Generation of Julia and Mandelbrot Sets for a Complex Function via Jungck–Noor Iterative Method with s-Convexity
Abstract
1. Introduction
2. Preliminaries
3. Escape Criteria
4. Graphical Examples
4.1. Julia Sets
- In Figure 2, the parameters are set to , while ℑ varies across the following cases: (a) 9, (b) 35i, (c) 0.5 + 80i.
- In Figure 3, the parameters are set to , while ℜ varies across the following cases: (a) 11, (b) 11i, (c) 11 + 21i.
- In Figure 4, the parameters are set to , while varies across the following cases: (a) 35, (b) 55i, (c) 21 + 75i.
Algorithm 1 Geometry of Julia set |
|
- In Figure 5, the parameters are set to while varies across the following cases: (a) 0.15, (b) 0.45, (c) 0.85.
- In Figure 6, the parameters are set to while varies across the following cases: (a) 0.25, (b) 0.55, (c) 0.95.
- In Figure 7, the parameters are set to , while ℏ varies across the following cases: (a) 0.005, (b) 0.45, (c) 0.95.
- In Figure 8, the parameters are set to , while s varies across the following cases: (a) 0.15, (b) 0.45, (c) 0.95.
4.2. Mandelbrot Sets
Algorithm 2 Geometry of the Mandelbrot set |
|
- The parameters , and n are critical in determining the structure, scale, and visual properties of the fractals.
- Convergence criteria directly influence image resolution and detail clarity.
- The algorithms generate novel fractal geometries through the complex interplay of and .
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Julia, G. Memoire sur l’iteration des fonctions rationnelles. J. Math. Pures Appl. 1918, 8, 47–245. [Google Scholar]
- Fatou, P. Sur lesequations fonctionnelles. Bull. Soc. Math. Fr. 1919, 47, 161–271. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. The Fractal Geometry of Nature; Freeman: San Francisco, CA, USA, 1982. [Google Scholar]
- Kang, S.M.; Rafiq, A.; Latif, A.; Shahid, A.A.; Kwun, Y.C. Tricorns and Multicorns of S-iteration scheme. J. Funct. Spaces 2015, 2015, 417167. [Google Scholar]
- Kumari, S.; Kumari, M.; Chugh, R. Dynamics of superior fractals via Jungck-SP orbit with s-convexity. An. Univ. Craiova Math. Comput. Sci. Ser. 2019, 46, 344–365. [Google Scholar]
- Kwun, Y.C.; Tanveer, M.; Nazeer, W.; Gdawiec, K.; Kang, S.M. Mandelbrot and Julia sets via Jungck-CR iteration with s-convexity. IEEE Access 2019, 7, 12167–12176. [Google Scholar] [CrossRef]
- Nazeer, W.; Kang, S.; Tanveer, M.; Shahid, A. Fixed point results in the generation of Julia and Mandelbrot sets. J. Inequal. Appl. 2015, 2015, 298. [Google Scholar] [CrossRef]
- Shahid, N.A.; Nazeer, W.; Gdawiec, K. The Picard-Mann iteration with s-convexity in the generation of Mandelbrot and Julia sets. Monatsh. Math. 2021, 195, 565–584. [Google Scholar] [CrossRef]
- Ahmad, I.; Sajid, M.; Ahmad, R. Julia sets of transcendental functions via a viscosity approximation-type iterative method with s-convexity. Stat. Optim. Inf. Comput. 2024, 12, 1553–1572. [Google Scholar] [CrossRef]
- Jolaoso, L.; Khan, S.; Aremu, K. Dynamics of RK iteration and basic family of iterations for polynomiography. Mathematics 2022, 10, 3324. [Google Scholar] [CrossRef]
- Kang, S.; Nazeer, W.; Tanveer, M.; Shahid, A. New fixed point results for fractal generation in Jungck Noor orbit with s-convexity. J. Funct. Spaces 2015, 2015, 963016. [Google Scholar] [CrossRef]
- Phuengrattana, W.; Suantai, S. On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval. J. Comput. Appl. Math. 2011, 235, 3006–3014. [Google Scholar] [CrossRef]
- Tanveer, M.; Nazeer, W.; Gdawiec, K. New escape criteria for complex fractals generation in Jungck-CR orbit. Indian J. Pure Appl. Math. 2020, 51, 1285–1303. [Google Scholar] [CrossRef]
- Zhang, H.X.; Tanveer, M.; Li, Y.X.; Peng, Q.X.; Shah, N.A. Fixed point results of an implicit iterative scheme for fractal generations. AIMS Math. 2022, 6, 13170–13186. [Google Scholar] [CrossRef]
- Gdawiec, K.; Kotarski, W.; Lisowska, A. On the Robust Newton’s method with the Mann iteration and the artistic patterns from its dynamics. Nonlinear Dynam. 2021, 104, 297–331. [Google Scholar] [CrossRef]
- Muthukumar, P.; Balasubramaniam, P. Feedback synchronization of the fractional order reverse butterfly-shaped chaotic system and its application to digital cryptography. Nonlinear Dyn. 2013, 74, 1169–1181. [Google Scholar] [CrossRef]
- Nakamura, K. Iterated inversion system: An algorithm for efficiently visualizing Kleinian groups and extending the possibilities of fractal art. J. Math. Arts 2021, 15, 106–136. [Google Scholar] [CrossRef]
- Usurelu, G.I.; Bejenaru, A.; Postolache, M. Newton-like methods and polynomiographic visualization of modified Thakur processes. Int. J. Comput. Math. 2021, 98, 1049–1068. [Google Scholar] [CrossRef]
- Pinheiro, M. s-convexity, foundations for analysis. Differ. Geom. Dyn. Syst. 2008, 10, 257–262. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almutlg, A. Generation of Julia and Mandelbrot Sets for a Complex Function via Jungck–Noor Iterative Method with s-Convexity. Symmetry 2025, 17, 1028. https://doi.org/10.3390/sym17071028
Almutlg A. Generation of Julia and Mandelbrot Sets for a Complex Function via Jungck–Noor Iterative Method with s-Convexity. Symmetry. 2025; 17(7):1028. https://doi.org/10.3390/sym17071028
Chicago/Turabian StyleAlmutlg, Ahmad. 2025. "Generation of Julia and Mandelbrot Sets for a Complex Function via Jungck–Noor Iterative Method with s-Convexity" Symmetry 17, no. 7: 1028. https://doi.org/10.3390/sym17071028
APA StyleAlmutlg, A. (2025). Generation of Julia and Mandelbrot Sets for a Complex Function via Jungck–Noor Iterative Method with s-Convexity. Symmetry, 17(7), 1028. https://doi.org/10.3390/sym17071028