO2 emissions during high-temperature treatments. The experimental compounds, after solidification, were determined by X-ray diffraction measurements to be Na2Fe(SO4)2 and Na2(SO4), which reasonably match the thermodynamic assessment. The heat capacity of the ammonium jarosite provides essential thermodynamic insights into the compositional complexities of industrial waste, which are particularly relevant for thermodynamic modeling and process optimization in pyrometallurgical systems aimed at metal recovery and residue valorization. Full article
Show Figures

Figure 1

19 pages, 4388 KiB  
Article
Engineering Safety-Oriented Blasting-Induced Seismic Wave Signal Processing: An EMD Endpoint Suppression Method Based on Multi-Scale Feature
by Miao Sun, Jing Wu, Yani Lu, Fangda Yu and Hang Zhou
Sensors 2025, 25(13), 4194; https://doi.org/10.3390/s25134194 - 5 Jul 2025
Viewed by 215
Abstract
Blasting-induced seismic waves are typically nonlinear and non-stationary signals. The EMD-Hilbert transform is commonly used for time–frequency analysis of such signals. However, during the empirical mode decomposition (EMD) processing of blasting-induced seismic waves, endpoint effects occur, resulting in varying degrees of divergence in [...] Read more.
Blasting-induced seismic waves are typically nonlinear and non-stationary signals. The EMD-Hilbert transform is commonly used for time–frequency analysis of such signals. However, during the empirical mode decomposition (EMD) processing of blasting-induced seismic waves, endpoint effects occur, resulting in varying degrees of divergence in the obtained intrinsic mode function (IMF) components at both ends. The further application of the Hilbert transform to these endpoint-divergent IMFs yield artificial time–frequency analysis results, adversely impacting the assessment of blasting-induced seismic wave hazards. This paper proposes an improved EMD endpoint effect suppression algorithm that considers local endpoint development trends, global time distribution, energy matching, and waveform matching. The method first analyzes global temporal characteristics and endpoint amplitude variations to obtain left and right endpoint extension signal fragment S(t)L and S(t)R. Using these as references, the original signal is divided into “b” equal segments S(t)1, S(t)2 … S(t)b. Energy matching and waveform matching functions are then established to identify signal fragments S(t)i and S(t)j that match both the energy and waveform characteristics of S(t)L and S(t)R. Replacing S(t)L and S(t)R with S(t)i and S(t)j effectively suppresses the EMD endpoint effects. To verify the algorithm’s effectiveness in suppressing EMD endpoint effects, comparative studies were conducted using simulated signals to compare the proposed method with mirror extension, polynomial fitting, and extreme value extension methods. Three evaluation metrics were utilized: error standard deviation, correlation coefficient, and computation time. The results demonstrate that the proposed algorithm effectively reduces the divergence at the endpoints of the IMFs and yields physically meaningful IMF components. Finally, the method was applied to the analysis of actual blasting seismic signals. It successfully suppressed the endpoint effects of EMD and improved the extraction of time–frequency characteristics from blasting-induced seismic waves. This has significant practical implications for safety assessments of existing structures in areas affected by blasting. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

23 pages, 2412 KiB  
Article
Mitigating Algorithmic Bias Through Probability Calibration: A Case Study on Lead Generation Data
by Miroslav Nikolić, Danilo Nikolić, Miroslav Stefanović, Sara Koprivica and Darko Stefanović
Mathematics 2025, 13(13), 2183; https://doi.org/10.3390/math13132183 - 3 Jul 2025
Viewed by 425
Abstract
Probability calibration is commonly utilized to enhance the reliability and interpretability of probabilistic classifiers, yet its potential for reducing algorithmic bias remains under-explored. In this study, the role of probability calibration techniques in mitigating bias associated with sensitive attributes, specifically country of origin, [...] Read more.
Probability calibration is commonly utilized to enhance the reliability and interpretability of probabilistic classifiers, yet its potential for reducing algorithmic bias remains under-explored. In this study, the role of probability calibration techniques in mitigating bias associated with sensitive attributes, specifically country of origin, within binary classification models is investigated. Using a real-world lead-generation 2853 × 8 matrix dataset characterized by substantial class imbalance, with the positive class representing 1.4% of observations, several binary classification models were evaluated and the best-performing model was selected as the baseline for further analysis. The evaluated models included Binary Logistic Regression with polynomial degrees of 1, 2, 3, and 4, Random Forest, and XGBoost classification algorithms. Three widely used calibration methods, Platt scaling, isotonic regression, and temperature scaling, were then used to assess their impact on both probabilistic accuracy and fairness metrics of the best-performing model. The findings suggest that post hoc calibration can effectively reduce the influence of sensitive features on predictions by improving fairness without compromising overall classification performance. This study demonstrates the practical value of incorporating calibration as a straightforward and effective fairness intervention within machine learning workflows. Full article
(This article belongs to the Section E1: Mathematics and Computer Science)
Show Figures

Figure 1

23 pages, 7152 KiB  
Article
A Programmable Gain Calibration Method to Mitigate Skin Tone Bias in PPG Sensors
by Connor MacIsaac, Macros Nguyen, Alexander Uy, Tianmin Kong and Ava Hedayatipour
Biosensors 2025, 15(7), 423; https://doi.org/10.3390/bios15070423 - 2 Jul 2025
Viewed by 265
Abstract
Photoplethysmography (PPG) is a widely adopted optical technique for cardiovascular monitoring, but its accuracy is often compromised by skin pigmentation, which attenuates the signal in individuals with darker skin tones. This research addresses the challenge of skin pigmentation by developing a PPG sensor [...] Read more.
Photoplethysmography (PPG) is a widely adopted optical technique for cardiovascular monitoring, but its accuracy is often compromised by skin pigmentation, which attenuates the signal in individuals with darker skin tones. This research addresses the challenge of skin pigmentation by developing a PPG sensor system with a novel gain calibration strategy. We present a hardware prototype integrating a programmable gain amplifier (PGA), specifically the OPA3S328 operational amplifier, controlled by a microcontroller. The system performs a one-time gain adjustment at initialization based on the user’s skin tone, which is quantified using RGB image analysis. This “set-and-hold” approach normalizes the signal amplitude across various skin tones while effectively preserving the native morphology of the PPG waveform, which is essential for advanced cardiovascular diagnostics. Experimental validation with over 70 human volunteers demonstrated the PGA’s ability to apply calibrated gain levels, derived from a first-degree polynomial relationship between skin pigmentation and red light absorption. This approach significantly improved signal consistency across different skin tones. The findings highlight the efficacy of pre-measurement gain correction for achieving reliable PPG sensing in diverse populations and lay the groundwork for future optimization of PPG sensor designs to improve reliability in wearable health monitoring devices. Full article
Show Figures

Figure 1

16 pages, 335 KiB  
Article
Locally RSD-Generated Parametrized G1-Spline Surfaces Interpolating First-Order Data over 3D Triangular Meshes
by László L. Stachó
AppliedMath 2025, 5(3), 83; https://doi.org/10.3390/appliedmath5030083 - 2 Jul 2025
Viewed by 169
Abstract
Given a triangular mesh in R3 with a family of points associated with its vertices along with vectors associated with its edges, we propose a novel technique for the construction of locally generated fitting parametrized G1-spline interpolation surfaces. The method consists of [...] Read more.
Given a triangular mesh in R3 with a family of points associated with its vertices along with vectors associated with its edges, we propose a novel technique for the construction of locally generated fitting parametrized G1-spline interpolation surfaces. The method consists of a G1 correction over the mesh edges of the mesh triangles, produced using reduced side derivatives (RSDs) introduced earlier by the author in terms of the barycentric weight functions. In the case of polynomial RSD shape functions, we establish polynomial edge corrections via an algorithm with an independent interest in determining the optimal GCD cofactors with the lowest degree for arbitrary families of polynomials. Full article
15 pages, 1858 KiB  
Article
Generation of Julia and Mandelbrot Sets for a Complex Function via Jungck–Noor Iterative Method with s-Convexity
by Ahmad Almutlg
Symmetry 2025, 17(7), 1028; https://doi.org/10.3390/sym17071028 - 30 Jun 2025
Viewed by 165
Abstract
This paper introduces novel, non-classical Julia and Mandelbrot sets using the Jungck–Noor iterative method with s-convexity, and derives an escape criterion for higher-order complex polynomials of the form zn+z3z+ω, where [...] Read more.
This paper introduces novel, non-classical Julia and Mandelbrot sets using the Jungck–Noor iterative method with s-convexity, and derives an escape criterion for higher-order complex polynomials of the form zn+z3z+ω, where n4 and ,,ωC. The proposed method advances existing algorithms, enabling the visualization of intricate fractal patterns as Julia and Mandelbrot sets with enhanced complexity. Through graphical representations, we illustrate how parameter variations influence the color, size, and shape of the resulting images, producing visually striking and aesthetically appealing fractals. Furthermore, we explore the dynamic behavior of these sets under fixed input parameters while varying the degree n. The presented results, both methodologically and visually, offer new insights into fractal geometry and inspire further research. Full article
(This article belongs to the Special Issue Symmetry and Fractals: Theory and Applications)
Show Figures

Figure 1

14 pages, 847 KiB  
Article
Evaluating an Early Risk Model for Uncomplicated Hypertension in Pregnancy Based on Nighttime Blood Pressure, Uric Acid, and Angiogenesis-Related Factors
by Isabel Fernandez-Castro, Nestor Vazquez-Agra, Ana Alban-Salgado, Mariña Sanchez-Andrade, Susana Lopez-Casal, Anton Cruces-Sande, Oscar Seoane-Casqueiro, Antonio Pose-Reino and Alvaro Hermida-Ameijeiras
Int. J. Mol. Sci. 2025, 26(13), 6115; https://doi.org/10.3390/ijms26136115 - 25 Jun 2025
Viewed by 320
Abstract
Uncomplicated hypertension (UH) during pregnancy represents a common condition, worsening maternal and fetal prognosis. However, no single biomarker has proven optimal for determining the risk of UH. We developed an early risk multivariate model for UH, integrating hemodynamics with biochemistry, focusing on the [...] Read more.
Uncomplicated hypertension (UH) during pregnancy represents a common condition, worsening maternal and fetal prognosis. However, no single biomarker has proven optimal for determining the risk of UH. We developed an early risk multivariate model for UH, integrating hemodynamics with biochemistry, focusing on the relationship between blood pressure (BP) indices, uric acid (UA), and angiogenesis-related factors (AF). We collected and analyzed data on 24 h ambulatory BP monitoring, demographic, epidemiological, clinical, and laboratory variables from 132 pregnancies. The main predictors were BP indices and serum UA and AF levels. Uncomplicated hypertension, defined as the presence of gestational hypertension or worsening of essential hypertension beyond the 20th week, was the main outcome. The combined second-degree polynomial transformation of UA and the AF (sFlt-1/PIGF) ratio, called the UA-AF Index, consistently showed a positive association with UH. The models incorporating nighttime BP indices combined with the UA-AF Index outperformed the others, with the best-performing model based on the nocturnal systolic BP (SBP). Specifically, in the best-fitting model (nighttime SBP + UA-AF Index as predictors), each 1 mmHg increase in nocturnal SBP was associated with a 10% higher risk of UH, while each one-unit increase in the UA-AF Index raised the likelihood of UH by more than twofold (accuracy: 0.830, AUC 0. 874, SE 0.032, p-value < 0.001, 95%CI 0.811–0.938). The combination of nighttime blood pressure indices, serum uric acid, and angiogenesis-related factors may provide added value in the assessment of uncomplicated hypertension during pregnancy. Full article
(This article belongs to the Special Issue Recent Research on Hypertension and Related Complications)
Show Figures

Figure 1

20 pages, 311 KiB  
Article
Finite Orthogonal M Matrix Polynomials
by Esra Güldoğan Lekesiz
Symmetry 2025, 17(7), 996; https://doi.org/10.3390/sym17070996 - 24 Jun 2025
Cited by 1 | Viewed by 274
Abstract
In this study, we aim to construct a finite set of orthogonal matrix polynomials for the first time, along with their finite orthogonality, matrix differential equation, Rodrigues’ formula, several recurrence relations including three-term relation, forward and backward shift operators, generating functions, integral representation [...] Read more.
In this study, we aim to construct a finite set of orthogonal matrix polynomials for the first time, along with their finite orthogonality, matrix differential equation, Rodrigues’ formula, several recurrence relations including three-term relation, forward and backward shift operators, generating functions, integral representation and their relation with Jacobi matrix polynomials. Thus, the concept of “finite”, which is used to impose parametric constraints for orthogonal polynomials, is transferred to the theory of matrix polynomials for the first time in the literature. Moreover, this family reduces to the finite orthogonal M polynomials in the scalar case when the degree is 1, thereby providing a matrix generalization of finite orthogonal M polynomials in one variable. Full article
(This article belongs to the Section Mathematics)
48 pages, 944 KiB  
Article
Spaces of Polynomials as Grassmanians for Immersions and Embeddings
by Gabriel Katz
Int. J. Topol. 2025, 2(3), 9; https://doi.org/10.3390/ijt2030009 - 24 Jun 2025
Viewed by 153
Abstract
Let Y be a smooth compact n-manifold. We studied smooth embeddings and immersions β:MR×Y of compact n-manifolds M such that β(M) avoids some priory chosen closed poset Θ of tangent patterns to [...] Read more.
Let Y be a smooth compact n-manifold. We studied smooth embeddings and immersions β:MR×Y of compact n-manifolds M such that β(M) avoids some priory chosen closed poset Θ of tangent patterns to the fibers of the obvious projection π:R×YY. Then, for a fixed Y, we introduced an equivalence relation between such β’s; creating a crossover between pseudo-isotopies and bordisms. We called this relation quasitopy. In the presented study of quasitopies, the spaces PdcΘ of real univariate polynomials of degree d with real divisors, whose combinatorial patterns avoid a given closed poset Θ, play the classical role of Grassmanians. We computed the quasitopy classes Qdemb(Y,cΘ) of Θ-constrained embeddings β in terms of homotopy/homology theory of spaces Y and PdcΘ. We proved also that the quasitopies of embeddings stabilize, as d. Full article
Show Figures

Figure 1

16 pages, 4082 KiB  
Article
Study on Calibration Method of Micromechanical Parameters for Discrete Element Model of Moderately Consolidated Sandstones
by Wenhong Zhang, Zhengchao Ma, Hantao Zhao, Tianyu Wang, Panpan Zhang, Jiacheng Dai and Shouceng Tian
Appl. Sci. 2025, 15(13), 7086; https://doi.org/10.3390/app15137086 - 24 Jun 2025
Viewed by 308
Abstract
The study of the mechanical properties of moderately consolidated sandstones is crucial for engineering safety assessments. As an effective research tool, the discrete element method (DEM) encounters challenges during the modeling phase, such as a large number of micromechanical parameters, low modeling efficiency, [...] Read more.
The study of the mechanical properties of moderately consolidated sandstones is crucial for engineering safety assessments. As an effective research tool, the discrete element method (DEM) encounters challenges during the modeling phase, such as a large number of micromechanical parameters, low modeling efficiency, and unclear coupling mechanisms among multiple parameters. To address these issues, this paper proposes a calibration method for the micromechanical parameters of DEM models for moderately consolidated sandstones. By integrating orthogonal experimental design with a multivariate analysis of variance, the influence of micromechanical parameters on macroscopic mechanical properties is quantified, and a parameter prediction model is constructed using an intelligent dynamic regression selection mechanism, significantly improving the efficiency and accuracy of micromechanical parameter calibration. The results show that the macroscopic elastic modulus E is primarily controlled by the effective modulus (E¯), stiffness ratio (k), and particle size ratio (Rmax/Rmin), following a linear relationship. The influence of the particle size ratio decreases significantly once it exceeds a threshold value. The macroscopic uniaxial compressive strength (UCS) is dominated by cohesion (c¯) and tensile strength (σ¯c), exhibiting a polynomial relationship, where a stronger synergistic effect is generated when both parameters are at higher levels. Poisson’s ratio (μ) is significantly correlated only with the stiffness ratio (k), following a logarithmic relationship. An iterative correction method for micromechanical parameter calibration is proposed. The errors between the three groups of simulation results and laboratory test results are all less than 10%, and the crack distribution patterns show a high degree of consistency. The findings of this study provide a theoretical foundation and technical means for exploring the mechanical behavior and damage mechanism of moderately consolidated sandstones. Full article
Show Figures

Figure 1

33 pages, 18473 KiB  
Article
Spatiotemporal Assessment of Desertification in Wadi Fatimah
by Abdullah F. Alqurashi and Omar A. Alharbi
Land 2025, 14(6), 1293; https://doi.org/10.3390/land14061293 - 17 Jun 2025
Viewed by 473
Abstract
Over the past four decades, Wadi Fatimah in western Saudi Arabia has undergone significant environmental changes that have contributed to desertification. High-resolution spatial and temporal analyses are essential for monitoring the extent of desertification and understanding its driving factors. This study aimed to [...] Read more.
Over the past four decades, Wadi Fatimah in western Saudi Arabia has undergone significant environmental changes that have contributed to desertification. High-resolution spatial and temporal analyses are essential for monitoring the extent of desertification and understanding its driving factors. This study aimed to assess the spatial distribution of desertification in Wadi Fatimah using satellite and climate data. Landsat imagery from 1984 to 2022 was employed to derive land surface temperature (LST) and assess vegetation trends using the Normalized Difference Vegetation Index (NDVI). Climate variables, including precipitation and evapotranspiration (ET), were sourced from the gridded TerraClimate dataset (1980–2022). LST estimates were validated using MOD11A2 products (2001–2022), while TerraClimate precipitation data were evaluated against observations from four local rain gauge stations: Wadi Muharam, Al-Seal Al-Kabeer, Makkah, and Baharah Al-Jadeedah. A Desertification Index (DI) was developed based on four variables: NDVI, LST, precipitation, and ET. Five regression models—ridge, lasso, elastic net, polynomial regression (degree 2), and random forest regression—were applied to evaluate the predictive capacity of these variables in explaining desertification dynamics. Among these, Random Forest and Polynomial Regression demonstrated superior predictive performance. The classification accuracy of the desertification map showed high overall accuracy and a strong Kappa coefficient. Results revealed extensive land degradation in the central and lower sub-basins of Wadi Fatimah, driven by both climatic stressors and anthropogenic pressures. LST exhibited a clear upward trend between 1984 and 2022, especially in the lower sub-basin. Precipitation and ET analysis confirmed the region’s arid climate, characterized by limited rainfall and high ET, which exacerbate vegetation stress and soil moisture deficits. Validation of LST with MOD11A2 data showed reasonable agreement, with RMSE values ranging from 2 °C to 6 °C and strong correlation coefficients across most years. Precipitation validation revealed low correlation at Al-Seal Al-Kabeer, moderate at Baharah Al-Jadeedah, and high correlations at Wadi Muharam and Makkah stations. These results highlight the importance of developing robust validation methods for gridded climate datasets, especially in data-sparse regions. Promoting sustainable land management and implementing targeted interventions are vital to mitigating desertification and preserving the environmental integrity of Wadi Fatimah. Full article
Show Figures

Figure 1

14 pages, 443 KiB  
Article
Component Analysis When Testing for Fixed Effects in Unbalanced ANOVAs
by J. C. W. Rayner and G. C. Livingston
Stats 2025, 8(2), 48; https://doi.org/10.3390/stats8020048 - 16 Jun 2025
Viewed by 234
Abstract
In possibly unbalanced fixed effects in ANOVAs, we examine both parametric and nonparametric tests for main and two-way interaction effects when the levels of each factor may be ordered or unordered. For main effects, we decompose the factor sum of squares into one [...] Read more.
In possibly unbalanced fixed effects in ANOVAs, we examine both parametric and nonparametric tests for main and two-way interaction effects when the levels of each factor may be ordered or unordered. For main effects, we decompose the factor sum of squares into one degree of freedom components involving contrasts, albeit not necessarily orthogonal contrasts. For interactions, we develop what we call coefficients. These are an extension of part of the interaction sum of squares in potentially unbalanced designs. They may be used to test nonparametrically for focused interaction effects. The tests developed here provide focused and objective assessments of main and interaction effects and augment traditional methods. Full article
Show Figures

Figure 1

Back to TopTop