Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = definitive endoderm differentiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7842 KB  
Article
Role of BMPR2 Mutation in Lung Organoid Differentiation
by Simin Jiang, Dian Chen, Liangliang Tian, Zihang Pan, Huanyu Long, Lanhe Chu, Weijing Kong, Qiyang Yao, Xiaojing Ma, Yun Zhao, Kai Wang and Yahong Chen
Biomedicines 2025, 13(7), 1623; https://doi.org/10.3390/biomedicines13071623 - 2 Jul 2025
Cited by 1 | Viewed by 1275
Abstract
Background: The bone morphogenetic protein (BMP) signaling pathway is essential for lung development. BMP4, a key regulator, binds to type I (BMPR1) and type II (BMPR2) receptors to initiate downstream signaling. While the inactivation of Bmpr1a and Bmpr1b leads to tracheoesophageal fistulae, [...] Read more.
Background: The bone morphogenetic protein (BMP) signaling pathway is essential for lung development. BMP4, a key regulator, binds to type I (BMPR1) and type II (BMPR2) receptors to initiate downstream signaling. While the inactivation of Bmpr1a and Bmpr1b leads to tracheoesophageal fistulae, the role of BMPR2 mutations in lung epithelial development remains unclear. Methods: We generated induced pluripotent stem cells (iPSCs) from a patient carrying a BMPR2 mutation (c.631C>T), and gene-corrected isogenic controls were created using CRISPR/Cas9. These iPSCs were differentiated into lung progenitor cells and subsequently cultured to generate alveolar and airway organoids. The differentiation efficiency and epithelial lineage specification were assessed using immunofluorescence, flow cytometry, and qRT-PCR. Results: BMPR2-mutant iPSCs showed no impairment in forming a definitive or anterior foregut endoderm. However, a significant reduction in lung progenitor cell differentiation was observed. Further, while alveolar epithelial differentiation remained largely unaffected, airway organoids derived from BMPR2-mutant cells exhibited impaired goblet and ciliated cell development, with an increase in basal and club cell markers, indicating skewing toward undifferentiated airway cell populations. Conclusions: BMPR2 dysfunction selectively impairs late-stage lung progenitor specification and disrupts airway epithelial maturation, providing new insights into the developmental impacts of BMPR2 mutations. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

15 pages, 7327 KB  
Article
Efficient Generation of Induced Pluripotent Stem Cell-Derived Definitive Endoderm Cells with Growth Factors and Small Molecules
by Faizal Z. Asumda, Shadia Alzoubi, Kiyasha Padarath, Nina John, Kimya Jones, Ravindra Kolhe, Ashis Kumar Mondal, Tae Jin Lee, Wenbo Zhi, Robert C. Huebert, Nathan P. Staff and Lindsey A. Kirkeby
Cells 2025, 14(11), 815; https://doi.org/10.3390/cells14110815 - 30 May 2025
Viewed by 2258
Abstract
Definitive endoderm (DE) differentiation leads to the development of the major internal organs including the liver, intestines, pancreas, gall bladder, prostate, bladder, thyroid, and lungs. The two primary methods utilized for in vitro differentiation of induced pluripotent stem cells (iPSCs) into DE cells [...] Read more.
Definitive endoderm (DE) differentiation leads to the development of the major internal organs including the liver, intestines, pancreas, gall bladder, prostate, bladder, thyroid, and lungs. The two primary methods utilized for in vitro differentiation of induced pluripotent stem cells (iPSCs) into DE cells are the growth factor (GF) and the small molecule (SM) approaches. The GSK-3 inhibitor (CHIR99021) is a key factor for the SM approach. Activin A and Wnt3a are utilized in the GF approach. In this study, both the GF and SM protocols were compared to each other. The results show that both the GF and SM protocol produce DE with a similar morphological phenotype, gene and protein expression, and a similar level of homogeneity and functionality. However, on both the gene expression and proteomic level, there is a divergence between the two protocols during hepatic specification. Proteomic analysis shows that hepatoblasts from the GF protocol have significantly differentially expressed proteins (DEPs) involved in liver metabolic pathways compared to the SM protocol. Well-validated DE differentiation protocols are needed to fully unlock the clinical potential of iPSCs. In the first step of generating DE-derived tissue, either protocol can be utilized. However, for hepatic specification, the GF protocol is more effective. Full article
(This article belongs to the Special Issue Advancements in Research on hiPSC-Derived Cells)
Show Figures

Figure 1

20 pages, 38114 KB  
Article
Efficient Generation of Pancreatic Progenitor Cells from Induced Pluripotent Stem Cells Derived from a Non-Invasive and Accessible Tissue Source—The Plucked Hair Follicle
by Amatullah Fatehi, Marwa Sadat, Muneera Fayyad, Jean Tang, Duhyun Han, Ian M. Rogers and Drew Taylor
Cells 2024, 13(12), 1010; https://doi.org/10.3390/cells13121010 - 10 Jun 2024
Cited by 3 | Viewed by 3612
Abstract
The advent of induced pluripotent stem cell (iPSC) technology has brought about transformative advancements in regenerative medicine, offering novel avenues for disease modeling, drug testing, and cell-based therapies. Patient-specific iPSC-based treatments hold the promise of mitigating immune rejection risks. However, the intricacies and [...] Read more.
The advent of induced pluripotent stem cell (iPSC) technology has brought about transformative advancements in regenerative medicine, offering novel avenues for disease modeling, drug testing, and cell-based therapies. Patient-specific iPSC-based treatments hold the promise of mitigating immune rejection risks. However, the intricacies and costs of producing autologous therapies present commercial challenges. The hair follicle is a multi-germ layered versatile cell source that can be harvested at any age. It is a rich source of keratinocytes, fibroblasts, multipotent stromal cells, and the newly defined Hair Follicle-Associated Pluripotent Stem Cells (HAP). It can also be obtained non-invasively and transported via regular mail channels, making it the ideal starting material for an autologous biobank. In this study, cryopreserved hair follicle-derived iPSC lines (HF-iPS) were established through integration-free vectors, encompassing a diverse cohort. These genetically stable lines exhibited robust expression of pluripotency markers, and showcased tri-lineage differentiation potential. The HF-iPSCs effectively differentiated into double-positive cKIT+/CXCR4+ definitive endoderm cells and NKX6.1+/PDX1+ pancreatic progenitor cells, affirming their pluripotent attributes. We anticipate that the use of plucked hair follicles as an accessible, non-invasive cell source to obtain patient cells, in conjunction with the use of episomal vectors for reprogramming, will improve the future generation of clinically applicable pancreatic progenitor cells for the treatment of Type I Diabetes. Full article
(This article belongs to the Collection Stem Cells in Tissue Engineering and Regeneration)
Show Figures

Figure 1

11 pages, 12740 KB  
Brief Report
Generation of Highly Functional Hepatocyte-like Organoids from Human Adipose-Derived Mesenchymal Stem Cells Cultured with Endothelial Cells
by Shuhai Chen, Yu Saito, Yuhei Waki, Tetsuya Ikemoto, Hiroki Teraoku, Shinichiro Yamada, Yuji Morine and Mitsuo Shimada
Cells 2024, 13(6), 547; https://doi.org/10.3390/cells13060547 - 20 Mar 2024
Cited by 1 | Viewed by 2507
Abstract
Previously, we successfully established a highly functional, three-dimensional hepatocyte-like cell (3D-HLC) model from adipose-derived mesenchymal stem cells (ADSCs) via a three-step differentiation protocol. The aim of the present study was to investigate whether generating hepatocyte-like organoids (H-organoids) by adding endothelial cells further improved [...] Read more.
Previously, we successfully established a highly functional, three-dimensional hepatocyte-like cell (3D-HLC) model from adipose-derived mesenchymal stem cells (ADSCs) via a three-step differentiation protocol. The aim of the present study was to investigate whether generating hepatocyte-like organoids (H-organoids) by adding endothelial cells further improved the liver-like functionality of 3D-HLCs and to assess H-organoids’ immunogenicity properties. Genes representing liver maturation and function were detected by quantitative reverse transcription–PCR analysis. The expression of hepatic maturation proteins was measured using immunofluorescence staining. Cytochrome P (CYP)450 metabolism activity and ammonia metabolism tests were used to assess liver function. H-organoids were successfully established by adding human umbilical vein endothelial cells at the beginning of the definitive endoderm stage in our 3D differentiation protocol. The gene expression of alpha-1 antitrypsin, carbamoyl–phosphate synthase 1, and apolipoprotein E, which represent liver maturation state and function, was higher in H-organoids than non-organoid 3D-HLCs. H-organoids possessed higher CYP3A4 metabolism activity and comparable ammonia metabolism capacity than 3D-HLCs. Moreover, although H-organoids expressed human leukocyte antigen class I, they expressed little human leukocyte antigen class II, cluster of differentiation (CD)40, CD80, CD86, and programmed cell death ligand 1, suggesting their immunogenicity properties were not significantly upregulated during differentiation from ADSCs. In conclusion, we successfully established an H-organoid model with higher liver-like functionality than previously established 3D-HLCs and comparable immunogenicity to ADSCs. Full article
(This article belongs to the Special Issue 3D Stem Cell Culture—Series 2)
Show Figures

Figure 1

12 pages, 2502 KB  
Article
Effective Generation of Functional Pancreatic β Cells from Human-Derived Dental Stem Cells of Apical Papilla and Bone-Marrow-Derived Stem Cells: A Comparative Study
by Duaa Abuarqoub, Sofia Adwan, Rand Zaza, Suha Wehaibi, Nazneen Aslam, Hanan Jafar, Nidal Qinnah and Abdalla Awidi
Pharmaceuticals 2023, 16(5), 649; https://doi.org/10.3390/ph16050649 - 26 Apr 2023
Cited by 8 | Viewed by 3540
Abstract
Diabetes Mellitus Type 1 is an autoimmune disease that occurs due to the destruction of insulin-producing cells (β cells), resulting in hyperglycemia. Therefore, diabetic patients depend on insulin treatment for the rest of their lives. Stem cells are considered a promising cellular therapy [...] Read more.
Diabetes Mellitus Type 1 is an autoimmune disease that occurs due to the destruction of insulin-producing cells (β cells), resulting in hyperglycemia. Therefore, diabetic patients depend on insulin treatment for the rest of their lives. Stem cells are considered a promising cellular therapy to replace the nonfunctional beta cells with functional and mature beta cells. Hence, in this study, we aimed to examine the potential of dental stem cells of apical papilla (SCAP) to differentiate into functional islet cell aggregates (ICAs), compared to the ICA generated from bone-marrow-derived stem cells (BM-MSCs). Our strategy was to induce the differentiation of SCAP and BM-MSCs into a definitive endoderm. The success of endodermal differentiation was determined by measuring the expression of definitive endodermal markers, FOXA2 and SOX-17, by flow cytometry. Next, the maturity and functionality of the differentiated cells were evaluated by measuring the amount of insulin and C-peptide secreted by the derived ICAs using ELISA. Additionally, the expression of mature beta cell markers—insulin, C-peptide, glucagon and PDX-1—was detected through confocal microscopy, while the staining of the mature islet-like clusters was detected by using diphenythiocarbazone (DTZ). Our results have shown that both SCAP and BM-MSCs were sequentially committed to a definitive pancreatic endoderm and β-cell-like cells by upregulating the expression of FOXA2 and SOX17 significantly (**** p < 0.0000 and *** p = 0.0001), respectively. Moreover, the identity of ICAs was confirmed by DTZ-positive staining, as well as by the expression of C-peptide, Pdx-1, insulin and glucagon at day 14. It was noted that at day 14, differentiated ICAs released insulin and C-peptides in a significant manner (* p < 0.01, *** p = 0.0001), respectively, exhibiting in vitro functionality. Our results demonstrated for the first time that SCAP could be differentiated into pancreatic cell lineage in a similar manner to BM-MSCs, suggesting a new unambiguous and nonconventional source of stem cells that could be used for stem cell therapy to treat diabetes. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

17 pages, 4431 KB  
Article
Differentiation of Human Induced Pluripotent Stem Cells from Patients with Severe COPD into Functional Airway Epithelium
by Engi Ahmed, Mathieu Fieldes, Chloé Bourguignon, Joffrey Mianné, Aurélie Petit, Myriam Jory, Chantal Cazevieille, Hassan Boukhaddaoui, James P. Garnett, Christophe Hirtz, Gladys Massiera, Isabelle Vachier, Said Assou, Arnaud Bourdin and John De Vos
Cells 2022, 11(15), 2422; https://doi.org/10.3390/cells11152422 - 5 Aug 2022
Cited by 11 | Viewed by 5784
Abstract
Background: Chronic Obstructive Pulmonary Disease (COPD), a major cause of mortality and disability, is a complex disease with heterogeneous and ill-understood biological mechanisms. Human induced pluripotent stem cells (hiPSCs) are a promising tool to model human disease, including the impact of genetic susceptibility. [...] Read more.
Background: Chronic Obstructive Pulmonary Disease (COPD), a major cause of mortality and disability, is a complex disease with heterogeneous and ill-understood biological mechanisms. Human induced pluripotent stem cells (hiPSCs) are a promising tool to model human disease, including the impact of genetic susceptibility. Methods: We developed a simple and reliable method for reprogramming peripheral blood mononuclear cells into hiPSCs and to differentiate them into air–liquid interface bronchial epithelium within 45 days. Importantly, this method does not involve any cell sorting step. We reprogrammed blood cells from one healthy control and three patients with very severe COPD. Results: The mean cell purity at the definitive endoderm and ventral anterior foregut endoderm (vAFE) stages was >80%, assessed by quantifying C-X-C Motif Chemokine Receptor 4/SRY-Box Transcription Factor 17 (CXCR4/SOX17) and NK2 Homeobox 1 (NKX2.1) expression, respectively. vAFE cells from all four hiPSC lines differentiated into bronchial epithelium in air–liquid interface conditions, with large zones covered by beating ciliated, basal, goblets, club cells and neuroendocrine cells, as found in vivo. The hiPSC-derived airway epithelium (iALI) from patients with very severe COPD and from the healthy control were undistinguishable. Conclusions: iALI bronchial epithelium is ready for better understanding lung disease pathogenesis and accelerating drug discovery. Full article
(This article belongs to the Special Issue Pluripotent Stem Cells for Disease Modelling)
Show Figures

Figure 1

24 pages, 5007 KB  
Article
The DevTox Germ Layer Reporter Platform: An Assay Adaptation of the Human Pluripotent Stem Cell Test
by John T. Gamble, Kristen Hopperstad and Chad Deisenroth
Toxics 2022, 10(7), 392; https://doi.org/10.3390/toxics10070392 - 13 Jul 2022
Cited by 6 | Viewed by 3865
Abstract
Environmental chemical exposures are a contributing factor to birth defects affecting infant morbidity and mortality. The USA EPA is committed to developing new approach methods (NAMs) to detect chemical risks to susceptible populations, including pregnant women. NAM-based coverage for cellular mechanisms associated with [...] Read more.
Environmental chemical exposures are a contributing factor to birth defects affecting infant morbidity and mortality. The USA EPA is committed to developing new approach methods (NAMs) to detect chemical risks to susceptible populations, including pregnant women. NAM-based coverage for cellular mechanisms associated with early human development could enhance identification of potential developmental toxicants (DevTox) for new and existing data-poor chemicals. The human pluripotent stem cell test (hPST) is an in vitro test method for rapidly identifying potential human developmental toxicants that employs directed differentiation of embryonic stem cells to measure reductions in SOX17 biomarker expression and nuclear localization. The objective of this study was to expand on the hPST principles to develop a model platform (DevTox GLR) that utilizes the transgenic RUES2-GLR cell line expressing fluorescent reporter fusion protein biomarkers for SOX17 (endoderm marker), BRA (mesoderm marker), and SOX2 (ectoderm and pluripotency marker). Initial assay adaption to definitive endoderm (DevTox GLR-Endo) was performed to emulate the hPST SOX17 endpoint and enable comparative evaluation of concordant chemical effects. Assay duration was reduced to two days and screening throughput scaled to 384-well format for enhanced speed and efficiency. Assay performance for 66 chemicals derived from reference and training set data resulted in a balanced accuracy of 72% (79% sensitivity and 65% specificity). The DevTox GLR-Endo assay demonstrates successful adaptation of the hPST concept with increased throughput, shorter assay duration, and minimal endpoint processing. The DevTox GLR model platform expands the in vitro NAM toolbox to rapidly identify potential developmental hazards and mechanistically characterize toxicant effects on pathways and processes associated with early human development. Full article
(This article belongs to the Special Issue Computational Toxicology: Expanding Frontiers in Risk Assessment)
Show Figures

Figure 1

19 pages, 5532 KB  
Article
Toward Xeno-Free Differentiation of Human Induced Pluripotent Stem Cell-Derived Small Intestinal Epithelial Cells
by Jaakko Saari, Fatima Siddique, Sanna Korpela, Elina Mäntylä, Teemu O. Ihalainen, Katri Kaukinen, Katriina Aalto-Setälä, Katri Lindfors and Kati Juuti-Uusitalo
Int. J. Mol. Sci. 2022, 23(3), 1312; https://doi.org/10.3390/ijms23031312 - 24 Jan 2022
Cited by 4 | Viewed by 5987
Abstract
The small intestinal epithelium has an important role in nutrition, but also in drug absorption and metabolism. There are a few two-dimensional (2D) patient-derived induced pluripotent stem cell (iPSC)-based intestinal models enabling easy evaluation of transcellular transport. It is known that animal-derived components [...] Read more.
The small intestinal epithelium has an important role in nutrition, but also in drug absorption and metabolism. There are a few two-dimensional (2D) patient-derived induced pluripotent stem cell (iPSC)-based intestinal models enabling easy evaluation of transcellular transport. It is known that animal-derived components induce variation in the experimental outcomes. Therefore, we aimed to refine the differentiation protocol by using animal-free components. More specifically, we compared maturation of 2D-cultured iPCSs toward small intestinal epithelial cells when cultured either with or without serum, and either on Geltrex or on animal-free, recombinant laminin-based substrata. Differentiation status was characterized by qPCR, immunofluorescence imaging, and functionality assays. Our data suggest that differentiation toward definitive endoderm is more efficient without serum. Both collagen- and recombinant laminin-based coating supported differentiation of definitive endoderm, posterior definitive endoderm, and small intestinal epithelial cells from iPS-cells equally well. Small intestinal epithelial cells differentiated on recombinant laminin exhibited slightly more enterocyte specific cellular functionality than cells differentiated on Geltrex. Our data suggest that functional small intestinal epithelial cells can be generated from iPSCs in serum-free method on xeno-free substrata. This method is easily converted to an entirely xeno-free method. Full article
(This article belongs to the Special Issue Novel Biorelevant Intestinal Epithelial In Vitro Models)
Show Figures

Figure 1

21 pages, 3971 KB  
Article
Connexin 43 Gene Ablation Does Not Alter Human Pluripotent Stem Cell Germ Lineage Specification
by Grace A. Christopher, Rebecca J. Noort and Jessica L. Esseltine
Biomolecules 2022, 12(1), 15; https://doi.org/10.3390/biom12010015 - 22 Dec 2021
Cited by 2 | Viewed by 3767
Abstract
During embryonic germ layer development, cells communicate with each other and their environment to ensure proper lineage specification and tissue development. Connexin (Cx) proteins facilitate direct cell–cell communication through gap junction channels. While previous reports suggest that gap junctional intercellular communication may contribute [...] Read more.
During embryonic germ layer development, cells communicate with each other and their environment to ensure proper lineage specification and tissue development. Connexin (Cx) proteins facilitate direct cell–cell communication through gap junction channels. While previous reports suggest that gap junctional intercellular communication may contribute to germ layer formation, there have been limited comprehensive expression analyses or genetic ablation studies on Cxs during human pluripotent stem cell (PSC) germ lineage specification. We screened the mRNA profile and protein expression patterns of select human Cx isoforms in undifferentiated human induced pluripotent stem cells (iPSCs), and after directed differentiation into the three embryonic germ lineages: ectoderm, definitive endoderm, and mesoderm. Transcript analyses by qPCR revealed upregulation of Cx45 and Cx62 in iPSC-derived ectoderm; Cx45 in mesoderm; and Cx30.3, Cx31, Cx32, Cx36, Cx37, and Cx40 in endoderm relative to control human iPSCs. Generated Cx43 (GJA1) CRISPR-Cas9 knockout iPSCs successfully differentiated into cells of all three germ layers, suggesting that Cx43 is dispensable during directed iPSC lineage specification. Furthermore, qPCR screening of select Cx transcripts in our GJA1-/- iPSCs showed no significant Cx upregulation in response to the loss of Cx43 protein. Future studies will reveal possible compensation by additional Cxs, suggesting targets for future CRISPR-Cas9 ablation studies in human iPSC lineage specification. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

15 pages, 4648 KB  
Article
A Novel Isogenic Human Cell-Based System for MEN1 Syndrome Generated by CRISPR/Cas9 Genome Editing
by Natalia Klementieva, Daria Goliusova, Julia Krupinova, Vladislav Yanvarev, Alexandra Panova, Natalia Mokrysheva and Sergey L. Kiselev
Int. J. Mol. Sci. 2021, 22(21), 12054; https://doi.org/10.3390/ijms222112054 - 8 Nov 2021
Cited by 4 | Viewed by 3728
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a rare tumor syndrome that manifests differently among various patients. Despite the mutations in the MEN1 gene that commonly predispose tumor development, there are no obvious phenotype–genotype correlations. The existing animal and in vitro models do [...] Read more.
Multiple endocrine neoplasia type 1 (MEN1) is a rare tumor syndrome that manifests differently among various patients. Despite the mutations in the MEN1 gene that commonly predispose tumor development, there are no obvious phenotype–genotype correlations. The existing animal and in vitro models do not allow for studies of the molecular genetics of the disease in a human-specific context. We aimed to create a new human cell-based model, which would consider the variability in genetic or environmental factors that cause the complexity of MEN1 syndrome. Here, we generated patient-specific induced pluripotent stem cell lines carrying the mutation c.1252G>T, D418Y in the MEN1 gene. To reduce the genetically determined variability of the existing cellular models, we created an isogenic cell system by modifying the target allele through CRISPR/Cas9 editing with great specificity and efficiency. The high potential of these cell lines to differentiate into the endodermal lineage in defined conditions ensures the next steps in the development of more specialized cells that are commonly affected in MEN1 patients, such as parathyroid or pancreatic islet cells. We anticipate that this isogenic system will be broadly useful to comprehensively study MEN1 gene function across different contexts, including in vitro modeling of MEN1 syndrome. Full article
Show Figures

Figure 1

17 pages, 3312 KB  
Article
Development of Functional Thyroid C Cell-like Cells from Human Pluripotent Cells in 2D and in 3D Scaffolds
by Kwaku Dad Abu-Bonsrah, Donald F. Newgreen and Mirella Dottori
Cells 2021, 10(11), 2897; https://doi.org/10.3390/cells10112897 - 26 Oct 2021
Cited by 7 | Viewed by 5156
Abstract
Medullary thyroid carcinoma contributes to about 3–4% of thyroid cancers and affects C cells rather than follicular cells. Thyroid C cell differentiation from human pluripotent stem cells has not been reported. We report the stepwise differentiation of human embryonic stem cells into thyroid [...] Read more.
Medullary thyroid carcinoma contributes to about 3–4% of thyroid cancers and affects C cells rather than follicular cells. Thyroid C cell differentiation from human pluripotent stem cells has not been reported. We report the stepwise differentiation of human embryonic stem cells into thyroid C cell-like cells through definitive endoderm and anterior foregut endoderm and ultimobranchial body-like intermediates in monolayer and 3D Matrigel culture conditions. The protocol involved sequential treatment with interferon/transferrin/selenium/pyruvate, foetal bovine serum, and activin A, then IGF-1 (Insulin-like growth factor 1), on the basis of embryonic thyroid developmental sequence. As well as expressing C cell lineage relative to follicular-lineage markers by qPCR (quantitative polymerase chain reaction) and immunolabelling, these cells by ELISA (enzyme-linked immunoassay) exhibited functional properties in vitro of calcitonin storage and release of calcitonin on calcium challenge. This method will contribute to developmental studies of the human thyroid gland and facilitate in vitro modelling of medullary thyroid carcinoma and provide a valuable platform for drug screening. Full article
(This article belongs to the Special Issue Pluripotent Stem Cells for Disease Modelling)
Show Figures

Figure 1

16 pages, 1215 KB  
Review
Response of Pluripotent Stem Cells to Environmental Stress and Its Application for Directed Differentiation
by Taku Kaitsuka and Farzana Hakim
Biology 2021, 10(2), 84; https://doi.org/10.3390/biology10020084 - 23 Jan 2021
Cited by 25 | Viewed by 5149
Abstract
Pluripotent stem cells have unique characteristics compared to somatic cells. In this review, we summarize the response to environmental stresses (hypoxic, oxidative, thermal, and mechanical stresses) in embryonic stem cells (ESCs) and their applications in the differentiation methods directed to specific lineages. Those [...] Read more.
Pluripotent stem cells have unique characteristics compared to somatic cells. In this review, we summarize the response to environmental stresses (hypoxic, oxidative, thermal, and mechanical stresses) in embryonic stem cells (ESCs) and their applications in the differentiation methods directed to specific lineages. Those stresses lead to activation of each specific transcription factor followed by the induction of downstream genes, and one of them regulates lineage specification. In short, hypoxic stress promotes the differentiation of ESCs to mesodermal lineages via HIF-1α activation. Concerning mechanical stress, high stiffness tends to promote mesodermal differentiation, while low stiffness promotes ectodermal differentiation via the modulation of YAP1. Furthermore, each step in the same lineage differentiation favors each appropriate stiffness of culture plate; for example, definitive endoderm favors high stiffness, while pancreatic progenitor favors low stiffness during pancreatic differentiation of human ESCs. Overall, treatments utilizing those stresses have no genotoxic or carcinogenic effects except oxidative stress; therefore, the differentiated cells are safe and could be useful for cell replacement therapy. In particular, the effect of mechanical stress on differentiation is becoming attractive for the field of regenerative medicine. Therefore, the development of a stress-mediated differentiation protocol is an important matter for the future. Full article
(This article belongs to the Special Issue Response of Pluripotent Stem Cells to Environmental Stresses)
Show Figures

Figure 1

24 pages, 2080 KB  
Article
Impact of AHR Ligand TCDD on Human Embryonic Stem Cells and Early Differentiation
by Indrek Teino, Antti Matvere, Martin Pook, Inge Varik, Laura Pajusaar, Keyt Uudeküll, Helen Vaher, Annika Trei, Arnold Kristjuhan, Tõnis Org and Toivo Maimets
Int. J. Mol. Sci. 2020, 21(23), 9052; https://doi.org/10.3390/ijms21239052 - 28 Nov 2020
Cited by 8 | Viewed by 4233
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, which mediates the effects of a variety of environmental stimuli in multiple tissues. Recent advances in AHR biology have underlined its importance in cells with high developmental potency, including pluripotent stem cells. Nonetheless, there [...] Read more.
Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, which mediates the effects of a variety of environmental stimuli in multiple tissues. Recent advances in AHR biology have underlined its importance in cells with high developmental potency, including pluripotent stem cells. Nonetheless, there is little data on AHR expression and its role during the initial stages of stem cell differentiation. The purpose of this study was to investigate the temporal pattern of AHR expression during directed differentiation of human embryonic stem cells (hESC) into neural progenitor, early mesoderm and definitive endoderm cells. Additionally, we investigated the effect of the AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the gene expression profile in hESCs and differentiated cells by RNA-seq, accompanied by identification of AHR binding sites by ChIP-seq and epigenetic landscape analysis by ATAC-seq. We showed that AHR is differentially regulated in distinct lineages. We provided evidence that TCDD alters gene expression patterns in hESCs and during early differentiation. Additionally, we identified novel potential AHR target genes, which expand our understanding on the role of this protein in different cell types. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 5085 KB  
Article
Long-Term Stability and Differentiation Potential of Cryopreserved cGMP-Compliant Human Induced Pluripotent Stem Cells
by Mehdi Shafa, Tylor Walsh, Krishna Morgan Panchalingam, Thomas Richardson, Laura Menendez, Xinghui Tian, Sahana Suresh Babu, Saedeh Dadgar, Justin Beller, Fan Yang and Behnam Ahmadian Baghbaderani
Int. J. Mol. Sci. 2020, 21(1), 108; https://doi.org/10.3390/ijms21010108 - 23 Dec 2019
Cited by 17 | Viewed by 9613
Abstract
The clinical effectiveness of human induced pluripotent stem cells (iPSCs) is highly dependent on a few key quality characteristics including the generation of high quality cell bank, long-term genomic stability, post-thaw viability, plating efficiency, retention of pluripotency, directed differentiation, purity, potency, and sterility. [...] Read more.
The clinical effectiveness of human induced pluripotent stem cells (iPSCs) is highly dependent on a few key quality characteristics including the generation of high quality cell bank, long-term genomic stability, post-thaw viability, plating efficiency, retention of pluripotency, directed differentiation, purity, potency, and sterility. We have already reported the establishment of iPSC master cell banks (MCBs) and working cell banks (WCBs) under current good manufacturing procedure (cGMP)-compliant conditions. In this study, we assessed the cellular and genomic stability of the iPSC lines generated and cryopreserved five years ago under cGMP-compliant conditions. iPSC lines were thawed, characterized, and directly differentiated into cells from three germ layers including cardiomyocytes (CMs), neural stem cells (NSCs), and definitive endoderm (DE). The cells were also expanded in 2D and 3D spinner flasks to evaluate their long-term expansion potential in matrix-dependent and feeder-free culture environment. All three lines successfully thawed and attached to the L7TM matrix, and formed typical iPSC colonies that expressed pluripotency markers over 15 passages. iPSCs maintained their differentiation potential as demonstrated with spontaneous and directed differentiation to the three germ layers and corresponding expression of specific markers, respectfully. Furthermore, post-thaw cells showed normal karyotype, negative mycoplasma, and sterility testing. These cells maintained both their 2D and 3D proliferation potential after five years of cryopreservation without acquiring karyotype abnormality, loss of pluripotency, and telomerase activity. These results illustrate the long-term stability of cGMP iPSC lines, which is an important step in establishing a reliable, long-term source of starting materials for clinical and commercial manufacturing of iPSC-derived cell therapy products. Full article
(This article belongs to the Special Issue From hIPSCs to Adult Cells in a Dish: Promises and Pitfalls)
Show Figures

Figure 1

15 pages, 2530 KB  
Article
Insight into Nephrocan Function in Mouse Endoderm Patterning
by Martina Addeo, Silvia Buonaiuto, Ilaria Guerriero, Elena Amendola, Feliciano Visconte, Antonio Marino, Maria Teresa De Angelis, Filomena Russo, Luca Roberto, Pina Marotta, Nicola Antonino Russo, Anna Iervolino, Federica Amodio, Mario De Felice, Valeria Lucci and Geppino Falco
Int. J. Mol. Sci. 2020, 21(1), 8; https://doi.org/10.3390/ijms21010008 - 18 Dec 2019
Cited by 2 | Viewed by 3772
Abstract
Endoderm-derived organs as liver and pancreas are potential targets for regenerative therapies, and thus, there is great interest in understanding the pathways that regulate the induction and specification of this germ layer. Currently, the knowledge of molecular mechanisms that guide the in vivo [...] Read more.
Endoderm-derived organs as liver and pancreas are potential targets for regenerative therapies, and thus, there is great interest in understanding the pathways that regulate the induction and specification of this germ layer. Currently, the knowledge of molecular mechanisms that guide the in vivo endoderm specification is restricted by the lack of early endoderm specific markers. Nephrocan (Nepn) is a gene whose expression characterizes the early stages of murine endoderm specification (E7.5–11.5) and encodes a secreted N-glycosylated protein. In the present study, we report the identification of a new transcript variant that is generated through alternative splicing. The new variant was found to have differential and tissue specific expression in the adult mouse. In order to better understand Nepn role during endoderm specification, we generated Nepn knock-out (KO) mice. Nepn−/− mice were born at Mendelian ratios and displayed no evident phenotype compared to WT mice. In addition, we produced nullizygous mouse embryonic stem cell (mESC) line lacking Nepn by applying (CRISPR)/CRISPR-associated systems 9 (Cas9) and employed a differentiation protocol toward endoderm lineage. Our in vitro results revealed that Nepn loss affects the endoderm differentiation impairing the expression of posterior foregut-associated markers. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

Back to TopTop