Assessing the Possibility to Enhance the Stability of Hybrid Perovskite Solar Cells: A Brief Review
Abstract
1. Introduction
2. Short Historical Sketch
3. Crystal Structure and Electronic Properties of Perovskites
4. Perovskite Solar Cells
- Perovskite materials are highly sensitive to moisture. Exposure to water or high humidity can cause the perovskite layer to degrade or decompose, leading to a loss of performance. This is especially true for lead-based perovskites, where water can cause the material to undergo phase transitions or dissolve completely.
- Perovskite materials can be unstable at elevated temperatures, especially in the presence of high light intensity. The crystal structure can degrade, resulting in reduced PCE and long-term instability. This makes perovskite cells less suitable for environments with high temperatures.
- Prolonged exposure to sunlight can lead to light-induced degradation of perovskite materials. This phenomenon, often referred to as photo-induced phase segregation or photo-degradation, causes the perovskite layer to lose its structural integrity, resulting in performance loss over time.
- Perovskite materials can exhibit ion migration, especially under electric fields or during operation. The movement of ions (like lead or halides) within the perovskite structure can lead to defects, resulting in degradation of the material and loss of device performance. This issue can also contribute to hysteresis in current-voltage characteristics.
- The materials used for electrodes in perovskite solar cells, such as gold or silver, can degrade over time due to chemical reactions with perovskite or other layers. This can reduce the electrical contact and lead to performance degradation. Moreover, certain hole transport layers or electron transport layers may also degrade under operational conditions, contributing to instability.
- Perovskite materials can experience changes in their crystal structure under certain environmental conditions (e.g., temperature, humidity). These structural changes can cause phase transitions that reduce the performance of the cell, making them less stable over long periods.
- Perovskite solar cells are composed of multiple layers, and the interfaces between these layers can sometimes degrade over time. This degradation can result in charge recombination at the interfaces, leading to a decrease in efficiency.
- Impurities in the perovskite material or during the fabrication process can lead to the formation of unwanted phases or defects that can cause degradation. These impurities can arise from solvents, metal contamination, or residual chemicals.
5. Analysis of Thermodynamical Sustainability of Perovskite Solar Cells
5.1. Analysis of the Absorber MAPbI3 Behavior in the Narrow Temperature Range
5.2. Analysis of the Interfaces Between Absorber and Charge Transport Layers Behavior
6. Possibility and Prospects
7. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PCE | Power conversion efficiency |
PSC | Perovskite solar cell |
LED | Light emitter diode |
PV | Photovoltaic |
ABX3 | Crystalline structure of the perovskite |
t | Goldschmidt tolerance factor |
RA,B,X | Ionic radii of A, B, X components |
HOMO | High occupied molecular orbital |
LUMO | Lowest unoccupied molecular orbital |
ETL | Electron transport layer |
HTL | Hole transport layer |
TCO | Transparent conductive oxide |
PIN | P-doped-intrinsic-N-doped structure |
MAPbI3 | Methylammonium lead iodide |
MA+ | Methylammonium ion |
FA+ | Formamidinium ion |
ΔG | Gibbs free energy variation |
ΔH | Enthalpy variation |
T | Absolute temperature, K |
ΔS | Entropy variation |
PTAA | polymer poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] |
CBTS | Kesterite Cu2BaSnS4 |
References
- Gorjian, S.; Sharon, H.; Ebadi, H.; Kant, K.; Scavo, F.B.; Tina, G.M. Recent Technical Advancements, Economics and Environmental Impacts of Floating Photovoltaic Solar Energy Conversion Systems. J. Clean. Prod. 2021, 278, 124285. [Google Scholar] [CrossRef]
- Shockley, W.; Queisser, H. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Ehrler, B.; Alarcon-Llado, E.; Tabering, S.W.; Veeken, T.; Garnett, E.C.; Polman, A. Photovoltaics Reaching for the Shockley–Queisser Limit. ACS Energy Lett. 2022, 5, 3029–3033. [Google Scholar] [CrossRef]
- Interactive Best Research-Cell Efficiency Chart, National Renewable Energy Laboratory NREL. 2025. Available online: https://www.nrel.gov/pv/interactive-cell-efficiency (accessed on 19 June 2025).
- Goetzberger, A.; Knobloch, J.; Voß, B. Crystalline Silicon Solar Cells; John Wiley & Sons: Hoboken, NJ, USA, 1998; ISBN 0-471-97144-8. [Google Scholar]
- Yang, K.J.; Sim, J.H.; Son, D.H.; Jeon, D.H.; Hwang, D.K.; Nam, D.; Cheong, H.; Kim, S.Y.; Kim, J.H.; Kim, D.H.; et al. Comparison of chalcopyrite and kesterite thin film solar cells. J. Ind. Eng. Chem. 2017, 45, 78–84. [Google Scholar] [CrossRef]
- Huang, X.; Gao, Y.; Li, W.; Wang, J.; Yue, G.; Tan, F.; Wang, H.L. Efficient and Stable Z907-Based Dye-Sensitized Solar Cells Enabled by Suppressed Charge Recombination and Photocatalytic Activity. ACS Sustain. Chem. Eng. 2024, 12, 13007–13016. [Google Scholar] [CrossRef]
- Gao, Y.; Xiao, Z.; Cui, M.; Saidaminov, M.I.; Tan, F.; Shang, L.; Li, W.; Qin, C.; Ding, L. Asymmetric Π-Bridge Engineering Enables High-Permittivity Benzo [1,2-B:4,5-b′]Difuran-Conjugated Polymer for Efficient Organic Solar Cells. Adv. Mater. 2024, 36, 2306373. [Google Scholar] [CrossRef]
- Lin, H.; Yang, M.; Ru, X.; Wang, G.; Yin, S.; Peng, F.; Hong, C.; Qu, M.; Lu, J.; Fang, L.; et al. Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers. Nat. Energy 2023, 8, 789–799. [Google Scholar] [CrossRef]
- Raisa, A.T.; Sakib, S.N.; Hossain, M.J.; Rocky, K.A.; Kowsar, A. Advances in multijunction solar cells: An overview. Sol. Energy Adv. 2025, 5, 100105. [Google Scholar] [CrossRef]
- Axelevitch, A. Photovoltaic Efficiency Improvement: Limits and Possibilities. Sci. Rev. Chem. Commun. 2018, 8/1, 1–22, ISSN: 2277-2669. [Google Scholar]
- Ma, F.; Zhao, Y.; Qu, Z.; You, J. Developments of Highly Efficient Perovskite Solar Cells. Acc. Mater. Res. 2023, 4, 716–725. [Google Scholar] [CrossRef]
- Khan, D.; Panjwani, M.K. A short report on up to date Stability progress of Perovskite solar cells. Acad. Lett. 2021, 2261. [Google Scholar] [CrossRef]
- Best Research-Cell Efficiency Chart, National Renewable Energy Laboratory NREL. 2025. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 30 June 2025).
- Wang, H.; Sun, Y.; Chen, J.; Wang, F.; Han, R.; Zhang, C.; Kong, J.; Li, L.; Yang, J. A Review of Perovskite-Based Photodetectors and Their Applications. Nanomaterials 2022, 12, 4390. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Misono, M. Advances in designing perovskite catalysts. Curr. Opin. Solid State Mater. Sci. 2001, 5, 381–387. [Google Scholar] [CrossRef]
- Viswanathan, B.; Suryakumar, V.; Venugopal, B.; Roshna, S.H.; Hariprasad, N. Perovskite Materials-An Introduction; Viswanathan, B., Ed.; National Centre for Catalysis Research Internal Bulletin: Chennai, India, 2023; Available online: https://www.researchgate.net/publication/370100194_PEROVSKITE_MATERIALS-AN_INTRODUCTION (accessed on 10 May 2025).
- Chenwei, N.; Zuoxiu, T.; Zhong, J. Solar cells based on all-inorganic halide perovskites: Progress and prospects. J. Trans. Nanjing Univ. Aero Astro 2018, 35, 648–655. [Google Scholar] [CrossRef]
- Gao, P.; Grätzel, M.; Nazeeruddin, M.K. Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 7, 2448–2463. [Google Scholar] [CrossRef]
- Kieslich, G.; Sun, S.; Cheetham, A.K. An extended tolerance factor approach for organic-inorganic perovskites. Chem. Sci. 2015, 6, 3430–3433. [Google Scholar] [CrossRef]
- Kumar, V.; Kathiravan, A.; Jhonsi, M.A. Beyond lead halide perovskites: Crystal structure, bandgaps, photovoltaic properties and future stance of lead-free halide double perovskites. Nano Energy 2024, 125, 109523. [Google Scholar] [CrossRef]
- Shang, S.L.; Lin, S.; Gao, M.C.; Schlom, D.G.; Liu, Z.K. Ellingham diagrams of binary oxides. APL Mater. 2024, 12, 081110. [Google Scholar] [CrossRef]
- Oliveira, L.H.; De Moura, A.P.; La Porta, F.A.; Nogueira, I.C.; Aguiar, E.C.; Sequinel, T.; Rosa, I.L.V.; Longo, E.; Varela, J.A. Influence of Cu-doping on the structural and optical properties of CaTiO3 powders. Mater. Res. Bull. 2016, 81, 1–9. [Google Scholar] [CrossRef]
- Brivio, F.; Butler, K.T.; Walsh, A.; Van Schilfgaarde, M. Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers. Phys. Rev. B Condens. Matter Mater. Phys. 2014, 89, 155204. [Google Scholar] [CrossRef]
- Pitchaiya, S.; Natarajan, M.; Santhanam, A.; Asokan, V.; Yuvapragasam, A.; Santhanam, A.; Asokan, V.; Yuvapragasam, A.; Ramakrishnan, V.M.; Palanisamy, S.E.; et al. A review on the classification of organic/inorganic/carbonaceous hole transporting materials for perovskite solar cell application. Arab. J. Chem. 2020, 13, 2526–2557. [Google Scholar] [CrossRef]
- Bello, S.; Urwick, A.; Bastianini, F.; Nedoma, A.J.; Dunbar, A. An introduction to perovskites for solar cells and their characterization. Energy Rep. 2022, 8, 89–106. [Google Scholar] [CrossRef]
- Mora-Sero, I. How Do Perovskite Solar Cells Work? Joule 2018, 4, 585–587. [Google Scholar] [CrossRef]
- Vieten, J.; Bulfin, B.; Huck, P.; Horton, M.; Guban, D.; Zhu, L.; Lu, Y.; Persson, K.A.; Roeb, M.; Sattler, C. Materials design of perovskite solid solutions for thermochemical applications. Energy Environ. Sci. 2019, 12, 1369–1384. [Google Scholar] [CrossRef]
- Savill, K.J.; Ulatowski, A.M.; Herz, L.M. Optoelectronic properties of tin–lead halide perovskites. ACS Energy Lett. 2021, 6, 2413–2426. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, B.; Wu, X.; Sheppard, S.A.; Zhang, S.; Gao, D.; Long, N.J.; Zhu, Z. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 2022, 376, 416–420. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Song, C.; Zhang, W.; Shi, Y.; Gao, Y.; Liu, H.; Chen, R.; Shang, L.; Tan, H.; Tan, F.; et al. Bidirectional Targeted Therapy Enables Efficient, Stable, and Eco-Friendly Perovskite Solar Cells. Adv. Funct. Mater. 2023, 33, 2214714. [Google Scholar] [CrossRef]
- Tenuta, E.; Zheng, C.; Rubel, O. Thermodynamic origin of instability in hybrid halide perovskites. Sci. Rep. 2016, 6, 37654. [Google Scholar] [CrossRef]
- Mazumdar, S.; Zhao, Y.; Zhang, X. Stability of Perovskite Solar Cells: Degradation Mechanisms and Remedies. Front. Electron. 2021, 2, 712785. [Google Scholar] [CrossRef]
- Heine, D.; Yu, H.C.; Blum, V. Benchmark thermodynamic analysis of methylammonium lead iodide decomposition from first principles. J. Phys. Energy 2024, 6, 015015. [Google Scholar] [CrossRef]
- Brunetti, B.; Cavallo, C.; Ciccioli, A.; Gigli, G.; Latini, A. On the Thermal and Thermodynamic (In)Stability of Methylammonium Lead Halide Perovskites. Sci. Rep. 2016, 6, 31896. [Google Scholar] [CrossRef]
- Dean, J.A. Lange’s Handbook of Chemistry, 12th ed.; McGraw-Hill: NewYork, NY, USA, 1979; ISBN 0-07-016384-7. [Google Scholar]
- Nagabhushana, G.P.; Shivaramaiah, R.; Navrotsky, A. Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskite. Proc. Natl. Acad. Sci. USA 2016, 133, 7717–7721. [Google Scholar] [CrossRef] [PubMed]
- Senocrate, A.; Kim, G.Y.; Gratzel, M.; Maier, J. Thermochemical Stability of Hybrid Halide Perovskites. ACS Energy Lett. 2019, 4, 2859–2870. [Google Scholar] [CrossRef]
- Yamamuro, O.; Oguni, M.; Matsuo, T.; Suga, H. Calorimetric and dilatometric studies on the phase transitions of crystalline CH3NH3I. J. Chem. Thermodyn. 1986, 18, 939–954. [Google Scholar] [CrossRef]
- Kulbak, M.; Gupta, S.; Kedem, N.; Levine, I.; Bendikov, T.; Hodes, G.; Cahen, D. Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells. J. Phys. Chem. Lett. 2015, 7, 167–172. [Google Scholar] [CrossRef]
- Sani, F.; Shafie, S.; Lim, H.N.; Musa, A.O. Advancement on Lead-Free Organic-Inorganic Halide Perovskite Solar Cells: A Review. Materials 2018, 11, 1008. [Google Scholar] [CrossRef]
- Ravishankar, S.; Gharibzadeh, S.; Roldan-Carmona, C.; Grancini, G.; Lee, Y.; Ralaiarisoa, M.; Asiri, A.M.; Koch, N.; Bisquert, J.; Nazeeruddin, M.K. Influence of Charge Transport Layers on Open-Circuit Voltage and Hysteresis in Perovskite Solar Cells. Joule 2018, 2, 788–798. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, M.; Li, F.; Yang, Z. Recent Progress in Perovskite Solar Cells: Status and Future. Coatings 2023, 13, 644. [Google Scholar] [CrossRef]
- Zhang, T.; He, Q.; Yu, J.; Chen, A.; Zhang, Z.; Pun, J. Recent progress in improving strategies of inorganic transport layers for perovskite solar cells. Nano Energy 2022, 104, 107918. [Google Scholar] [CrossRef]
- Hossain, M.K.; Toki, G.F.I.; Kuddus, A.; Rubel, M.H.K.; Bencherif, H.; Rahman, F.; Islam, R.; Mushtaq, M. An extensive study on multiple ETL and HTL layers to design and simulation of high-performance lead-free CsSnCl3-based perovskite solar cells. Sci. Rep. 2023, 13, 2521. [Google Scholar] [CrossRef]
- Rombach, F.M.; Haque, S.A.; Macdonald, T.J. Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy Environ. Sci. 2021, 14, 5161–5190. [Google Scholar] [CrossRef]
- Pfeiffer, M.; Leo, K.; Zhou, X.; Huang, J.S.; Hofmann, M.; Werner, A.; Bloshwitz-Nimoth, J. Doped organic semiconductors: Physics and application in light emitting diodes. Org. Electron. 2003, 4, 89–103. [Google Scholar] [CrossRef]
- Wang, S.; Sina, M.; Parikh, P.; Uekert, T.; Shahbazian, B.; Devaraj, A.; Meng, Y.S. Role of 4-tert-Butylpyridine as a Hole Transport Layer Morphological Controller in Perovskite Solar Cells. Nano. Lett. 2016, 16, 5594–5600. [Google Scholar] [CrossRef] [PubMed]
- Tumen-Ulzii, G.; Qin, C.; Matsushima, T.; Leyden, M.R.; Balijipalli, U.; Klotz, D.; Adachi, C. Understanding the Degradation of Spiro-OMETAD-Based Perovskite Solar Cells at High Temperature. Sol. Rrl 2020, 4, 2000305. [Google Scholar] [CrossRef]
- Zhang, D.; Li, D.; Hu, Y.; Mei, A.; Han, H. Degradation pathways in perovskite solar cells and how to meet international standards. Commun. Mater. 2022, 3, 58. [Google Scholar] [CrossRef]
- Axelevitch, A.; Gorenstein, B.; Golan, G. Preparation and investigation of VOx thin films of n- and p-types. Thin Solid. Films 2007, 515, 8446–8449. [Google Scholar] [CrossRef]
- Wang, Q.; Phung, N.; Di Girolamo, D.; Vivo, P.; Abate, A. Enhancement in Lifespan of Halide Perovskite Solar Cells. Energy Environ. Sci. 2019, 12, 865–886. [Google Scholar] [CrossRef]
- Rademaker, L. A Practical Introduction to Density Functional Theory. arXiv 2020, arXiv:2011.09888. [Google Scholar] [CrossRef]
- Mnisi1, B.O.; Benecha, E.M.; Tibane, M.M. Density functional theory study of phase stability and electronic properties for L12 X3Ru and XRu3 alloys. Eur. Phys. J. B 2025, 98, 106. [Google Scholar] [CrossRef]
- Diao, X.F.; Tang, Y.L.; Xiong, D.Y.; Wang, P.R.; Gao, L.K.; Tian, T.Y.; Wei, X.N.; Zhang, H.R.; Wu, X.P.; Ji, S.T. Study on the properties of perovskite materials under light and different temperatures and electric fields based on DFT. RSC Adv. 2020, 10, 20960. [Google Scholar] [CrossRef]
- Schelhas, L.T.; Li, Z.; Christians, J.A.; Goyal, A.; Kairys, P.; Harvey, S.; Kim, D.H.; Stone, K.H.; Luther, J.M.; Zhu, K.; et al. Insights into operational stability and processing of halide perovskite active layers. Energ. Environ. Sci. 2019, 12, 1341–1348. [Google Scholar] [CrossRef]
1st Reaction (Equation (2)) | CH3NH3PbI3 | CH3NH2 | HI | PbI2 | |
(kJ/mol) | 208 [35] | −22.5 [36] | 26.5 [36] | −175.4 [36] | −379.4 |
(J/mol × K) | 39.5 [37] | 249.9 [36] | 206.6 [36] | 174.8 [36] | 241.7 |
G (kJ/mol) | −465.4 | ||||
2nd Reaction (Equation (3)) | CH3NH3PbI3 | CH3I | NH3 | PbI2 | |
(kJ/mol) | 208 [35] | 14.4 [36] | −45.9 [36] | −175.4 [36] | −374.9 |
(J/mol × K) | 39.5 [38] | 254.1 [36] | −192.8 [36] | −174.8 [36] | −153 |
G (kJ/mol) | −320.1 | ||||
3rd Reaction (Equation (4)) | CH3NH3PbI3 | CH3NH3I | PbI2 | ||
(kJ/mol) | 208 [35] | 19.6 [39] | −175.4 [36] | −363.8 | |
(J/mol × K) | 39.5 [38] | 160.3 [39] | −174.8 [36] | −54 | |
G (kJ/mol) | −344.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Axelevitch, A.; Lugassy, D. Assessing the Possibility to Enhance the Stability of Hybrid Perovskite Solar Cells: A Brief Review. Solar 2025, 5, 37. https://doi.org/10.3390/solar5030037
Axelevitch A, Lugassy D. Assessing the Possibility to Enhance the Stability of Hybrid Perovskite Solar Cells: A Brief Review. Solar. 2025; 5(3):37. https://doi.org/10.3390/solar5030037
Chicago/Turabian StyleAxelevitch, Alexander, and David Lugassy. 2025. "Assessing the Possibility to Enhance the Stability of Hybrid Perovskite Solar Cells: A Brief Review" Solar 5, no. 3: 37. https://doi.org/10.3390/solar5030037
APA StyleAxelevitch, A., & Lugassy, D. (2025). Assessing the Possibility to Enhance the Stability of Hybrid Perovskite Solar Cells: A Brief Review. Solar, 5(3), 37. https://doi.org/10.3390/solar5030037