Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = deep saline aquifer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3031 KiB  
Article
Climbing the Pyramid: From Regional to Local Assessments of CO2 Storage Capacities in Deep Saline Aquifers of the Drava Basin, Pannonian Basin System
by Iva Kolenković Močilac, Marko Cvetković, David Rukavina, Ana Kamenski, Marija Pejić and Bruno Saftić
Energies 2025, 18(14), 3800; https://doi.org/10.3390/en18143800 - 17 Jul 2025
Viewed by 192
Abstract
Deep saline aquifers in the eastern part of Drava Basin were screened for potential storage sites. The input dataset included three seismic volumes, a rather extensive set of old seismic sections and 71 wells. Out of all identified potential storage objects, only two [...] Read more.
Deep saline aquifers in the eastern part of Drava Basin were screened for potential storage sites. The input dataset included three seismic volumes, a rather extensive set of old seismic sections and 71 wells. Out of all identified potential storage objects, only two sites were found to be situated in the favorable geological settings, meaning that the inspected wells drilled through structural traps had a seal at least 20 m thick which was intersected by only a few faults with rather limited displacement. Many more closed structures in the area were tested by exploration wells, but in all other wells, various problems were encountered, including inadequate reservoir properties, inadequate seal or inadequate depth of the identified trap. Analysis was highly affected by the insufficient quality and spatial distribution of the seismic input data, as well as in places with insufficient quality of input well datasets. An initial characterization of identified storage sites was performed, and their attributes were compared, with potential storage object B recognized as the one that should be further developed. However, given the depth and increased geothermal gradient of the potential storage object B, it is possible that it will be developed as a geothermal reservoir, and this brings forward the problem of concurrent subsurface use. Full article
(This article belongs to the Collection Feature Papers in Carbon Capture, Utilization, and Storage)
Show Figures

Figure 1

20 pages, 3264 KiB  
Article
The Crucial Role of Data Quality Control in Hydrochemical Studies: Reevaluating Groundwater Evolution in the Jiangsu Coastal Plain, China
by Claudio E. Moya, Konstantin W. Scheihing and Mauricio Taulis
Earth 2025, 6(3), 62; https://doi.org/10.3390/earth6030062 - 29 Jun 2025
Viewed by 309
Abstract
A vital step for any hydrochemical assessment is properly carrying out quality assurance and quality control (QA/QC) techniques to evaluate data confidence before performing the assessment. Understanding the processes governing groundwater evolution in coastal aquifers is critical for managing freshwater resources under increasing [...] Read more.
A vital step for any hydrochemical assessment is properly carrying out quality assurance and quality control (QA/QC) techniques to evaluate data confidence before performing the assessment. Understanding the processes governing groundwater evolution in coastal aquifers is critical for managing freshwater resources under increasing anthropogenic and climatic pressures. This study reassesses the hydrochemical and isotopic data from the Deep Confined Aquifer System (DCAS) in the Jiangsu Coastal Plain, China, by firstly applying QA/QC protocols. Anomalously high Fe and Mn concentrations in several samples were identified and excluded, yielding a refined dataset that enabled a more accurate interpretation of hydrogeochemical processes. Using hierarchical cluster analysis (HCA), principal component analysis (PCA), and stable and radioactive isotope data (δ2H, δ18O, 3H, and 14C), we identify three dominant drivers of groundwater evolution: water–rock interaction, evaporation, and seawater intrusion. In contrast to earlier interpretations, we present clear evidence of active seawater intrusion into the DCAS, supported by salinity patterns, isotopic signatures, and local hydrodynamics. Furthermore, inconsistencies between tritium- and radiocarbon-derived residence times—modern recharge indicated by 3H versus Pleistocene ages from 14C—highlight the unreliability of previous paleoclimatic reconstructions based on unvalidated datasets. These findings underscore the crucial role of robust QA/QC and integrated tracer analysis in groundwater studies. Full article
Show Figures

Figure 1

16 pages, 5939 KiB  
Article
Modeling the Effects of Underground Brine Extraction on Shallow Groundwater Flow and Oilfield Fluid Leakage Pathways in the Yellow River Delta
by Jingang Zhao, Xin Yuan, Hu He, Gangzhu Li, Qiong Zhang, Qiyun Wang, Zhenqi Gu, Chenxu Guan and Guoliang Cao
Water 2025, 17(13), 1943; https://doi.org/10.3390/w17131943 - 28 Jun 2025
Viewed by 399
Abstract
The distribution of fresh and salty groundwater is a critical factor affecting the coastal wetlands. However, the dynamics of groundwater flow and salinity in river deltas remain unclear due to complex hydrological settings and impacts of human activities. The uniqueness of the Yellow [...] Read more.
The distribution of fresh and salty groundwater is a critical factor affecting the coastal wetlands. However, the dynamics of groundwater flow and salinity in river deltas remain unclear due to complex hydrological settings and impacts of human activities. The uniqueness of the Yellow River Delta (YRD) lies in its relatively short formation time, the frequent salinization and freshening alternation associated with changes in the course of the Yellow River, and the extensive impacts of oil production and underground brine extraction. This study employed a detailed hydrogeological modeling approach to investigate groundwater flow and the impacts of oil field brine leakage in the YRD. To characterize the heterogeneity of the aquifer, a sediment texture model was constructed based on a geotechnical borehole database for the top 30 m of the YRD. A detailed variable-density groundwater model was then constructed to simulate the salinity distribution in the predevelopment period and disturbance by brine extraction in the past decades. Probabilistic particle tracking simulation was implemented to assess the alterations in groundwater flow resulting from brine resource development and evaluate the potential risk of salinity contamination from oil well fields. Simulations show that the limited extraction of brine groundwater has significantly altered the hydraulic gradient and groundwater flow pattern accounting for the less permeable sediments in the delta. The vertical gradient increased by brine pumping has mitigated the salinization process of the shallow groundwater which supports the coastal wetlands. The low groundwater velocity and long travel time suggest that the peak salinity concentration would be greatly reduced, reaching the deep aquifers accounting for dispersion and dilution. Further detailed investigation of the complex groundwater salinization process in the YRD is necessary, as well as its association with alternations in the hydraulic gradient by brine extraction and water injection/production in the oilfield. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

13 pages, 1534 KiB  
Article
Numerical Investigation of Offshore CCUS in Deep Saline Aquifers Using Multi-Layer Injection Method: A Case Study of the Enping 15-1 Oilfield CO2 Storage Project, China
by Jiayi Shen, Futao Mo, Zhongyi Tao, Yi Hong, Bo Gao and Tao Xuan
J. Mar. Sci. Eng. 2025, 13(7), 1247; https://doi.org/10.3390/jmse13071247 - 28 Jun 2025
Viewed by 312
Abstract
Geological storage of CO2 in offshore deep saline aquifers is widely recognized as an effective strategy for large-scale carbon emission reduction. This study aims to assess the mechanical integrity and storage efficiency of reservoirs using a multi-layer CO2 injection method in [...] Read more.
Geological storage of CO2 in offshore deep saline aquifers is widely recognized as an effective strategy for large-scale carbon emission reduction. This study aims to assess the mechanical integrity and storage efficiency of reservoirs using a multi-layer CO2 injection method in the Enping 15-1 Oilfield CO2 storage project which is the China’s first offshore carbon capture, utilization, and storage (CCUS) demonstration. A coupled Hydro–Mechanical (H–M) model is constructed using the TOUGH-FLAC simulator to simulate a 10-year CO2 injection scenario, incorporating six vertically distributed reservoir layers. A sensitivity analysis of 14 key geological and geomechanical parameters is performed to identify the dominant factors influencing injection safety and storage capacity. The results show that a total injection rate of 30 kg/s can be sustained over a 10-year period without exceeding mechanical failure thresholds. Reservoirs 3 and 4 exhibit the greatest lateral CO2 migration distances over the 10-year injection period, indicating that they are the most suitable target layers for CO2 storage. The sensitivity analysis further reveals that the permeability of the reservoirs and the friction angle of the reservoirs and caprocks are the most critical parameters governing injection performance and mechanical stability. Full article
(This article belongs to the Special Issue Advanced Studies in Offshore Geotechnics)
Show Figures

Figure 1

28 pages, 18798 KiB  
Article
A Stability Assessment of Fault-Caprock Trapping Systems for CO2 Storage in Saline Aquifer Layers Using a Coupled THMC Model
by Mingying Xie, Shenghao Wang, Shasha Feng, Chao Xu, Xisheng Li, Xiaona Sun, Yueqiang Ma, Quan Gan and Tao Wang
Energies 2025, 18(4), 900; https://doi.org/10.3390/en18040900 - 13 Feb 2025
Cited by 1 | Viewed by 667
Abstract
Deep saline aquifers provide significant potential for CO2 storage and are crucial in carbon capture, utilization, and storage (CCUS). However, ensuring the long-term safe storage of CO2 remains challenging due to the complexity of coupled thermal, hydrological, mechanical, and chemical (THMC) [...] Read more.
Deep saline aquifers provide significant potential for CO2 storage and are crucial in carbon capture, utilization, and storage (CCUS). However, ensuring the long-term safe storage of CO2 remains challenging due to the complexity of coupled thermal, hydrological, mechanical, and chemical (THMC) processes. This study is one of a few to incorporate fault-controlled reservoir structures in the Enping 15-1 oilfield to simulate the performance of CO2 geological storage. A systematic analysis of factors influencing CO2 storage safety, such as the trap area, aquifer layer thickness, caprock thickness, reservoir permeability, and reservoir porosity, was conducted. We identified the parameters with the most significant impact on storage performance and provided suitable values to enhance storage safety. The results show that a large trap area and aquifer thickness are critical for site selection. Low permeability and large caprock thickness prevent CO2 from escaping, which is important for long-term and stable storage. These findings contribute to developing site-specific guidelines for CO2 storage in faulted reservoirs. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

38 pages, 3394 KiB  
Review
A Compact Review of Current Technologies for Carbon Capture as Well as Storing and Utilizing the Captured CO2
by Tim M. Thiedemann and Michael Wark
Processes 2025, 13(1), 283; https://doi.org/10.3390/pr13010283 - 20 Jan 2025
Cited by 9 | Viewed by 7937
Abstract
With the consequences of climate change becoming more urgent, there has never been a more pressing need for technologies that can help to reduce the carbon dioxide (CO2) emissions of the most polluting sectors, such as power generation, steel, cement, and [...] Read more.
With the consequences of climate change becoming more urgent, there has never been a more pressing need for technologies that can help to reduce the carbon dioxide (CO2) emissions of the most polluting sectors, such as power generation, steel, cement, and the chemical industry. This review summarizes the state-of-the-art technologies for carbon capture, for instance, post-combustion, pre-combustion, oxy-fuel combustion, chemical looping, and direct air capture. Moreover, already established carbon capture technologies, such as absorption, adsorption, and membrane-based separation, and emerging technologies like calcium looping or cryogenic separation are presented. Beyond carbon capture technologies, this review also discusses how captured CO2 can be securely stored (CCS) physically in deep saline aquifers or depleted gas and oil reservoirs, stored chemically via mineralization, or used in enhanced oil recovery. The concept of utilizing the captured CO2 (CCU) for producing value-added products, including formic acid, methanol, urea, or methane, towards a circular carbon economy will also be shortly discussed. Real-life applications, e.g., already pilot-scale continuous methane (CH4) production from flue gas CO2, are shown. Actual deployment of the most crucial technologies for the future will be explored in real-life applications. This review aims to provide a compact view of the most crucial technologies that should be considered when choosing to capture, store, or convert CO2, informing future researchers with efforts aimed at mitigating CO2 emissions and tackling the climate crisis. Full article
Show Figures

Figure 1

22 pages, 4466 KiB  
Article
Assessment of the Geological Storage Potential and Suitability of CO2 in the Deep Saline Aquifers in the Northwest Plain of Shandong Province, China
by Shihao Wang, Hailong Tian, Xincun Zhao, Yan Yan, Xunchang Yang and Xuepeng Wang
Energies 2024, 17(24), 6387; https://doi.org/10.3390/en17246387 - 19 Dec 2024
Viewed by 1088
Abstract
Carbon capture and storage (CCS) technology is a crucial and effective tool to achieve China’s dual carbon goals. The primary locations suitable for underground CO2 storage include depleted oil and gas reservoirs, deep saline aquifers, and deep unmineable coal seams. Among these, [...] Read more.
Carbon capture and storage (CCS) technology is a crucial and effective tool to achieve China’s dual carbon goals. The primary locations suitable for underground CO2 storage include depleted oil and gas reservoirs, deep saline aquifers, and deep unmineable coal seams. Among these, deep saline aquifers are widely distributed in most of the world’s sedimentary basins, and they offer significant advantages—such as substantial storage capacity, well-established technology, high safety standards, and cost effectiveness—making them crucial geological reservoirs for carbon dioxide storage. In comparison to foreign countries’ projects on CO2 capture, utilization, and storage (CCUS) technology, China’s initiatives have been implemented more recently, and no research has been conducted on the geological storage of CO2 in the deep saline aquifers within the study area. In this study, we systematically analyzed the key factors for the geological storage of CO2 in saline reservoirs within the northwest plain of Shandong Province: the Paleogene Shahejie Formation saline aquifer, and the lower reservoir of the Minghuazhen Formation saline aquifer located east of the Zhanhua–Lijin–Dongying line. The CO2 geological storage potential of these aquifers was assessed using the evaluation methodology of the United States Department of Energy, yielding a result of 30.355 billion tons. An evaluation index system of CO2 geological storage suitability was established. Evaluation indices for regions in the study area were assigned according to this evaluation index, and the score and grade of each unit were obtained. The results indicated that the Huimin latent fault depression, Dongying latent fault depression, Dezhou latent fault depression, and Dongming–Shenxian latent fault depression are suitable prospective areas for CO2 geological storage in the saline aquifers of Shandong Province’s northwest plain. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

14 pages, 8299 KiB  
Article
Hydrochemical Characteristics and Genesis of Sand–Gravel Brine Deposits in the Mahai Basin of the Northern Qinghai–Tibetan Plateau
by Hongkui Bai, Tong Pan, Guang Han, Qishun Fan, Qing Miao and Haiyi Bu
Water 2024, 16(24), 3562; https://doi.org/10.3390/w16243562 - 11 Dec 2024
Viewed by 940
Abstract
The sand–gravel brine deposit in the Mahai Basin is a newly discovered large-scale potassium–bearing brine deposit. The potassium–bearing brine is primarily found at depths exceeding 150 m within the porous alluvial and fluvial sand–gravel reservoir of the Middle to Lower Pleistocene. This deposit [...] Read more.
The sand–gravel brine deposit in the Mahai Basin is a newly discovered large-scale potassium–bearing brine deposit. The potassium–bearing brine is primarily found at depths exceeding 150 m within the porous alluvial and fluvial sand–gravel reservoir of the Middle to Lower Pleistocene. This deposit is characterized by a relatively shallow water table, moderate–to–strong aquifer productivity, high salinity, and a KCl content that meets the conditions for exploitation, with the advantage of reduced salt crystallization during well mining, making it a potential reserve base for potash development. A geochemical analysis of the sand–gravel brine revealed consistent trends for the major ions K+, Na+, Mg2+, Cl, and SO42− along the east–west axis of the alluvial fan, while Ca2+ showed an opposite trend compared to Mg2+. Along the exploration lines from north to south, the concentrations of the main ions gradually increase. The brine is enriched in Na+ and Cl ions, while SO42− and HCO3 are depleted. In the K+-Na+-Mg2+/Cl-H2O (25 °C) quaternary phase diagram, the brine falls within the halite stability field, with the hydrochemical type classified as chloride type. The brine coefficient characteristics indicate a multi-source origin involving residual evaporation, salt rock leaching, and metamorphic sedimentary brine. Comparison studies of the ionic composition and isotopic signatures (δD, δ18O, δ37Cl, and δ7Li) of deep sand–gravel brines in the study area with interstitial and confined brines in the southern depression suggest similar geochemical characteristics between them. The genetic analysis of the deposit proposes that during the basin tectonic evolution, the potassium-rich interstitial and confined brines originally located in the southern depression of the Mahai Basin were displaced under compressional forces and migrated northward as the depositional center shifted, eventually backfilling into the loose alluvial and fluvial sand and gravel reservoirs at the front of the Saishiteng Mountains, forming the deep sand–gravel brine deposits in the foreland. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

23 pages, 7554 KiB  
Article
Assessment of Groundwater Quality and Vulnerability in the Nakivale Sub-Catchment of the Transboundary Lake Victoria Basin, Uganda
by Emmanuel Nabala Hyeroba and Robert M. Kalin
Water 2024, 16(23), 3386; https://doi.org/10.3390/w16233386 - 25 Nov 2024
Viewed by 1673
Abstract
This study evaluates the quality and vulnerability of groundwater within the Nakivale Sub-catchment of the transboundary Lake Victoria Basin in Southwestern Uganda. Groundwater quality assessment focuses on its suitability for both drinking and agricultural uses. Hydrochemical analysis of 19 groundwater samples revealed that [...] Read more.
This study evaluates the quality and vulnerability of groundwater within the Nakivale Sub-catchment of the transboundary Lake Victoria Basin in Southwestern Uganda. Groundwater quality assessment focuses on its suitability for both drinking and agricultural uses. Hydrochemical analysis of 19 groundwater samples revealed that 90% comply with World Health Organization drinking water standards, although localized contamination was noted, particularly in terms of total iron, nitrate, potassium, magnesium, and sulfates. The drinking groundwater quality index shows that over 90% of the samples fall within the good-to-excellent quality categories. Elevated nitrate levels and chloride–bromide ratios indicate human impacts, likely due to agricultural runoff and wastewater disposal. For irrigation, Sodium Adsorption Ratio analysis revealed medium-to-high salinity hazards in the region, while Sodium Percentage and other parameters indicated low-to-moderate risks of soil degradation. DRASTIC vulnerability assessments identified low contamination risks due to impermeable geological layers, steep terrain, slow groundwater recharge, deep aquifer depth, and clayey soil cover. These findings emphasize the need for conjunctive water resource management, including improved groundwater quality monitoring, public education on sustainable practices, and protective measures for recharge zones and areas highly susceptible to contamination. By addressing these issues, this study aims to preserve groundwater resources for domestic and agricultural use, ensuring long-term sustainability in the region. Full article
(This article belongs to the Special Issue Groundwater Quality and Contamination at Regional Scales)
Show Figures

Figure 1

16 pages, 8754 KiB  
Article
Evaluating Petrophysical Properties Using Digital Rock Physics Analysis: A CO2 Storage Feasibility Study of Lithuanian Reservoirs
by Shruti Malik, Pijus Makauskas, Ravi Sharma and Mayur Pal
Appl. Sci. 2024, 14(23), 10826; https://doi.org/10.3390/app142310826 - 22 Nov 2024
Cited by 1 | Viewed by 1089
Abstract
As the global concern over greenhouse gas emissions grows, CO2 storage in deep saline aquifers and depleted reservoirs has become crucial for climate change mitigation. This study evaluates the feasibility of Lithuanian deep saline aquifers, specifically, Syderiai and Vaskai, for effective CO [...] Read more.
As the global concern over greenhouse gas emissions grows, CO2 storage in deep saline aquifers and depleted reservoirs has become crucial for climate change mitigation. This study evaluates the feasibility of Lithuanian deep saline aquifers, specifically, Syderiai and Vaskai, for effective CO2 storage. Unlike previous theoretical analyses, it provides experimental data on static and dynamic reservoir parameters that impact CO2 injection and retention. Using micro X-ray computed tomography (MXCT) and multi-resolution scanning at 8 µm and 22 µm, digital rock volumes (DRVs) from core samples were created to determine porosity and permeability. The method, validated against analogous samples, identified a representative element volume (REV) within sub-volumes, showing a homogeneous distribution of petrophysical properties in the Lithuanian samples. The results show that DRVs can accurately reflect pore-scale properties, achieving 90–95% agreement with lab measurements, and offer a rapid, efficient means for analyzing storage potentials. These insights confirm that Lithuanian aquifers are promising for CO2 sequestration, with recommendations for further long-term monitoring and applications of this technique across the region. Full article
(This article belongs to the Special Issue CCUS: Paving the Way to Net Zero Emissions Technologies)
Show Figures

Figure 1

24 pages, 5010 KiB  
Article
Accelerating Numerical Simulations of CO2 Geological Storage in Deep Saline Aquifers via Machine-Learning-Driven Grid Block Classification
by Eirini Maria Kanakaki, Ismail Ismail and Vassilis Gaganis
Processes 2024, 12(11), 2447; https://doi.org/10.3390/pr12112447 - 5 Nov 2024
Viewed by 1766
Abstract
The accurate prediction of pressure and saturation distribution during the simulation of CO2 injection into saline aquifers is essential for the successful implementation of carbon sequestration projects. Traditional numerical simulations, while reliable, are computationally expensive. Machine learning (ML) has emerged as a [...] Read more.
The accurate prediction of pressure and saturation distribution during the simulation of CO2 injection into saline aquifers is essential for the successful implementation of carbon sequestration projects. Traditional numerical simulations, while reliable, are computationally expensive. Machine learning (ML) has emerged as a promising tool to accelerate these simulations; however, challenges remain in effectively capturing complex reservoir dynamics, particularly in regions experiencing rapid changes in pressure and saturation. This article addresses the challenges by introducing a fully automated, data-driven ML classifier that distinguishes between regions of fast and slow variation within the reservoir. Firstly, we demonstrate the variability in pressure across different reservoir grid blocks using a simple brine injection and production scenario, highlighting the limitations of conventional acceleration approaches. Subsequently, the proposed methodology leverages ML proxies to rapidly and accurately predict the behavior of slow-varying regions in CO2 injection simulations, while traditional iterative methods are reserved for fast-varying areas. The results show that this hybrid approach significantly reduces the computational load without compromising on accuracy. This provides a more efficient and scalable solution for modeling CO2 storage in saline aquifers. Full article
Show Figures

Figure 1

26 pages, 15828 KiB  
Article
Optimization of Offshore Saline Aquifer CO2 Storage in Smeaheia Using Surrogate Reservoir Models
by Behzad Amiri, Ashkan Jahanbani Ghahfarokhi, Vera Rocca and Cuthbert Shang Wui Ng
Algorithms 2024, 17(10), 452; https://doi.org/10.3390/a17100452 - 11 Oct 2024
Cited by 4 | Viewed by 2170
Abstract
Machine learning-based Surrogate Reservoir Models (SRMs) can replace/augment multi-physics numerical simulations by replicating the reservoir simulation results with reduced computational effort while maintaining accuracy compared with numerical simulations. This research will demonstrate SRMs’ potential in long-term simulations and optimization of geological carbon storage [...] Read more.
Machine learning-based Surrogate Reservoir Models (SRMs) can replace/augment multi-physics numerical simulations by replicating the reservoir simulation results with reduced computational effort while maintaining accuracy compared with numerical simulations. This research will demonstrate SRMs’ potential in long-term simulations and optimization of geological carbon storage in a real-world geological setting and address challenges in big data curation and model training. The present study focuses on CO2 storage in the Smeaheia saline aquifer. Two SRMs were created using Deep Neural Networks (DNNs) to predict CO2 saturation and pressure over all grid blocks for 50 years. 18 million samples and 31 features, including reservoir static and dynamic properties, build the input data. Models comprise 3–5 hidden layers with 128–512 units apiece. SRMs showed a runtime improvement of 300 times and an accuracy of 99% compared to the 3D numerical simulator. The genetic algorithm was then employed to determine the optimal rate and duration of CO2 injection, which maximizes the volume of injected CO2 while ensuring storage operations’ safety through constraints. The optimization continued for the reproduction of 100 generations, each containing 100 individuals, without any hyperparameter tuning. Finally, the optimization results confirm the significant potential of Smeaheia for storing 170 Mt CO2. Full article
(This article belongs to the Special Issue Nature-Inspired Algorithms in Machine Learning (2nd Edition))
Show Figures

Figure 1

14 pages, 4407 KiB  
Article
Geochemical Characteristics and Genesis of Brine Chemical Composition in Cambrian Carbonate-Dominated Succession in the Northeastern Region of Chongqing, Southwestern China
by Zhi-lin Zheng, Bin Xie, Chun-mei Wu, Lei Zhou, Ke Zhang, Bin-chen Zhang and Ping-heng Yang
Water 2024, 16(19), 2859; https://doi.org/10.3390/w16192859 - 9 Oct 2024
Cited by 2 | Viewed by 1538
Abstract
Deeply situated brine is abundant in rare metal minerals, possessing significant economic worth. To the authors’ knowledge, brine present within the Cambrian carbonate-dominated succession in the northeastern region of Chongqing, Southwestern China, has not been previously reported. In this investigation, brine samples were [...] Read more.
Deeply situated brine is abundant in rare metal minerals, possessing significant economic worth. To the authors’ knowledge, brine present within the Cambrian carbonate-dominated succession in the northeastern region of Chongqing, Southwestern China, has not been previously reported. In this investigation, brine samples were collected from an abandoned brine well, designated as Tianyi Well, for the purpose of analyzing the hydrochemical characteristics and geochemical evolution of the brine. Halide concentrations, associated ions, and their ionic ratios within the sampled brine were analyzed. The brine originating from the deep Cambrian aquifer was characterized by high salinity levels, with an average TDS value of 242 ± 11 g/L, and was dominated by a Na-Cl facies. The studied brine underwent a moderate degree of seawater evaporation, occurring between the saturation levels of gypsum and halite, accompanied by some halite dissolution. Compared to modern seawater evaporation, the depletion of Mg2+, HCO3, and SO42− concentrations, along with the enrichment of Ca2+, Li+, K+, and Sr2+, is likely primarily attributed to water–rock interactions. These interactions include dolomitization, combination of halite dissolution, upwelling of lithium- and potassium-bearing groundwater, calcium sulfate precipitation, biological sulfate reduction (BSR), and the common ion effect within the brine system. This research offers valuable insights into the genesis of the brine within the Cambrian carbonate succession and provides theoretical backing for the development of brine resources in the future. Full article
Show Figures

Figure 1

35 pages, 2134 KiB  
Review
Geochemistry in Geological CO2 Sequestration: A Comprehensive Review
by Jemal Worku Fentaw, Hossein Emadi, Athar Hussain, Diana Maury Fernandez and Sugan Raj Thiyagarajan
Energies 2024, 17(19), 5000; https://doi.org/10.3390/en17195000 - 8 Oct 2024
Cited by 13 | Viewed by 3949
Abstract
The increasing level of anthropogenic CO2 in the atmosphere has made it imperative to investigate an efficient method for carbon sequestration. Geological carbon sequestration presents a viable path to mitigate greenhouse gas emissions by sequestering the captured CO2 deep underground in [...] Read more.
The increasing level of anthropogenic CO2 in the atmosphere has made it imperative to investigate an efficient method for carbon sequestration. Geological carbon sequestration presents a viable path to mitigate greenhouse gas emissions by sequestering the captured CO2 deep underground in rock formations to store it permanently. Geochemistry, as the cornerstone of geological CO2 sequestration (GCS), plays an indispensable role. Therefore, it is not just timely but also urgent to undertake a comprehensive review of studies conducted in this area, articulate gaps and findings, and give directions for future research areas. This paper reviews geochemistry in terms of the sequestration of CO2 in geological formations, addressing mechanisms of trapping, challenges, and ways of mitigating challenges in trapping mechanisms; mineralization and methods of accelerating mineralization; and the interaction between rock, brine, and CO2 for the long-term containment and storage of CO2. Mixing CO2 with brine before or during injection, using microbes, selecting sedimentary reservoirs with reactive minerals, co-injection of carbonate anhydrase, and enhancing the surface area of reactive minerals are some of the mechanisms used to enhance mineral trapping in GCS applications. This review also addresses the potential challenges and opportunities associated with geological CO2 storage. Challenges include caprock integrity, understanding the lasting effects of storing CO2 on geological formations, developing reliable models for monitoring CO2–brine–rock interactions, CO2 impurities, and addressing public concerns about safety and environmental impacts. Conversely, opportunities in the sequestration of CO2 lie in the vast potential for storing CO2 in geological formations like depleted oil and gas reservoirs, saline aquifers, coal seams, and enhanced oil recovery (EOR) sites. Opportunities include improved geochemical trapping of CO2, optimized storage capacity, improved sealing integrity, managed wellbore leakage risk, and use of sealant materials to reduce leakage risk. Furthermore, the potential impact of advancements in geochemical research, understanding geochemical reactions, addressing the challenges, and leveraging the opportunities in GCS are crucial for achieving sustainable carbon mitigation and combating global warming effectively. Full article
(This article belongs to the Collection Feature Papers in Carbon Capture, Utilization, and Storage)
Show Figures

Figure 1

16 pages, 18129 KiB  
Article
Hydraulic and Hydrogeochemical Characterization of Carbonate Aquifers in Arid Regions: A Case from the Western Desert, Egypt
by Mahmoud M. Khalil, Mostafa Mahmoud, Dimitrios E. Alexakis, Dimitra E. Gamvroula, Emad Youssef, Esam El-Sayed, Mohamed H. Farag, Mohamed Ahmed, Peiyue Li, Ahmed Ali and Esam Ismail
Water 2024, 16(18), 2610; https://doi.org/10.3390/w16182610 - 14 Sep 2024
Cited by 2 | Viewed by 1638
Abstract
Using geochemical and pumping test data from 80 groundwater wells, the chemical, hydrologic, and hydraulic properties of the fractured Eocene carbonate aquifer located west of the Al-Minya district, the Western Desert, Egypt, have been characterized and determined to guarantee sustainable management of groundwater [...] Read more.
Using geochemical and pumping test data from 80 groundwater wells, the chemical, hydrologic, and hydraulic properties of the fractured Eocene carbonate aquifer located west of the Al-Minya district, the Western Desert, Egypt, have been characterized and determined to guarantee sustainable management of groundwater resources under large-scale desert reclamation projects. The hydrochemical data show that groundwater from the fractured Eocene carbonate aquifer has a high concentration of Na+ and Cl and varies in salinity from 2176 to 2912 mg/L (brackish water). Water–rock interaction and ion exchange processes are the most dominant processes controlling groundwater composition. The carbonate aquifer exists under confined to semi-confined conditions, and the depth to groundwater increases eastward. From the potentiometric head data, deep-seated faults are the suggested pathways for gas-rich water ascending from the deep Nubian aquifer system into the overlying shallow carbonate aquifer. This mechanism enhances the dissolution and karstification of carbonate rocks, especially in the vicinity of faulted sites, and is supported by the significant loss of mud circulation during well drilling operations. The average estimated hydraulic parameters, based on the analysis of step-drawdown, long-duration pumping and recovery tests, indicate that the Eocene carbonate aquifer has a wide range of transmissivity (T) that is between 336.39 and 389,309.28 m2/d (average: 18,405.21 m2/d), hydraulic conductivity (K) between 1.31 and 1420.84 m/d (average: 70.29 m/d), and specific capacity (Sc) between 44.4 and 17,376.24 m2/d (average: 45.24 m2/d). On the other hand, the performance characteristics of drilled wells show that well efficiency ranges between 0.47 and 97.08%, and well losses range between 2.92 and 99.53%. In addition to variations in carbonate aquifer thickness and clay/shale content, the existence of strong karstification features, i.e., fissures, fractures or caverns, and solution cavities, in the Eocene carbonate aquifer are responsible for variability in the K and T values. The observed high well losses might be related to turbulent flow within and adjacent to the wells drilled in conductive fracture zones. The current approach can be further used to enhance local aquifer models and improve strategies for identifying the most productive zones in similar aquifer systems. Full article
Show Figures

Figure 1

Back to TopTop