Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = deep thermal aquifer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2256 KiB  
Article
Performance Analysis of Different Borehole Heat Exchanger Configurations: A Case Study in NW Italy
by Jessica Maria Chicco, Nicolò Giordano, Cesare Comina and Giuseppe Mandrone
Smart Cities 2025, 8(4), 121; https://doi.org/10.3390/smartcities8040121 - 21 Jul 2025
Viewed by 330
Abstract
The central role of heating and cooling in energy transition has been recognised in recent years, especially with geopolitical developments since February 2022 which demand an acceleration in deploying local energy sources to increase the resilience of the energy sector. Geothermal energy is [...] Read more.
The central role of heating and cooling in energy transition has been recognised in recent years, especially with geopolitical developments since February 2022 which demand an acceleration in deploying local energy sources to increase the resilience of the energy sector. Geothermal energy is a promising and vital option to optimize heating and cooling systems, promoting sustainability of urban environments. To this end, a proper design is of paramount importance to guarantee the energy performance of the whole system. This work deals with the optimization of the technical and geometrical characteristics of borehole heat exchangers (BHEs) as part of a shallow geothermal plant that is assumed to be integrated in an already operating gas-fired DH grid. Thermal performances of three different configurations were analysed according to the geological information that revealed an aquifer at −36 m overlying a poorly permeable marly succession. Numerical simulations validated the geological, hydrogeological, and thermo-physical models by back-analysing the experimental results of a thermal response test (TRT) on a pilot 150 m deep BHE. Five-year simulations were then performed to compare 150 m and 36 m polyethylene 2U, and 36 m steel coaxial BHEs. The coaxial configuration shows the best performance both in terms of specific power (74.51 W/m) and borehole thermal resistance (0.02 mK/W). Outcomes of the study confirm that coupling the best geological and technical parameters ensure the best energy performance and economic sustainability. Full article
(This article belongs to the Special Issue Energy Strategies of Smart Cities)
Show Figures

Figure 1

28 pages, 18798 KiB  
Article
A Stability Assessment of Fault-Caprock Trapping Systems for CO2 Storage in Saline Aquifer Layers Using a Coupled THMC Model
by Mingying Xie, Shenghao Wang, Shasha Feng, Chao Xu, Xisheng Li, Xiaona Sun, Yueqiang Ma, Quan Gan and Tao Wang
Energies 2025, 18(4), 900; https://doi.org/10.3390/en18040900 - 13 Feb 2025
Cited by 1 | Viewed by 667
Abstract
Deep saline aquifers provide significant potential for CO2 storage and are crucial in carbon capture, utilization, and storage (CCUS). However, ensuring the long-term safe storage of CO2 remains challenging due to the complexity of coupled thermal, hydrological, mechanical, and chemical (THMC) [...] Read more.
Deep saline aquifers provide significant potential for CO2 storage and are crucial in carbon capture, utilization, and storage (CCUS). However, ensuring the long-term safe storage of CO2 remains challenging due to the complexity of coupled thermal, hydrological, mechanical, and chemical (THMC) processes. This study is one of a few to incorporate fault-controlled reservoir structures in the Enping 15-1 oilfield to simulate the performance of CO2 geological storage. A systematic analysis of factors influencing CO2 storage safety, such as the trap area, aquifer layer thickness, caprock thickness, reservoir permeability, and reservoir porosity, was conducted. We identified the parameters with the most significant impact on storage performance and provided suitable values to enhance storage safety. The results show that a large trap area and aquifer thickness are critical for site selection. Low permeability and large caprock thickness prevent CO2 from escaping, which is important for long-term and stable storage. These findings contribute to developing site-specific guidelines for CO2 storage in faulted reservoirs. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

28 pages, 53103 KiB  
Article
Interdisciplinary Research for the Delimitation of Catchment Areas of Large Deep Karstic Aquifers: Origin of the Thermal Springs of Alhama de Aragón and Jaraba (Spain)
by Joaquín Sanz De Ojeda, Francisco Javier Elorza and Eugenio Sanz
Water 2024, 16(22), 3303; https://doi.org/10.3390/w16223303 - 17 Nov 2024
Cited by 1 | Viewed by 1303
Abstract
The integration of different sources of geological and hydrogeological information and the application of interdisciplinary methods have informed the origin of the thermal springs of Alhama de Aragón and Jaraba, as well as other associated semi thermal springs (1200 L/s of combined flow, [...] Read more.
The integration of different sources of geological and hydrogeological information and the application of interdisciplinary methods have informed the origin of the thermal springs of Alhama de Aragón and Jaraba, as well as other associated semi thermal springs (1200 L/s of combined flow, 711 L/s at over 30 °C), which is the main objective of this article. These springs come mainly from the autogenous recharge that occurs in the Cretaceous calcareous outcrops that border the Almazán Basin to the north, both in the Ebro Basin (Jalón Valley) and in the Duero Basin. The aquifer, shaped by upper Cretaceous limestones under the Palaeogene and Neogene rocks of the Almazán Basin, has extensive depths of more than 4000 m in the NE sector. This hydrostratigraphic unit has been affected by a generalized pre-Paleogene karstification that provides the main porosity to the aquifer. The underground flow moves in a NW–SE direction, crossing the Duero–Ebro divide, favoured by the topographic difference in elevation between the two basins. The regional flow is coherent with the progressive increase in temperature, infiltrating recharge water age (about 20–25 years in the semi-thermal springs, and more than 60 years in the Alhama and Jaraba springs), mineralization, and flow of the springs through which the system discharges. This issue is key to being able to design any sustainable conservation strategy in terms of quantity and quality of resources within the recharge area of the most important thermal springs in Spain. The Jaraba and Alhama de Aragón hot springs share the same or similar temperature, chemical composition, and geological contact of the spring. Their tritium isotopic composition and its evolution over time are practically the same. Their isotopic composition in D and 18O is also very similar. Both springs share the same recharge zone of similar altitude and constitute the end of flow tubes of similar length and flow rate. Full article
Show Figures

Figure 1

16 pages, 12834 KiB  
Article
Temperature Variations in Deep Thermal Well LZT-1 in Lądek-Zdrój (Bohemian Massif; SW Poland)—Evidence of Geothermal Anomaly and Paleoclimatic Changes
by Barbara Kiełczawa, Wojciech Ciężkowski, Mirosław Wąsik, Karolina Szostak, Iwona Sieniawska and Marek Rasała
Energies 2024, 17(14), 3362; https://doi.org/10.3390/en17143362 - 9 Jul 2024
Cited by 1 | Viewed by 1041
Abstract
The thermal water deposit in Lądek-Zdrój (SW Poland) occurs in fractured reservoir rocks, and its hydrogeological regime is controlled by the features of the local geology and lithology of the hosting crystalline complexes, mainly impermeable high-grade metamorphosed mica schists and gneisses. The fractured [...] Read more.
The thermal water deposit in Lądek-Zdrój (SW Poland) occurs in fractured reservoir rocks, and its hydrogeological regime is controlled by the features of the local geology and lithology of the hosting crystalline complexes, mainly impermeable high-grade metamorphosed mica schists and gneisses. The fractured thermal water aquifer is confined by a thrust fault-type aquitard that creates artesian pressure and, therefore, the water intakes and natural springs in Lądek Zdrój provide spontaneous outflow. Classical geothermometers yield an estimation of reservoir temperatures that ranges from 50 to 70 °C, with a maximum of 88 °C. The heat flux (HF) value of the Lądek-Zdrój region is 64 mW/m2. The new borehole, LZT-1, is in the border zone of a local thermal anomaly with a geothermal degree of 25–27 m/°C. The estimated temperature at the bottom of the LZT-1 borehole, under thermal equilibrium conditions, ranges between 70 °C and 80 °C. A stream of heated waters from the deep system flows from the recharge areas, shaping the local geothermal anomaly and thus influencing the thermal conditions in the Lądek-Zdrój area. The activation of this water circulation system occurred in the Pleistocene. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

21 pages, 7075 KiB  
Article
Groundwater Potential for the Utilisation of Shallow Geothermal Energy from a Closed Coal Mine
by Željko Vukelić and Jurij Šporin
Water 2024, 16(11), 1572; https://doi.org/10.3390/w16111572 - 30 May 2024
Cited by 3 | Viewed by 1230
Abstract
In accordance with the programme of closure works and the implementation of ecological spatial rehabilitation in the area of the Slovenian coal mine Trbovlje–Hrastnik (RTH), there is a great opportunity to exploit shallow geothermal energy from water and ground sources. In the RTH [...] Read more.
In accordance with the programme of closure works and the implementation of ecological spatial rehabilitation in the area of the Slovenian coal mine Trbovlje–Hrastnik (RTH), there is a great opportunity to exploit shallow geothermal energy from water and ground sources. In the RTH area, there is great energy potential in the utilisation of underground water and heat from the earth. In our research, we have focussed on the use of geothermal energy with heat pumps from groundwater (water/water system) and from ground collectors and wells up to a depth of 150 m (rock/water system). With the water/water system, we have an average of 2.7 MW of thermal energy available, with the rock/water system having 7.5 kW of thermal energy from a 150 m deep well. With the rock/water system in particular, the development of an industrial zone in the RTH area can also provide for a greater demand for thermal energy. The thermal energy obtained in this way is utilised via heat pumps to heat and cool commercial, residential and industrial buildings. The utilisation of shallow geothermal energy can make a major contribution to carbon neutrality, as the use of geothermal energy has no negative impact on the environment and causes no greenhouse gas emissions. The aim of the paper is to provide an overview of the methods used to analyse heat storage in aquifers of abandoned coal mines, to represent these storages in RTH with a basic mathematical–statistical inventory of what is happening in the aquifer, and to investigate the possibility of using shallow geothermal energy with the help of modelling the use of shallow geothermal energy. The results and analyses obtained can make an important scientific contribution to the use of geothermal energy from abandoned and closed mines. Full article
(This article belongs to the Special Issue Advances in Geothermal Water and Energy)
Show Figures

Figure 1

16 pages, 25299 KiB  
Article
Geochemical Evolution in Historical Time of Thermal Mineral Springs at Campetti Southwest (Veii, Central Italy) through Geoarcheological Investigation
by Stefano Viaroli, Tiziano Latini, Emilio Cuoco, Angela Mormone, Monica Piochi and Matteo Maggi
Water 2024, 16(8), 1113; https://doi.org/10.3390/w16081113 - 13 Apr 2024
Cited by 1 | Viewed by 1713
Abstract
A multidisciplinary study, involving hydrogeological, geochemical, and mineralogical analyses, was conducted to define the evolution of thermal mineral springs in the Sabatini Volcanic District (SVD) (Central Italy) in a historic period. The outcomes were integrated with the archeological findings to improve the knowledge [...] Read more.
A multidisciplinary study, involving hydrogeological, geochemical, and mineralogical analyses, was conducted to define the evolution of thermal mineral springs in the Sabatini Volcanic District (SVD) (Central Italy) in a historic period. The outcomes were integrated with the archeological findings to improve the knowledge of the evolution of Veii, a settlement established since the Iron Age and later expanded by Etruscans and Romans. During the archeological excavations, water-related buildings were identified, especially at the Campetti Southwest site in the Veii settlement. Votive inscriptions also suggest the presence of buildings linked to sacred waters, even if a clear definition of the source and type of water is missing. In the SVD, some low-flow thermal mineral springs are present as a result of the mixing of thermal and CO2-rich groundwater from the deep carbonate aquifer and the cold, shallow volcanic aquifer. Mineralogical and chemical analyses characterized the travertine and Fe-hydroxide deposits on Roman tanks and walls in Campetti Southwest and in a nearby ancient Roman bath along the Valchetta River. These deposits showed different relative concentrations of sedimentary and volcanic-related elements, testifying a geochemical evolution of the groundwater mixing and the presence of a paleothermal mineral spring in Campetti Southwest. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

19 pages, 5464 KiB  
Article
Water–Rock Interaction Processes in Tíscar and Larva Active Faults (Betic Cordillera, SE Spain)
by Rosario Jiménez-Espinosa, Pilar Hernández-Puentes and Juan Jiménez-Millán
Water 2024, 16(6), 897; https://doi.org/10.3390/w16060897 - 20 Mar 2024
Viewed by 1472
Abstract
A hydrochemical and mineral study of groundwaters and damaged rocks from the Tíscar and Larva fault zones (Betic Cordillera, Iberian Peninsula) was carried out in order to (a) describe the physical and chemical properties of the groundwaters; (b) recognize significant locations with deep-origin [...] Read more.
A hydrochemical and mineral study of groundwaters and damaged rocks from the Tíscar and Larva fault zones (Betic Cordillera, Iberian Peninsula) was carried out in order to (a) describe the physical and chemical properties of the groundwaters; (b) recognize significant locations with deep-origin fluids related to active tectonics; (c) and to describe the water–rock interaction and the neoformation of clay mineral processes and their importance in the seismicity of the faults. A sampling campaign was completed between November 2012 and November 2013, during which data were obtained from 23 different groundwater sites in the fault areas. Two main groups of waters were distinguished: (a) Ca2+-Mg2+-HCO3 facies characterized by poor conductivity and salinity; and (b) saline waters (up to 30 meq/L) rich in Ca2+-Mg2+-SO4-Cl and with an elevated conductivity (frequently > 1000 μS/cm). In addition, a minor group of saline and warm waters (T > 16.5 °C) was found to be Na+-rich and show moderately high B values (>0.33 ppm), and which mig ht be hosted in aquifers deeper than the two main groups. This group of deep-origin waters is oversaturated in clay minerals and is in equilibrium for Ca-Mg carbonate minerals. X-ray diffraction and scanning and transmission electron microscopy data corroborate the crystallization forecast of authigenic smectite, which appears as thin films coating carbonate fragments. The origin of smectite is related to the fragile strain and thermal–fluid–mineral interactions in fault rocks. Smectite could lubricate carbonate rocks, which favor creep deformation versus seismic slip. This work provides locations where groundwater physico-chemical properties and composition suggest tectonic fault activity. Full article
Show Figures

Figure 1

13 pages, 7687 KiB  
Article
Geothermal Potential of Pumping–Injecting Doublet Wells
by Goran Vižintin, Jurij Šporin and Željko Vukelić
Energies 2024, 17(5), 980; https://doi.org/10.3390/en17050980 - 20 Feb 2024
Viewed by 1316
Abstract
A characteristic of the Pannonian Basin is its strong geothermal flow. Geothermal water is present in aquifers in the Miocene and Pliocene sediments of the Lendava, Murska Sobota, and Mura formations, as well as in pre-Neogene sedimentary rocks, at a depth of several [...] Read more.
A characteristic of the Pannonian Basin is its strong geothermal flow. Geothermal water is present in aquifers in the Miocene and Pliocene sediments of the Lendava, Murska Sobota, and Mura formations, as well as in pre-Neogene sedimentary rocks, at a depth of several 1000 s to several 100 s of meters. The water from the deep Miocene and Pliocene aquifers is mainly pumped for use in the spas of the region, which is separated by national borders. Pumping water from the aquifers lowers the hydraulic head of the water in the aquifers. The consequence of the drop in hydraulic head is a reduction in the yield of the aquifers, which has a negative impact on the neighboring wells. In order to prevent the effects of this influence—especially in the case of transboundary influences, as in our case—the construction of an additional well was proposed, through which the cooled water would be pumped back into the deep aquifer. For the specific case of the Terme Korovci project, which is located directly on the national border, a 3D structural model of the aquifer was created. The hydrogeological and thermal properties of the aquifer were determined on the basis of the lithological profile of the wells in the region, along with well logs and pumping tests. As detailed data on the thicknesses of the layers have not been available until now, we have envisaged several scenarios for different layer thicknesses. As will be evident from our data, in the case of a 10 m-thick layer, the temperature falls to below 70 °C in fewer than 6000 days, and this period extends with increasing thickness such that with a 200 m-thick layer, the period extends to well over 100,000 days. The findings are important because the potential investor requires at least 20 years of operation of the pumping–reinjection pair of wells. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

24 pages, 4829 KiB  
Article
Prediction of Dynamic Temperature and Thermal Front in a Multi-Aquifer Thermal Energy Storage System with Reinjection
by Guoshu Huang, Liang Liu, Mangen Mu, Jian Yang and Hui Ding
Energies 2023, 16(21), 7358; https://doi.org/10.3390/en16217358 - 31 Oct 2023
Cited by 1 | Viewed by 1255
Abstract
The accurate temperature and thermal front prediction in aquifer thermal energy storage systems during reinjection are crucial for optimal management and sustainable utilization. In this paper, a novel two-way fully coupled thermo–hydro model was developed to investigate the dynamic thermal performance and fronts [...] Read more.
The accurate temperature and thermal front prediction in aquifer thermal energy storage systems during reinjection are crucial for optimal management and sustainable utilization. In this paper, a novel two-way fully coupled thermo–hydro model was developed to investigate the dynamic thermal performance and fronts for multiple aquifer thermal energy storage systems. The model was validated using a typical model, and the evolution characteristics of wellbore temperature before and after the breakthrough of the hydraulic front and thermal front were deeply studied. Sensitivity analysis was conducted to delineate the influence of various reservoir and reinjection factors on the thermal extraction temperature (TET). The results revealed that thermal conductivity significantly impacts the thermal extraction rate among the various reservoir factors. In contrast, volumetric heat capacity has the weakest influence and negatively correlates with the TET. Concerning the reinjection factors, the effect of the reinjection volume rate on the TET was significantly more significant than the reinjection temperature. Furthermore, the correlation between the TET and different properties was observed to be seriously affected by the exploitation period. The coupled model presented in this study offers insight into designing the exploitation scheme in deep reservoirs and geothermal resources. Full article
(This article belongs to the Section H2: Geothermal)
Show Figures

Figure 1

27 pages, 11193 KiB  
Article
Effects of Boundary Conditions on Performance Prediction of Deep-Buried Ground Heat Exchangers for Geothermal Energy Utilization
by Zhendi Ma, Siyu Qin, Yuping Zhang, Wei-Hsin Chen, Guosheng Jia, Chonghua Cheng and Liwen Jin
Energies 2023, 16(13), 4874; https://doi.org/10.3390/en16134874 - 22 Jun 2023
Cited by 2 | Viewed by 1769
Abstract
An accurate prediction for deep-buried ground heat exchangers (DBGHEs) is the premise for efficient utilization of geothermal energy. Due to the complexity of the geological composition spanning thousands of meters, the configuration of boundary conditions plays a critical role in evaluating DBGHE thermal [...] Read more.
An accurate prediction for deep-buried ground heat exchangers (DBGHEs) is the premise for efficient utilization of geothermal energy. Due to the complexity of the geological composition spanning thousands of meters, the configuration of boundary conditions plays a critical role in evaluating DBGHE thermal performance. This paper proposed a three-dimensional model of full-scale DBGHE involving both conductive and convective heat transfer in aquifuge and aquifer layers. The constant inlet temperature and constant heating power boundaries in the DBGHE domain, and the surface–bottom temperature and heat flux boundaries in the rock-soil domain were examined. It was found that the differences in the performance prediction caused by different DBGHE boundary conditions were closely related to the system’s operating time. The relative differences in heat extraction amount and average borehole temperature of 2000 m DBGHE caused by the two inlet boundaries on the 30th day were, respectively, 19.5% and 18.3%, while these differences on the 120th day were decreased to 8.4% and 9.9%, respectively. It was found that the constant inlet temperature boundary was more appropriate than the constant heating power condition for estimating aquifer effects on the performance of DBGHE. For the rock-soil domain, the results showed that the heat extraction amount of DBGHE under the heat flux boundary was 12.6%–13.6% higher than that under the surface–bottom temperature boundary. Particularly, when considering the velocity change of groundwater in the aquifer, the relative difference in heat extraction amount increments caused by the two types of rock-soil boundaries can reach 26.6% on the 120th day. It was also found that the thermal influence radius at the end of a heating season was hardly affected by either the DBGHE inlet or rock-soil domain boundary conditions. Full article
(This article belongs to the Topic Sustainable Energy Technology, 2nd Edition)
Show Figures

Figure 1

33 pages, 34009 KiB  
Article
Hydrothermal Alteration in the Nevados de Chillán Geothermal System, Southern Andes: Multidisciplinary Analysis of a Fractured Reservoir
by Diego Morata, Romina Gallardo, Santiago Maza, Gloria Arancibia, Camila López-Contreras, Valentina Mura, Claudia Cannatelli and Martin Reich
Minerals 2023, 13(6), 722; https://doi.org/10.3390/min13060722 - 25 May 2023
Cited by 8 | Viewed by 3241
Abstract
The interplay between a heat source, primary plus secondary permeability, and hydrothermal fluids makes geothermal systems a highly dynamic environment where evolving physico-chemical conditions are recorded in alteration mineralogy. A comprehensive characterization of hydrothermal alteration is therefore essential to decipher the major processes [...] Read more.
The interplay between a heat source, primary plus secondary permeability, and hydrothermal fluids makes geothermal systems a highly dynamic environment where evolving physico-chemical conditions are recorded in alteration mineralogy. A comprehensive characterization of hydrothermal alteration is therefore essential to decipher the major processes associated with geothermal system development. In this study, we defined the hydrothermal mineralogical evolution of the Nevados de Chillán Geothermal System (NChGS), located in the Southern Volcanic Zone (SVZ) of the central Andes, where the regional framework of the system is formed by a direct association with a currently active volcanic complex, a favorable structural control, and vertically inhibited fluid circulation. To characterize the secondary mineralogy present in the NChGS, we integrated optical petrography, Scanning Electron Microscopy (SEM) observations, X-ray Diffraction (XRD) analysis, and microthermometric measurements along a drill core with a depth of 1000 m at the Nieblas-1 well. These mineralogical approaches were combined with a structural field analysis to highlight the relevance of multidisciplinary study in understanding active geothermal systems. The results indicated that the evolution of the system involved four paragenetic stages, with the main processes in each phase being the heating, boiling, and mixing of fluids and re-equilibration to new physico-chemical conditions. Additionally, three hydrothermal zones were recognized: an upper argillic section, an intermediate sub-propylitic zone, and a deep propylitic domain. Sampled thermal springs are characterized by pH values of 2.4–5.9 and high SO4= concentrations (>290 ppm). These acid-sulfate steam-heated waters suggest the contribution of primary magmatic volatiles to the hydrothermal system. Alunite recorded in the alteration halos of veinlets presents at depths of 170–230 m denote the circulation of acidic fluids at these levels which were favored by reverse faults. These findings indicate that, at this depth range, the condensation of magmatic volatiles into shallow aquifers controls the recharge area of the superficial thermal manifestations. Conversely, deep-seated hydrothermal fluids correspond to near-neutral chloride fluids, with salinities ranging from 0.1 to 6.9 wt.% NaCl eq. The distribution of illite/smectite and chlorite/smectite mixed-layered minerals outline the presence of a significant clay cap, which, in this system, separates the steam-heated domain from the deep hydrothermal realm and restricts fluid circulation to existing permeable channels. Our mineralogical and structural study provides critical data for the interpretation of heat–fluid–rock interaction processes in the NChGS. The interplay between hydrothermal fluids and active faults is also discussed in the context of the complex of geological processes in active geothermal systems along the Chilean Southern Volcanic Zone. Full article
Show Figures

Figure 1

16 pages, 3786 KiB  
Article
Modelling Interactions between Three Aquifer Thermal Energy Storage (ATES) Systems in Brussels (Belgium)
by Caroline De Paoli, Thierry Duren, Estelle Petitclerc, Mathieu Agniel and Alain Dassargues
Appl. Sci. 2023, 13(5), 2934; https://doi.org/10.3390/app13052934 - 24 Feb 2023
Cited by 5 | Viewed by 2688
Abstract
Shallow open-loop geothermal systems function by creating heat and cold reserves in an aquifer, via doublets of pumping and reinjection wells. Three adjacent buildings in the center of Brussels have adopted this type of aquifer thermal energy storage (ATES) system. Two of them [...] Read more.
Shallow open-loop geothermal systems function by creating heat and cold reserves in an aquifer, via doublets of pumping and reinjection wells. Three adjacent buildings in the center of Brussels have adopted this type of aquifer thermal energy storage (ATES) system. Two of them exploit the same aquifer consisting of Cenozoic sands, and started operation in 2014 and 2017, respectively. A previous hydrogeological model developed by Bulté et al. (2021) has shown how the thermal imbalance of one of the systems jeopardizes the thermal state of this upper aquifer. Here, the interactions with a more recent third ATES system located in the deep aquifer of the Palaeozoic bedrock are studied and modelled. After being calibrated on groundwater flow conditions in both aquifers, a 3D hydrogeological model was used to simulate the cumulative effect of the three geothermal installations in the two exploited aquifers. The results of the simulations showed that although the hydraulic interactions between the two aquifers are very weak (as shown by the different observed potentiometric heads), heat exchanges occur between the two aquifers through the aquitard. Fortunately, these heat exchanges are not sufficient to have a significant impact on the efficiency of the individual geothermal systems. Additionally, this study shows clearly that adding a third system in the lower aquifer with a mean power of 286 kW for heating between October and March and an equivalent mean cooling power between April and September is efficient. Full article
Show Figures

Figure 1

25 pages, 3603 KiB  
Article
Hydrogeochemistry of Fault-Related Hot Springs in the Qaidam Basin, China
by Jie Tang, Xiaocheng Zhou, Yongxian Zhang, Jiao Tian, Miao He, Jingchao Li, Jinyuan Dong, Yucong Yan, Fengli Liu, Shupei Ouyang and Kaiyi Liu
Appl. Sci. 2023, 13(3), 1415; https://doi.org/10.3390/app13031415 - 20 Jan 2023
Cited by 11 | Viewed by 2917
Abstract
Hydrogeochemical characterization studies are regarded as an important method for determining the origin of hot springs. The major elements, trace elements, and stable isotopes of four groups of hot spring water samples and two groups of gas samples collected from the intersection of [...] Read more.
Hydrogeochemical characterization studies are regarded as an important method for determining the origin of hot springs. The major elements, trace elements, and stable isotopes of four groups of hot spring water samples and two groups of gas samples collected from the intersection of the Altyn Tagh fault zone and the East Kunlun fault belt were investigated in this study. The hot spring water temperature ranged between 6 °C and 14 °C. The water chemistry types of the hot springs were Na·Mg-Cl, Mg·Na-Cl·HCO3, Na-Cl·SO4, and Na-Cl·HCO3. The δD values ranged from −50.00% to −68.60%, while the δ18O values ranged from −6.90% to −8.60%. The hot spring water was recharged mainly by infiltrating precipitation, with a recharge elevation of 3390~3676 m. The heat storage temperature ranged from 66.7 to 164.9 °C. The circulation depth was estimated to range between 1043 and 2679 m. The strontium isotopic composition of the water samples in response to the main weathering sources comprised carbonate and sulfate. CO2 was the main component in the hot spring gas in the study region, and its content was over 95%. The 3He/4He-R/Ra relationship diagram revealed that the mantle-sourced helium from the Yitunbulake spring was 3.06%. In comparison, that from the Aiken spring was 7.38%, which indicated an intrusion of mantle-source material mixed into the hot springs in the study region. The crustal marine limestone contributed significantly to the carbon inventory of the hot spring gas samples (>75%). The dissolution of the marl aquifer resulted in the release of CO2. Carbon was primarily obtained through metamorphism and hydrothermal reactions in the basement lithologies. The Yitunbulake and Aiken hot springs are found near the intersection of the Arjin and East Kunlun fractures, where the water–rock response is relatively strong and the depth of circulation and thermal storage temperature are both high. This causes relatively high ambient pressure to be released from the deep fluid, resulting in microseismic activity in this region. The continuous observation of Aiken spring water chemistry allows for the monitoring of fracture activity in the region. The results of the study could serve as a foundation for further exploration of the relationship between geothermal water and deep faults, shallow geological formations, hydrogeological conditions, and geothermal resource development in the region. Full article
Show Figures

Figure 1

28 pages, 7466 KiB  
Article
Salinity and Temperature Variations near the Freshwater-Saltwater Interface in Coastal Aquifers Induced by Ocean Tides and Changes in Recharge
by Angela M. Blanco-Coronas, Maria L. Calvache, Manuel López-Chicano, Crisanto Martín-Montañés, Jorge Jiménez-Sánchez and Carlos Duque
Water 2022, 14(18), 2807; https://doi.org/10.3390/w14182807 - 9 Sep 2022
Cited by 11 | Viewed by 5717
Abstract
The temperature distribution of shallow sectors of coastal aquifers are highly influenced by the atmospheric temperature and recharge. However, geothermal heat or vertical fluxes due to the presence of the saline wedge have more influence at deeper locations. In this study, using numerical [...] Read more.
The temperature distribution of shallow sectors of coastal aquifers are highly influenced by the atmospheric temperature and recharge. However, geothermal heat or vertical fluxes due to the presence of the saline wedge have more influence at deeper locations. In this study, using numerical models that account for variable density, periodic oscillations of temperature have been detected, and their origin has been attributed to the influence exerted by recharge and tides. The combined analysis of field data and numerical models showed that the alternation of dry and wet periods modifies heat distribution in deep zones (>100 m) of the aquifer. Oscillations with diurnal and semidiurnal frequencies have been detected for groundwater temperature, but they show differences in terms of amplitudes and delay with electrical conductivity (EC). The main driver of the temperature oscillations is the forward and backward displacement of the freshwater–saltwater interface, and the associated thermal plume generated by the upward flow from the aquifer basement. These oscillations are amplified at the interfaces between layers with different hydraulic conductivity, where thermal contours are affected by refraction. Full article
(This article belongs to the Special Issue Modelling Contaminant Transport and Natural Groundwater Quality)
Show Figures

Figure 1

25 pages, 4528 KiB  
Article
Hydrochemical Characteristics of Hot Springs in the Intersection of the Red River Fault Zone and the Xiaojiang Fault Zone, Southwest Tibet Plateau
by Zirui Li, Xiaocheng Zhou, Qiulong Xu, Yucong Yan, Miao He, Jingchao Li, Jinyuan Dong, Jiao Tian, Fenghe Ding, Ying Li, Chongzhi Ma, Xiaotao Wang and Zhixin Luo
Water 2022, 14(16), 2525; https://doi.org/10.3390/w14162525 - 17 Aug 2022
Cited by 10 | Viewed by 2676
Abstract
The coupling relationship between regional seismic activity and the hydrogeochemical field provides an important theoretical basis for regional earthquake precursor exploration. The intersection area of the Red River fault zone (RRF) and the Xiaojiang fault zone (XJF) in southeast Yunnan province has become [...] Read more.
The coupling relationship between regional seismic activity and the hydrogeochemical field provides an important theoretical basis for regional earthquake precursor exploration. The intersection area of the Red River fault zone (RRF) and the Xiaojiang fault zone (XJF) in southeast Yunnan province has become the focus area of earthquake monitoring and prediction because of its special tectonic position in China. There were 20 hot springs that were sampled and analyzed in the laboratory for major elements, including trace elements, silica, stable isotopes (δ18O and δD), and strontium isotopes, from the years 2015 to 2019. (1) The meteoric water is the main source of recharge for thermal springs in the study area, and recharged elevations ranged from 1.1 to 2 km; (2) the geothermometer method was used to estimate the region of thermal storage temperature, and its temperature ranged between 64.3 to 162.7 °C, whereas the circulation depth ranged from 1.1 to 7.2 km. Hydrochemical types were mainly controlled by aquifer lithology, in which sodium bicarbonate and sulphuric acid water gathered mainly in the RRF, while calcium bicarbonate water gathered mainly in the XJF. According to the silicon–enthalpy equation method, the temperature range and cold water mixing ratio were 97–268 °C and 61–97%, respectively; (3) the circulation depth of the RRF was deeper than that of the XJF, and it was mainly concentrated in the second segment and the fourth segment on the RRF. Most of the hot spring water was immature with a weak water–rock reaction; (4) the hot water intersections of RRF and XJF were obviously controlled by the fault and the cutting depth of granite; (5) the relationship discussed between geothermal anomaly and earthquake activity had a good correspondence with regional seismicity. The intensity of the reaction between underground hot water and the surrounding rock may lead to the change of pore pressure, and the weakening effect of groundwater on fracture may change accordingly, followed by the change in the adjustment of tectonic stress. Eventually, the difference in seismic activity was shown, implying that deep fluid has an important control action on the regional seismicity. Full article
(This article belongs to the Special Issue Earthquakes and Groundwater)
Show Figures

Figure 1

Back to TopTop