Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (319)

Search Parameters:
Keywords = degradation thermodynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3858 KiB  
Article
Thermodynamic Performance and Parametric Analysis of an Ice Slurry-Based Cold Energy Storage System
by Bingxin Zhao, Jie Li, Chenchong Zhou, Zicheng Huang and Nan Xie
Energies 2025, 18(15), 4158; https://doi.org/10.3390/en18154158 - 5 Aug 2025
Abstract
Subcooling-based ice slurry production faces challenges in terms of energy efficiency and operational stability, which limit its applications for large-scale cold energy storage. A thermodynamic model is established to investigate the effects of key control parameters, including evaporation temperature, condensation temperature, subcooling degree, [...] Read more.
Subcooling-based ice slurry production faces challenges in terms of energy efficiency and operational stability, which limit its applications for large-scale cold energy storage. A thermodynamic model is established to investigate the effects of key control parameters, including evaporation temperature, condensation temperature, subcooling degree, water flow rate, type of refrigerant, and adiabatic compression efficiency. The results show that using the refrigerant R161 achieves the highest energy efficiency, indicating that R161 is the optimal refrigerant in this research. When the evaporation and condensation temperatures are −10 °C and 30 °C, respectively, the system achieves the maximum comprehensive performance coefficient of 2.43. Moreover, under a flow velocity of 0.8 m/s and a temperature of 0.5 °C, the system achieves a peak ice production rate of 45.28 kg/h. A high water temperature and high flow velocity would significantly degrade the system’s ice production capacity. This research provides useful guidance for the design, optimization, and application of ice slurry-based cold energy storage systems. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

15 pages, 1054 KiB  
Review
Assessing the Possibility to Enhance the Stability of Hybrid Perovskite Solar Cells: A Brief Review
by Alexander Axelevitch and David Lugassy
Solar 2025, 5(3), 37; https://doi.org/10.3390/solar5030037 - 4 Aug 2025
Abstract
Solar cells based on the hybrid perovskite absorbers had shown very high growth of their conversion efficiency almost reaching to the Shockley–Queisser limit during last decade. However, low stability prevents to widely use them in industry and in everyday life. Possible reasons and [...] Read more.
Solar cells based on the hybrid perovskite absorbers had shown very high growth of their conversion efficiency almost reaching to the Shockley–Queisser limit during last decade. However, low stability prevents to widely use them in industry and in everyday life. Possible reasons and pathways to remedy of instability and degradation of the perovskite solar cells are considered in this review. Specific attention was paid to the thermodynamical analysis of the hybrid perovskite absorber. Full article
(This article belongs to the Special Issue Developments in Perovskite Solar Cells)
Show Figures

Figure 1

19 pages, 3737 KiB  
Article
Short-Term Morphological Response of Polypropylene Membranes to Hypersaline Lithium Fluoride Solutions: A Multiscale Modeling Approach
by Giuseppe Prenesti, Pierfrancesco Perri, Alessia Anoja, Agostino Lauria, Carmen Rizzuto, Alfredo Cassano, Elena Tocci and Alessio Caravella
Int. J. Mol. Sci. 2025, 26(15), 7380; https://doi.org/10.3390/ijms26157380 - 30 Jul 2025
Viewed by 195
Abstract
Understanding the early-stage physical interactions between polymeric membranes and supersaturated salt solutions is crucial for advancing membrane-assisted crystallization (MCr) processes. In this study, we employed molecular dynamics (MD) simulations to investigate the short-term morphological response of an isotactic polypropylene (PP) membrane in contact [...] Read more.
Understanding the early-stage physical interactions between polymeric membranes and supersaturated salt solutions is crucial for advancing membrane-assisted crystallization (MCr) processes. In this study, we employed molecular dynamics (MD) simulations to investigate the short-term morphological response of an isotactic polypropylene (PP) membrane in contact with LiF solutions at different concentrations (5.8 M and 8.9 M) and temperatures (300–353 K), across multiple time points (0, 150, and 300 ns). These data were used as input for computational fluid dynamics (CFD) analysis to evaluate structural descriptors of the membrane, including tortuosity, connectivity, void fraction, anisotropy, and deviatoric anisotropy, under varying thermodynamic conditions. The results show subtle but consistent rearrangements of polymer chains upon exposure to the hypersaline environment, with a marked reduction in anisotropy and connectivity, indicating a more compact and isotropic local structure. Surface charge density analyses further suggest a temperature- and concentration-dependent modulation of chain mobility and terminal group orientation at the membrane–solution interface. Despite localized rearrangements, the membrane consistently maintains a net negative surface charge. This electrostatic feature may influence ion–membrane interactions during the crystallization process. While these non-reactive, short-timescale simulations do not capture long-term degradation or fouling mechanisms, they provide mechanistic insight into the initial physical response of PP membranes under MCr-relevant conditions. This study lays a computational foundation for future investigations bridging atomistic modeling and membrane performance in real-world applications. Full article
Show Figures

Figure 1

17 pages, 2863 KiB  
Article
Thermodynamic Aspects of Ion Exchange Properties of Bio-Resins from Phosphorylated Cellulose Fibers
by Lahbib Abenghal, Adrien Ratier, Hamid Lamoudan, Dan Belosinschi and François Brouillette
Polymers 2025, 17(15), 2022; https://doi.org/10.3390/polym17152022 - 24 Jul 2025
Viewed by 392
Abstract
Phosphorylated cellulose is proposed as a bio-resin for the removal of heavy metals, as a substitute for synthetic polymer-based materials. Phosphorylation is carried out using kraft pulp fibers as the cellulose source, with phosphate esters and urea as reactants to prevent significant fiber [...] Read more.
Phosphorylated cellulose is proposed as a bio-resin for the removal of heavy metals, as a substitute for synthetic polymer-based materials. Phosphorylation is carried out using kraft pulp fibers as the cellulose source, with phosphate esters and urea as reactants to prevent significant fiber degradation. Herein, phosphorylated fibers, with three types of counterions (sodium, ammonium, or hydrogen), are used in adsorption trials involving four individual metals: nickel, copper, cadmium, and lead. The Langmuir isotherm model is applied to determine the maximum adsorption capacities at four different temperatures (10, 20, 30, and 50 °C), enabling the calculation of the Gibbs free energy (ΔG), entropy (ΔS), and enthalpy (ΔH) of adsorption. The results show that the adsorption capacity of phosphorylated fibers is equal or even higher than that of commercially available resins (1.7–2.9 vs. 2.4–2.6 mmol/g). However, the nature of the phosphate counterion plays an important role in the adsorption capacity, with the alkaline form showing a superior ion exchange capacity than the hybrid form and acid form (2.7–2.9 vs. 2.3–2.7 vs. 1.7–2.5 mmol/g). The thermodynamic analysis indicates the spontaneous (ΔG = (-)16–(-)30 kJ/mol) and endothermic nature of the adsorption process with positive changes in enthalpy (0.45–15.47 kJ/mol) and entropy (0.07–0.14 kJ/mol·K). These results confirm the high potential of phosphorylated lignocellulosic fibers for ion exchange applications, such as the removal of heavy metals from process or wastewaters. Full article
(This article belongs to the Special Issue New Advances in Cellulose and Wood Fibers)
Show Figures

Figure 1

25 pages, 2545 KiB  
Article
Kinetic, Isotherm, and Thermodynamic Modeling of Methylene Blue Adsorption Using Natural Rice Husk: A Sustainable Approach
by Yu-Ting Huang and Ming-Cheng Shih
Separations 2025, 12(8), 189; https://doi.org/10.3390/separations12080189 - 22 Jul 2025
Viewed by 299
Abstract
The discharge of synthetic dyes in industrial wastewaters poses a serious environmental threat as they are difficult to degrade naturally and are harmful to aquatic organisms. This study aimed to evaluate the feasibility of using clean untreated rice husk (CRH) as a sustainable [...] Read more.
The discharge of synthetic dyes in industrial wastewaters poses a serious environmental threat as they are difficult to degrade naturally and are harmful to aquatic organisms. This study aimed to evaluate the feasibility of using clean untreated rice husk (CRH) as a sustainable and low-cost adsorbent for the removal of methylene blue (MB) from synthetic wastewater. This approach effectively avoids the energy-intensive grinding process by directly using whole unprocessed rice husk, highlighting its potential as a sustainable and cost-effective alternative to activated carbon. A series of batch adsorption experiments were conducted to evaluate the effects of key operating parameters such as initial dye concentration, contact time, pH, ionic strength, and temperature on the adsorption performance. Adsorption kinetics, isotherm models, and thermodynamic analysis were applied to elucidate the adsorption mechanism and behavior. The results showed that the maximum adsorption capacity of CRH for MB was 5.72 mg/g. The adsorption capacity was stable and efficient between pH 4 and 10, and reached the highest value at pH 12. The presence of sodium ions (Na+) and calcium ions (Ca2+) inhibited the adsorption efficiency, with calcium ions having a more significant effect. Kinetic analysis confirmed that the adsorption process mainly followed a pseudo-second-order model, suggesting the involvement of a chemisorption mechanism; notably, in the presence of ions, the Elovich model provided better predictions of the data. Thermodynamic evaluation showed that the adsorption was endothermic (ΔH° > 0) and spontaneous (ΔG° < 0), accompanied by an increase in the disorder of the solid–liquid interface (ΔS° > 0). The calculated activation energy (Ea) was 17.42 kJ/mol, further supporting the involvement of chemisorption. The equilibrium adsorption data were well matched to the Langmuir model at high concentrations (monolayer adsorption), while they were accurately described by the Freundlich model at lower concentrations (surface heterogeneity). The dimensionless separation factor (RL) confirmed that the adsorption process was favorable at all initial MB concentrations. The results of this study provide insights into the application of agricultural waste in environmental remediation and highlight the potential of untreated whole rice husk as a sustainable and economically viable alternative to activated carbon, which can help promote resource recovery and pollution control. Full article
(This article belongs to the Section Environmental Separations)
Show Figures

Figure 1

24 pages, 2613 KiB  
Article
Hierarchical Sensing Framework for Polymer Degradation Monitoring: A Physics-Constrained Reinforcement Learning Framework for Programmable Material Discovery
by Xiaoyu Hu, Xiuyuan Zhao and Wenhe Liu
Sensors 2025, 25(14), 4479; https://doi.org/10.3390/s25144479 - 18 Jul 2025
Viewed by 279
Abstract
The design of materials with programmable degradation profiles presents a fundamental challenge in pattern recognition across molecular space, requiring the identification of complex structure–property relationships within an exponentially large chemical domain. This paper introduces a novel physics-informed deep learning framework that integrates multi-scale [...] Read more.
The design of materials with programmable degradation profiles presents a fundamental challenge in pattern recognition across molecular space, requiring the identification of complex structure–property relationships within an exponentially large chemical domain. This paper introduces a novel physics-informed deep learning framework that integrates multi-scale molecular sensing data with reinforcement learning algorithms to enable intelligent characterization and prediction of polymer degradation dynamics. Our method combines three key innovations: (1) a dual-channel sensing architecture that fuses spectroscopic signatures from Graph Isomorphism Networks with temporal degradation patterns captured by transformer-based models, enabling comprehensive molecular state detection across multiple scales; (2) a physics-constrained policy network that ensures sensor measurements adhere to thermodynamic principles while optimizing the exploration of degradation pathways; and (3) a hierarchical signal processing system that balances multiple sensing modalities through adaptive weighting schemes learned from experimental feedback. The framework employs curriculum-based training that progressively increases molecular complexity, enabling robust detection of degradation markers linking polymer architectures to enzymatic breakdown kinetics. Experimental validation through automated synthesis and in situ characterization of 847 novel polymers demonstrates the framework’s sensing capabilities, achieving a 73.2% synthesis success rate and identifying 42 structures with precisely monitored degradation profiles spanning 6 to 24 months. Learned molecular patterns reveal previously undetected correlations between specific spectroscopic signatures and degradation susceptibility, validated through accelerated aging studies with continuous sensor monitoring. Our results establish that physics-informed constraints significantly improve both the validity (94.7%) and diversity (0.82 Tanimoto distance) of generated molecular structures compared with unconstrained baselines. This work advances the convergence of intelligent sensing technologies and materials science, demonstrating how physics-informed machine learning can enhance real-time monitoring capabilities for next-generation sustainable materials. Full article
(This article belongs to the Special Issue Functional Polymers and Fibers: Sensing Materials and Applications)
Show Figures

Figure 1

36 pages, 3682 KiB  
Article
Enhancing s-CO2 Brayton Power Cycle Efficiency in Cold Ambient Conditions Through Working Fluid Blends
by Paul Tafur-Escanta, Luis Coco-Enríquez, Robert Valencia-Chapi and Javier Muñoz-Antón
Entropy 2025, 27(7), 744; https://doi.org/10.3390/e27070744 - 11 Jul 2025
Viewed by 248
Abstract
Supercritical carbon dioxide (s-CO2) Brayton cycles have emerged as a promising technology for high-efficiency power generation, owing to their compact architecture and favorable thermophysical properties. However, their performance degrades significantly under cold-climate conditions—such as those encountered in Greenland, Russia, Canada, Scandinavia, [...] Read more.
Supercritical carbon dioxide (s-CO2) Brayton cycles have emerged as a promising technology for high-efficiency power generation, owing to their compact architecture and favorable thermophysical properties. However, their performance degrades significantly under cold-climate conditions—such as those encountered in Greenland, Russia, Canada, Scandinavia, and Alaska—due to the proximity to the fluid’s critical point. This study investigates the behavior of the recompression Brayton cycle (RBC) under subzero ambient temperatures through the incorporation of low-critical-temperature additives to create CO2-based binary mixtures. The working fluids examined include methane (CH4), tetrafluoromethane (CF4), nitrogen trifluoride (NF3), and krypton (Kr). Simulation results show that CH4- and CF4-rich mixtures can achieve thermal efficiency improvements of up to 10 percentage points over pure CO2. NF3-containing blends yield solid performance in moderately cold environments, while Kr-based mixtures provide modest but consistent efficiency gains. At low compressor inlet temperatures, the high-temperature recuperator (HTR) becomes the dominant performance-limiting component. Optimal distribution of recuperator conductance (UA) favors increased HTR sizing when mixtures are employed, ensuring effective heat recovery across larger temperature differentials. The study concludes with a comparative exergy analysis between pure CO2 and mixture-based cycles in RBC architecture. The findings highlight the potential of custom-tailored working fluids to enhance thermodynamic performance and operational stability of s-CO2 power systems under cold-climate conditions. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

16 pages, 1877 KiB  
Review
Capillary Rise and Salt Weathering in Spain: Impacts on the Degradation of Calcareous Materials in Historic Monuments
by Elías Afif-Khouri, Alfonso Lozano-Martínez, José Ignacio López de Rego, Belén López-Gallego and Rubén Forjan-Castro
Buildings 2025, 15(13), 2285; https://doi.org/10.3390/buildings15132285 - 29 Jun 2025
Viewed by 758
Abstract
The crystallization of soluble salts is one of the most significant agents of deterioration affecting porous building materials in historical architecture. This process not only compromises the physical integrity of the materials but also results in considerable aesthetic, structural, and economic consequences. Soluble [...] Read more.
The crystallization of soluble salts is one of the most significant agents of deterioration affecting porous building materials in historical architecture. This process not only compromises the physical integrity of the materials but also results in considerable aesthetic, structural, and economic consequences. Soluble salts involved in these processes may originate from geogenic sources—including soil leachate, marine aerosols, and the natural weathering of parent rocks—or from anthropogenic factors such as air pollution, wastewater infiltration, and the use of incompatible restoration materials. This study examines the role of capillary rise as a primary mechanism responsible for the vertical migration of saline solutions from the soil profile into historic masonry structures, especially those constructed with calcareous stones. It describes how water retained or sustained within the soil matrix ascends via capillarity, carrying dissolved salts that eventually crystallize within the pore network of the stone. This phenomenon leads to a variety of damage types, ranging from superficial staining and efflorescence to more severe forms such as subflorescence, microfracturing, and progressive mass loss. By adopting a multidisciplinary approach that integrates concepts and methods from soil physics, hydrology, petrophysics, and conservation science, this paper examines the mechanisms that govern saline water movement, salt precipitation patterns, and their cumulative effects on stone durability. It highlights the influence of key variables such as soil texture and structure, matric potential, hydraulic conductivity, climatic conditions, and stone porosity on the severity and progression of deterioration. This paper also addresses regional considerations by focusing on the context of Spain, which holds one of the highest concentrations of World Heritage Sites globally and where many monuments are constructed from vulnerable calcareous materials such as fossiliferous calcarenites and marly limestones. Special attention is given to the types of salts most commonly encountered in Spanish soils—particularly chlorides and sulfates—and their thermodynamic behavior under fluctuating environmental conditions. Ultimately, this study underscores the pressing need for integrated, preventive conservation strategies. These include the implementation of drainage systems, capillary barriers, and the use of compatible materials in restoration, as well as the application of non-destructive diagnostic techniques such as electrical resistivity tomography and hyperspectral imaging. Understanding the interplay between soil moisture dynamics, salt crystallization, and material degradation is essential for safeguarding the cultural and structural value of historic buildings in the face of ongoing environmental challenges and climate variability. Full article
(This article belongs to the Special Issue Selected Papers from the REHABEND 2024 Congress)
Show Figures

Figure 1

40 pages, 5193 KiB  
Review
A Comprehensive Review of the Development of Perovskite Oxide Anodes for Fossil Fuel-Based Solid Oxide Fuel Cells (SOFCs): Prospects and Challenges
by Arash Yahyazadeh
Physchem 2025, 5(3), 25; https://doi.org/10.3390/physchem5030025 - 23 Jun 2025
Viewed by 735
Abstract
Solid oxide fuel cells (SOFCs) represent a pivotal technology in renewable energy due to their clean and efficient power generation capabilities. Their role in potential carbon mitigation enhances their viability. SOFCs can operate via a variety of alternative fuels, including hydrocarbons, alcohols, solid [...] Read more.
Solid oxide fuel cells (SOFCs) represent a pivotal technology in renewable energy due to their clean and efficient power generation capabilities. Their role in potential carbon mitigation enhances their viability. SOFCs can operate via a variety of alternative fuels, including hydrocarbons, alcohols, solid carbon, and ammonia. However, several solutions have been proposed to overcome various technical issues and to allow for stable operation in dry methane, without coking in the anode layer. To avoid coke formation thermodynamically, methane is typically reformed, contributing to an increased degradation rate through the addition of oxygen-containing gases into the fuel gas to increase the O/C ratio. The performance achieved by reforming catalytic materials, comprising active sites, supports, and electrochemical testing, significantly influences catalyst performance, showing relatively high open-circuit voltages and coking-resistance of the CH4 reforming catalysts. In the next step, the operating principles and thermodynamics of methane reforming are explored, including their traditional catalyst materials and their accompanying challenges. This work explores the components and functions of SOFCs, particularly focusing on anode materials such as perovskites, Ruddlesden–Popper oxides, and spinels, along with their structure–property relationships, including their ionic and electronic conductivity, thermal expansion coefficients, and acidity/basicity. Mechanistic and kinetic studies of common reforming processes, including steam reforming, partial oxidation, CO2 reforming, and the mixed steam and dry reforming of methane, are analyzed. Furthermore, this review examines catalyst deactivation mechanisms, specifically carbon and metal sulfide formation, and the performance of methane reforming and partial oxidation catalysts in SOFCs. Single-cell performance, including that of various perovskite and related oxides, activity/stability enhancement by infiltration, and the simulation and modeling of electrochemical performance, is discussed. This review also addresses research challenges in regards to methane reforming and partial oxidation within SOFCs, such as gas composition changes and large thermal gradients in stack systems. Finally, this review investigates the modeling of catalytic and non-catalytic processes using different dimension and segment simulations of steam methane reforming, presenting new engineering designs, material developments, and the latest knowledge to guide the development of and the driving force behind an oxygen concentration gradient through the external circuit to the cathode. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

14 pages, 4572 KiB  
Article
Synergistic Enhancement of Near-Infrared Electrochromic Performance in W18O49 Nanowire Thin Films via Copper Doping and Langmuir–Blodgett Assembly
by Yueyang Wu, Honglong Ning, Ruiqi Luo, Muyun Li, Zijian Zhang, Rouqian Huang, Junjie Wang, Mingyue Peng, Runjie Zhuo, Rihui Yao and Junbiao Peng
Inorganics 2025, 13(6), 200; https://doi.org/10.3390/inorganics13060200 - 14 Jun 2025
Viewed by 898
Abstract
The development of high-performance electrochromic materials demands innovative approaches to simultaneously control the nanoscale architecture and the electronic structure. We present a dual-modification strategy that synergistically combines copper doping with the Langmuir–Blodgett (LB) assembly to overcome the traditional performance trade-offs in tungsten oxide-based [...] Read more.
The development of high-performance electrochromic materials demands innovative approaches to simultaneously control the nanoscale architecture and the electronic structure. We present a dual-modification strategy that synergistically combines copper doping with the Langmuir–Blodgett (LB) assembly to overcome the traditional performance trade-offs in tungsten oxide-based electrochromic systems. Cu-doped W18O49 nanowires with varying Cu concentrations (0–12 mol%) were synthesized hydrothermally and assembled into thin films via the LB technique, with LB precursors characterized by contact angle, surface tension, viscosity, and thermogravimetric-differential scanning calorimetry (TG-DSC) analyses. The films were systematically evaluated using scanning electron microscopy, X-ray photoelectron spectroscopy, chronoamperometry, and transmittance spectroscopy. Experimental results reveal an optimal Cu-doping concentration of 8 mol%, achieving a near-infrared optical modulation amplitude of 76.24% at 1066 nm, rapid switching kinetics (coloring/bleaching: 5.0/3.0 s), and a coloration efficiency of 133.00 cm2/C. This performance is speculated to be a balance between Cu-induced improvements in ion intercalation kinetics and LB-ordering degradation caused by lattice strain and interfacial charge redistribution, while mitigating excessive doping effects such as structural deterioration and thermodynamic instability. The work establishes a dual-modification framework for designing high-performance electrochromic interfaces, emphasizing the critical role of surface chemistry and nanoscale assembly in advancing adaptive optoelectronic devices like smart windows. Full article
(This article belongs to the Special Issue Optical and Quantum Electronics: Physics and Materials)
Show Figures

Figure 1

18 pages, 1759 KiB  
Article
Economic Viability of Hydrogen Production via Plasma Thermal Degradation of Natural Gas
by Dejan Cvetinović, Aleksandar Erić, Jovana Anđelković, Nikola Ćetenović, Marina Jovanović and Vukman Bakić
Processes 2025, 13(6), 1888; https://doi.org/10.3390/pr13061888 - 14 Jun 2025
Cited by 1 | Viewed by 892
Abstract
This study evaluated the economic feasibility of producing hydrogen from natural gas via thermal degradation in a plasma reactor. Plasma pyrolysis, where natural gas passes through the space between electrodes and serves as the working medium, enables high hydrogen yields without emitting carbon [...] Read more.
This study evaluated the economic feasibility of producing hydrogen from natural gas via thermal degradation in a plasma reactor. Plasma pyrolysis, where natural gas passes through the space between electrodes and serves as the working medium, enables high hydrogen yields without emitting carbon monoxide or carbon dioxide. Instead, the primary products are hydrogen and solid carbon. Unlike conventional methods, this approach requires no catalysts, addressing a major technological limitation. A thermodynamic equilibrium model based on Gibbs free energy minimization was used to analyze the process over a temperature range of 500–2500 K. The results indicate an optimal temperature of approximately 1500 K, which achieved a 99.5% methane conversion by mass. Considering the capital and operating costs and profit margins, the hydrogen production cost was estimated at 3.49 EUR/kg. The sensitivity analysis revealed that the price of solid carbon had the most significant impact, which potentially raised the hydrogen cost to 4.53 EUR/kg or reduced it to 1.70 EUR/kg. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

19 pages, 861 KiB  
Article
Phase-Adaptive Federated Learning for Privacy-Preserving Personalized Travel Itinerary Generation
by Xiaolong Chen, Hongfeng Zhang and Cora Un In Wong
Tour. Hosp. 2025, 6(2), 100; https://doi.org/10.3390/tourhosp6020100 - 2 Jun 2025
Cited by 1 | Viewed by 603
Abstract
We propose Phase-Adaptive Federated Learning (PAFL), a novel framework for privacy-preserving personalized travel itinerary generation that dynamically balances privacy and utility through a phase-dependent aggregation mechanism inspired by phase-change materials. (1) PAFL’s primary objective is to dynamically optimize the privacy–utility trade-off in federated [...] Read more.
We propose Phase-Adaptive Federated Learning (PAFL), a novel framework for privacy-preserving personalized travel itinerary generation that dynamically balances privacy and utility through a phase-dependent aggregation mechanism inspired by phase-change materials. (1) PAFL’s primary objective is to dynamically optimize the privacy–utility trade-off in federated travel recommendation systems through phase-adaptive anonymization. The phase parameter φ ∈ [0, 1] operates as a tunable control variable that continuously adjusts the latent space geometry between differentially private (φ→1) and utility-optimized (φ→0) representations via a thermodynamic-inspired transformation. Conventional federated learning approaches often rely on static privacy-preserving techniques, which either degrade recommendation quality or inadequately protect sensitive user data; PAFL addresses this limitation through three key innovations: a latent-space phase transformer, a differential privacy-gradient inverter with mathematically provable reconstruction bounds (εt ≤ 1.0), and a lightweight sequential transformer. (2) PAFL’s core innovation lies in its phase-adaptive mechanism that dynamically balances privacy preservation through differential privacy and utility maintenance via gradient inversion, governed by the tunable phase parameter φ. Experimental results demonstrate statistically significant improvements, with 18.7% higher HR@10 (p < 0.01) and 62% lower membership inference risk compared to state-of-the-art methods, while maintaining εtotal < 2.3 over 100 training rounds. The framework advances federated learning for sensitive recommendation tasks by establishing a new paradigm for adaptive privacy–utility optimization. Full article
Show Figures

Figure 1

24 pages, 3521 KiB  
Article
The Dynamic Response Characteristics and Working Fluid Property Differences Analysis of CO2–Kr Mixture Power Cycle System
by Minghui Fang, Lihua Cao, Xueyan Xu and Qingqiang Meng
Processes 2025, 13(6), 1735; https://doi.org/10.3390/pr13061735 - 1 Jun 2025
Viewed by 428
Abstract
With the advancement of the energy transition, the thermodynamic degradation under high-load conditions and economic bottlenecks of the sCO2 Brayton cycle have become more prominent. CO2 mixture working fluids can improve system efficiency and economics through property optimization. However, the dynamic [...] Read more.
With the advancement of the energy transition, the thermodynamic degradation under high-load conditions and economic bottlenecks of the sCO2 Brayton cycle have become more prominent. CO2 mixture working fluids can improve system efficiency and economics through property optimization. However, the dynamic response characteristics of the system under disturbance factors are still unclear. Based on this, this paper establishes a dynamic model of the recompressed Brayton cycle for CO2 and CO2–Kr mixture. The dynamic behaviors of the two working fluids under mass flow, heat source power, and rotational speed disturbances are systematically compared, revealing the impact of the addition of Kr on the system’s dynamic response characteristics. From the perspective of the coupling mechanism in a mixture of working fluids, this paper further explores the reasons behind the differences in dynamic performance. The results show that mass disturbances have the most significant impact on the dynamic characteristics of the system. The response time of the turbine outlet temperature in the pure CO2 system is 15.43 s, with a temperature response amplitude of 12.32 K. When the system recovers to a steady state, the system’s efficiency and specific work are 30.37% and 42.52 kW/kg, respectively. In comparison, the CO2–Kr system demonstrates better dynamic performance, with the turbine outlet temperature response time reduced by 3.5 s and the temperature fluctuation amplitude decreased by 6.25 K. Additionally, the efficiency and specific work of the CO2–Kr system increased by 5.77% and 7.29 kW/kg, respectively. The introduction of Kr changes the physical property parameters of the working fluid, enhancing flow stability, and reducing pressure and temperature fluctuations, thereby improving the dynamic performance and disturbance resistance of the CO2–Kr system. Full article
Show Figures

Figure 1

13 pages, 2042 KiB  
Article
Degradation of Polypropylene and Polypropylene Compounds on Co-Rotating Twin-Screw Extruders
by Paul Albrecht, Matthias Altepeter and Florian Brüning
Polymers 2025, 17(11), 1509; https://doi.org/10.3390/polym17111509 - 28 May 2025
Viewed by 719
Abstract
The degradation of polypropylene (PP) through thermal and mechanical stress, as well as the influence of oxygen, are unavoidable when processing on a co-rotating twin-screw extruder. In previous studies, a mathematical model was developed to predict the degradation while compounding on different twin-screw [...] Read more.
The degradation of polypropylene (PP) through thermal and mechanical stress, as well as the influence of oxygen, are unavoidable when processing on a co-rotating twin-screw extruder. In previous studies, a mathematical model was developed to predict the degradation while compounding on different twin-screw extruder sizes. Additionally, the examination of filled PPs was conducted. To this end, a range of operating parameters and extruder sizes were used to process PP, and the molar mass was then determined by melt flow rate (MFR) and gel permeation chromatography (GPC) measurements to derive the degree of degradation. The model was then modified by adjusting the sensitivity parameters to allow the degradation behavior of the PPs to be described independently of extruder size. Consistent with prior research, comprehensive measurements of a PP/titanium dioxide (TiO2) compound revealed that, with a few exceptions, increasing temperatures and screw speeds and decreasing throughputs generally resulted in higher degradation. However, the application of the model to the compounds did not achieve good agreement with the measured degradation, indicating different degradation conditions due to the different thermodynamic and rheological properties of the compounds. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

16 pages, 2131 KiB  
Article
Performance Analysis of a Novel Hybrid Ejector Refrigeration System Driven by Medium- to High-Temperature Industrial Waste Heat
by Fangtian Sun, Chenyang Ma and Zhicheng Wang
Energies 2025, 18(11), 2706; https://doi.org/10.3390/en18112706 - 23 May 2025
Viewed by 392
Abstract
The thermally driven ejector refrigeration system is generally used to recover industrial waste heat to improve the energy efficiency of industrial processes. However, for conventional single-stage ejector refrigeration systems (ERSs), the higher-pressure steam derived from high-temperature waste heat elevates the primary fluid pressure, [...] Read more.
The thermally driven ejector refrigeration system is generally used to recover industrial waste heat to improve the energy efficiency of industrial processes. However, for conventional single-stage ejector refrigeration systems (ERSs), the higher-pressure steam derived from high-temperature waste heat elevates the primary fluid pressure, resulting in significant pressure mismatch with the secondary fluid, which consequently leads to large irreversible losses and substantial degradation in system performance. To address this issue, a novel hybrid ejector refrigeration system (NHERS) is proposed and analyzed under design and off-design conditions using thermodynamics. The results indicate that under design conditions, compared to the conventional single-stage ejector refrigeration system, the proposed hybrid ejector refrigeration system can achieve increases of about 20.6% in the entrainment ratio, around 15.2% in the coefficient of performance (COP), and about 21.4% in exergetic efficiency. Analyzing its performance under off-design conditions to provide technical solutions for the flexible operation of the hybrid ejector refrigeration system proposed in this paper can broaden its application scenarios. Consequently, the proposed NHERS demonstrates remarkable superiority in energy conversion and transfer processes, showing certain application prospects in the field of medium- to high-temperature industrial waste heat recovery. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

Back to TopTop