Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = deep mantle origin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3270 KiB  
Review
Carbon Isotopes in Magmatic Systems: Measurements, Interpretations, and the Carbon Isotopic Signature of the Earth’s Mantle
by Yves Moussallam
Geosciences 2025, 15(7), 266; https://doi.org/10.3390/geosciences15070266 - 9 Jul 2025
Viewed by 332
Abstract
Carbon isotopes in magmatic systems serve as powerful tracers for understanding magma evolution, mantle processes, the deep carbon cycle, and the origin of Earth’s carbon. This review provides a comprehensive overview of carbon isotope measurements and behavior in magmatic systems, highlighting recent technological [...] Read more.
Carbon isotopes in magmatic systems serve as powerful tracers for understanding magma evolution, mantle processes, the deep carbon cycle, and the origin of Earth’s carbon. This review provides a comprehensive overview of carbon isotope measurements and behavior in magmatic systems, highlighting recent technological advancements and scientific insights. We begin by examining methods for measuring δ13C in volcanic gases, vesicles, glasses, melt, and fluid inclusions. We then explore the behavior of carbon isotopes in magmatic systems, especially during magmatic degassing. Finally, we evaluate what recent advances mean for our understanding of the carbon isotope signature of the Earth’s upper mantle. Full article
Show Figures

Figure 1

21 pages, 6935 KiB  
Article
Internal Structure and Inclusions: Constraints on the Origin of the Tancheng Alluvial Diamonds from the North China Craton
by Qing Lv, Fei Liu, Yue-Jin Ge, Zhao-Ying Li, Xiao Liu, Yong-Lin Yao, Yu-Feng Wang, Hai-Qin Wang, Sheng-Hu Li, Xiao-Dong Ma, Yong Zhang, Jia-Hong Xu and Ahmed E. Masoud
Minerals 2025, 15(6), 588; https://doi.org/10.3390/min15060588 - 30 May 2025
Viewed by 431
Abstract
The internal growth patterns and surface micromorphology of diamonds provide a record of their multi-stage evolution, from initial formation within the mantle to their eventual ascent to the Earth’s surface via deeply derived kimberlite magmas. In this study, gemological microscopic examination, Diamond View [...] Read more.
The internal growth patterns and surface micromorphology of diamonds provide a record of their multi-stage evolution, from initial formation within the mantle to their eventual ascent to the Earth’s surface via deeply derived kimberlite magmas. In this study, gemological microscopic examination, Diamond ViewTM, Raman spectroscopy, and electron probe analysis were employed to analyze the surface features, internal patterns, and inclusions of the Tancheng alluvial diamonds in Shandong Province, China. The results show that surface features of octahedra with triangular and sharp edges, thick steps with irregular contours or rounded edges, and thin triangular or serrated layers are developed on diamonds during deep-mantle storage, as well as during the growth process of diamonds, when they are not subjected to intense dissolution. The rounding of octahedral and cubic diamond edges and their transformation into tetrahedral (THH) shapes are attributed to resorption in kimberlitic magma. These characteristics indicate that the Tancheng diamonds were commonly resorbed by carbonate–silicate melts during mantle storage. Abnormal birefringence phenomena, including irregular extinction patterns, petaloid and radial extinction patterns, and banded birefringence, were formed during the diamond growth stage. In contrast, fine grid extinction patterns and composite superimposed extinction patterns are related to later plastic deformation. The studied diamonds mainly contain P-type inclusions of olivine and graphite, with a minority of E-type inclusions, including coesite and omphacite. The pressure of entrapment of olivine inclusions within the Tancheng diamonds ranges from 4.3 to 5.9 GPa, which is consistent with that of coesite inclusions, which yield pressure ranging from 5.2 to 5.5 GPa, and a temperature range of 1083–1264 °C. Overall, the evidence suggests that Tancheng diamonds probably originated from hybrid mantle sources metasomatized by the subduction of ancient oceanic lithosphere. Full article
Show Figures

Graphical abstract

18 pages, 9668 KiB  
Article
Superdeep Diamond Genesis Through Fe-Mediated Carbonate Reduction
by Jing Gao, Bin Chen, Xiang Wu, Xiaojing Lai, Changzeng Fan, Yun Liu and Junfeng Zhang
Geosciences 2025, 15(5), 163; https://doi.org/10.3390/geosciences15050163 - 1 May 2025
Viewed by 602
Abstract
Superdeep diamonds and their syngenetic inclusions are crucial for understanding Earth’s deep carbon cycle and slab–mantle redox dynamics. The origins of these diamonds, especially their links to iron (Fe) carbides and ferropericlase with varying Mg# [=Mg/(Mg+Fe)at], however, remain elusive. In this [...] Read more.
Superdeep diamonds and their syngenetic inclusions are crucial for understanding Earth’s deep carbon cycle and slab–mantle redox dynamics. The origins of these diamonds, especially their links to iron (Fe) carbides and ferropericlase with varying Mg# [=Mg/(Mg+Fe)at], however, remain elusive. In this study, we performed high pressure–temperature (P-T) experiments (10–16 GPa and 1200–1700 K) across cold-to-warm subduction zones using a multi-anvil press. The results reveal a stepwise Fe-mediated carbonate reduction process for the formation of superdeep diamonds: MgCO3 → Fe-carbides (Fe3C/Fe7C3) → graphite/diamond. This mechanism explains two phenomena regarding superdeep diamonds: (1) anomalous 13C depletion results from kinetic isotope fractionation during 12C enrichment into the intermediate Fe-carbides; (2) nitrogen scarcity is due to Fe-carbides acting as nitrogen sinks. Ferropericlase [(Mg,Fe)O] formed during the reactions in our experiments shows Mg# variations (0.2–0.9), similar to those found in natural samples. High Mg# (>0.7) variants from lower temperature experiments indicate diamond crystallization from carbonatitic melts in the shallow lower mantle, while the broad Mg# range (0.2–0.9) from experiments at higher temperatures suggests multi-depth formation processes as found in Brazilian diamonds. These findings suggest that slab–mantle interactions produce superdeep diamonds with distinctive Fe-carbides and ferropericlase assemblages as inclusions, coupled with their 13C- and nitrogen-depleted signatures, which underscore thermochemical carbon cycling as a key factor in deep carbon storage and mantle mineralogy. Full article
Show Figures

Graphical abstract

23 pages, 15341 KiB  
Article
Petrogenesis of Middle Jurassic Syenite-Granite Suites and Early Cretaceous Granites with Associated Enclaves in Southwestern Zhejiang, SE China: Implications for Subduction-Related Tectonic Evolution Beneath Northeastern Cathaysia Block
by Yu Wang, Haoyuan Lan, Chong Jin and Yuhuang Zhang
Minerals 2025, 15(5), 474; https://doi.org/10.3390/min15050474 - 30 Apr 2025
Viewed by 458
Abstract
Late Mesozoic magmatism in Southeast China extensively reworked the Cathaysia Block’s crust, linked to the Paleo-Pacific Plate subduction beneath East Asia. The northeastern Cathaysia Block, largely covered by Cretaceous volcanic-sedimentary basins, has limited Jurassic exposure to Early Cretaceous intrusions, which provides critical insights [...] Read more.
Late Mesozoic magmatism in Southeast China extensively reworked the Cathaysia Block’s crust, linked to the Paleo-Pacific Plate subduction beneath East Asia. The northeastern Cathaysia Block, largely covered by Cretaceous volcanic-sedimentary basins, has limited Jurassic exposure to Early Cretaceous intrusions, which provides critical insights into deep crust-mantle processes. In this study, we present zircon U-Pb geochronology and Hf isotope, whole-rock geochemistry, and Sr-Nd isotopes of the Middle Jurassic syenite-granite suites and Early Cretaceous granites with enclaves in the Qingyuan area (SW Zhejiang Province) to constrain their petrogenesis and tectonic significance. Middle Jurassic syenites and alkali-feldspar granites (169–167 Ma) exhibit calc-alkaline to shoshonitic affinities and weakly peraluminous compositions. Early Cretaceous granites (134 Ma) and their enclaves (136 Ma) are high-K calc-alkaline and weakly peraluminous to metaluminous. All samples show LILE and LREE enrichment, HFSE depletion, and negative Eu and Sr anomalies, with only syenites displaying negative Ce anomalies. We suggest that the Middle Jurassic syenites originated from the partial melting of an enriched lithospheric mantle influenced by subduction-related metasomatism. Alkali-feldspar granites derived from partial melting of the basement of the Cathaysia Block. Early Cretaceous granites formed by partial melting of lower crustal mafic rocks, with enclaves representing earlier crystallization products, which were then mechanically mixed with granites. We propose the NE Cathaysia Block underwent significant reworking from the Middle Jurassic to the Early Cretaceous. Middle Jurassic syenites formed in a compressional setting linked to Paleo-Pacific Plate subduction, while Early Cretaceous magmatism reflects lithospheric extension and crust-mantle interaction triggered by slab rollback. Full article
Show Figures

Figure 1

22 pages, 12751 KiB  
Article
Seismic Signals of the Wushi MS7.1 Earthquake of 23 January 2024, Viewed Through the Angle of Hydrogeochemical Characteristics
by Zhaojun Zeng, Xiaocheng Zhou, Jinyuan Dong, Jingchao Li, Miao He, Jiao Tian, Yuwen Wang, Yucong Yan, Bingyu Yao, Shihan Cui, Gaoyuan Xing, Han Yan, Ruibing Li, Wan Zheng and Yueju Cui
Appl. Sci. 2025, 15(9), 4791; https://doi.org/10.3390/app15094791 - 25 Apr 2025
Viewed by 548
Abstract
On 23 January 2024, a MS7.1 earthquake struck Wushi County, Xinjiang Uygur Autonomous Region, marking the largest seismic event in the Southern Tianshan (STS) region in the past century. This study investigates the relationship between hydrothermal fluid circulation and seismic activity [...] Read more.
On 23 January 2024, a MS7.1 earthquake struck Wushi County, Xinjiang Uygur Autonomous Region, marking the largest seismic event in the Southern Tianshan (STS) region in the past century. This study investigates the relationship between hydrothermal fluid circulation and seismic activity by analyzing the chemical composition and origin of fluids in natural hot springs along the Maidan Fracture (MDF). Results reveal two distinct hydrochemical water types (Ca-HCO3 and Ca-Mg-Cl). The δD and δ18O values indicating spring water are influenced by atmospheric precipitation input and altitude. Circulation depths (621–3492 m) and thermal reservoir temperatures (18–90 °C) were estimated. Notably, the high 3He/4He ratios (3.71 Ra) and mantle-derived 3He content reached 46.48%, confirming that complex gas–water–rock interactions occur at fracture intersections. Continuous monitoring at site S13 (144 km from the epicenter of the Wushi MS7.1 earthquake) captured pre-and post-seismic hydrogeochemical fingerprints linked to the Wushi MS7.1 earthquake. Stress accumulation along the MDF induced permeability changes, perturbing hydrogeochemical equilibrium. At 42 days pre-Wushi MS7.1 earthquake, δ13C DIC exceeded +2σ thresholds (−2.12‰), signaling deep fracture expansion and CO2 release. By 38 days pre-Wushi MS7.1 earthquake, Na+, SO42−, and δ18O surpassed 2σ levels, reflecting hydraulic connection between deep-seated and shallow fracture networks. Ion concentrations and isotope values showed dynamic shifts during the earthquake, which revealed episodic stress transfer along fault asperities. Post-Wushi MS7.1 earthquake, fracture closure reduced deep fluid input, causing δ13C DIC to drop to −4.89‰, with ion concentrations returning to baseline within 34 days. Trace elements such as Be and Sr exhibited anomalies 12 days before the Wushi MS7.1 earthquake, while elements like Li, B, and Rb showed anomalies 24 days after the Wushi MS7.1 earthquake. Hydrochemical monitoring of hot springs captures such critical stress-induced signals, offering vital insights for earthquake forecasting in tectonically active regions. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

22 pages, 4447 KiB  
Article
Geochronological and Geochemical Characterization of Triassic Felsic Volcanics in the Youjiang Basin, Southwest China: Implications for Tectonic Evolution of Eastern Tethyan Geodynamics
by Kai Dong, Zhuoyang Li, Xiaoli Fei, Yongqing Wang and Xiaohu Deng
Minerals 2025, 15(4), 398; https://doi.org/10.3390/min15040398 - 9 Apr 2025
Viewed by 331
Abstract
The Youjiang Basin is situated at the junction between the Tethyan and Pacific tectonic domains, and its Permian–Triassic volcanic rocks provide important geological archives recording the tectonic evolution and collisional interactions between the South China and Indochina blocks. This study employed LA-ICP-MS zircon [...] Read more.
The Youjiang Basin is situated at the junction between the Tethyan and Pacific tectonic domains, and its Permian–Triassic volcanic rocks provide important geological archives recording the tectonic evolution and collisional interactions between the South China and Indochina blocks. This study employed LA-ICP-MS zircon U-Pb geochronology and whole-rock geochemistry to investigate interbedded Triassic felsic volcanics. Felsic volcanic rocks in Youjiang Basin were erupted during the Early–Middle Triassic period (ca. 241~251 Ma) and are situated within the strata of the Beisi, Baifeng, and Banba Formations. These rocks in the Daqingshan area are rich in SiO2 (66.8~72.7 wt%), K2O (1.4~5.1 wt%), U (5.2~6.7 ppm), and Th (26~32.1 ppm). Conversely, they are depleted in MgO (0.6~1.4 wt%), TiO2 (0.5~0.9 wt%), Cr (13.1~19.7 ppm), Ni (7.3~10.1 ppm), and negative Eu anomalies (Eu/Eu* = 0.41~0.52), and they also exhibit negative zircon εHf(t) values. It is inferred that these Triassic felsic volcanics originated from the partial melting of crustal rocks in high-pressure environments such as the garnet stability zone within the deep mantle. These felsic volcanic rocks were likely generated during the transitional stage from island arc subduction to syn-collisional settings. Notably, the syn-collisional interaction between South China and Indochina blocks exerted significantly greater tectonic control on the Youjiang Basin than oceanic subduction. Full article
Show Figures

Figure 1

38 pages, 12618 KiB  
Article
Comparative Assessment of Chemical and Isotopic Composition of Geothermal Fluids in the Eastern Part of the Büyük Menderes Graben (Western Türkiye)
by Ali Gökgöz, Halim Mutlu and Erdem Subay
Water 2025, 17(7), 961; https://doi.org/10.3390/w17070961 - 25 Mar 2025
Viewed by 743
Abstract
In this study, we comparatively discuss chemical and isotopic characteristics of thermal waters from several geothermal fields within the eastern part of the Büyük Menderes graben, Western Türkiye. The studied thermal waters with a wide range of temperature (33 to 242 °C) and [...] Read more.
In this study, we comparatively discuss chemical and isotopic characteristics of thermal waters from several geothermal fields within the eastern part of the Büyük Menderes graben, Western Türkiye. The studied thermal waters with a wide range of temperature (33 to 242 °C) and pH value (6.10 to 9.38) show water types varying from Ca-Mg-HCO3-SO4 to Na-HCO3-SO4. The chemical composition of waters is controlled by several processes, which include temperature, circulation depth, extent of water–rock interaction, dissolution/precipitation, mixing, cation exchange and microbial activity. All thermal waters are of meteoric origin and generally have deep circulation. δ13C data indicate that marine limestone and mantle-derived CO2 are the major sources of carbon in thermal waters and δ34S values imply that the sulfate is originated from the Neogene gypsums. At discharge temperatures, all thermal waters are saturated with various carbonate, silica and clay minerals, which is supported by the XRD analysis of scaling materials. The REY composition of the scaling samples showed that the limestone is the source rock for the rare earth elements. Thermal waters with a positive 18O shift of 2.7 to 4.6‰ have reservoir temperatures of 170–245 °C, whilst other waters with a shift of <1‰ have reservoir temperatures in the range of 79 to 166 °C. Regarding the distribution of temperature, electricity production seems to be more suitable in the western part of the region, although relatively low-temperature areas in the east also look promising. Full article
Show Figures

Figure 1

18 pages, 8412 KiB  
Article
Geophysics and Geochemistry Reveal the Formation Mechanism of the Kahui Geothermal Field in Western Sichuan, China
by Zhilong Liu, Gaofeng Ye, Huan Wang, Hao Dong, Bowen Xu and Huailiang Zhu
Minerals 2025, 15(4), 339; https://doi.org/10.3390/min15040339 - 25 Mar 2025
Viewed by 429
Abstract
This study investigated the formation mechanism of the Kahui Geothermal Field in Western Sichuan, China, using geophysical and geochemical approaches to elucidate its geological structure and geothermal origins. This study employed a combination of 2D and 3D inversion techniques involved in natural electromagnetic [...] Read more.
This study investigated the formation mechanism of the Kahui Geothermal Field in Western Sichuan, China, using geophysical and geochemical approaches to elucidate its geological structure and geothermal origins. This study employed a combination of 2D and 3D inversion techniques involved in natural electromagnetic methods (magnetotelluric, MT, and audio magnetotelluric, AMT) along with the analysis of hydrogeochemical samples to achieve a comprehensive understanding of the geothermal system. Geophysical inversion revealed a three-layer resistivity structure within the upper 2.5 km of the study area. A geological interpretation was conducted on the resistivity structure model, identifying two faults, the Litang Fault and the Kahui Fault. The analysis suggested that the shallow part of the Kahui Geothermal Field is controlled by the Kahui Fault. Hydrochemical analysis showed that the water chemistry of the Kahui Geothermal Field is of the HCO3−Na type, primarily sourced from atmospheric precipitation. The deep heat source of the Kahui Geothermal Field was attributed to the partial melting of the middle crust, driven by the upwelling of mantle fluids. This process provides the necessary thermal energy for the geothermal system. Atmospheric precipitation infiltrates through tectonic fractures, undergoes deep circulation and heating, and interacts with the host rocks. The heated fluids then rise along faults and mix with shallow cold water, ultimately emerging as hot springs. Full article
Show Figures

Figure 1

19 pages, 9843 KiB  
Article
Mineralogy and Petrology of Ultrapotassic Lamprophyre Dykes in the Bangbule Area, Xizang, China: Evidence for Open Magma Chamber Fractionation and Mafic Magma Recharge
by Chenyu Hong, Yong Wang, Sangmu Zunzhu, Chuankai He, Haiyong Wang, Yongqiang Wang, Yun Bai, Penggang Yan, Suaijie Xun, Rui Cao and Dengke Chen
Minerals 2025, 15(4), 332; https://doi.org/10.3390/min15040332 - 21 Mar 2025
Viewed by 473
Abstract
Ultrapotassic lamprophyre dykes in southern Xizang provide important insight into the deep processes and nature of the source region. In this study, the lamprophyre dykes in the Bangbule area of southern Xizang were investigated to understand their petrogenesis and source mantle characteristics. The [...] Read more.
Ultrapotassic lamprophyre dykes in southern Xizang provide important insight into the deep processes and nature of the source region. In this study, the lamprophyre dykes in the Bangbule area of southern Xizang were investigated to understand their petrogenesis and source mantle characteristics. The lamprophyres, based on their mineral and chemical compositions, are classified into two types: type-1, mainly comprising biotite and clinopyroxene, and type-2, featuring annite, phlogopite, and clinopyroxene as phenocrysts. Mica 40Ar-39Ar dating indicates their formation in the early Oligocene (29.5 ± 0.2 Ma). Geochemically, both lamprophyre types show extremely high Sr [(87Sr/86Sr)i = 0.713936–0.716999] but low and consistent Nd [(143Nd/144Nd)i = 0.511991–0.512012] isotopic ratios. Type-1 lamprophyres are more enriched in SiO2, Al2O3, and total alkalis (Na2O + K2O) but have lower TFe2O3, CaO, and MgO contents, as well as Mg# values, compared to type-2, underscoring the differentiated nature of type-1. Geochemical evidence shows that the Bangbule lamprophyre originated from the partial melting of the lithospheric mantle metasomatized by subducted Indian continental crust-derived melts, followed by fractional crystallization. The phenocrysts of clinopyroxene, phlogopite, and K-feldspar exhibit disequilibrium textures and complex zoning between their cores and mantles, suggesting magma replenishment and mixing during their formation. The cores of the clinopyroxene and phlogopite phenocrysts exhibit low Mg# values, while their mantles show high Mg# values, indicating magma replenishment between later mafic and early evolved (ultrapotassic) magmas. Accordingly, an open magma chamber model that experienced fractional crystallization and replenishment was proposed for the generation of diverse lamprophyre dykes in Xizang. Full article
Show Figures

Figure 1

19 pages, 30817 KiB  
Article
Sedimentary Record of the Bio-Geological Events in Tethys: Insight from the Permian Yangtze Block Breakup in the Sichuan Basin
by Xuanwei Liu, Fujie Jiang, Xiaowei Zheng, Yang Gao and Siyu Zhou
Appl. Sci. 2024, 14(24), 11863; https://doi.org/10.3390/app142411863 - 19 Dec 2024
Cited by 1 | Viewed by 969
Abstract
At the end of the Middle Permian Guadeloupe series, the Chinese region recorded the only internationally recognized large igneous provincial eruption event, known as the Emeishan LIP. The Yangtze region of South China records a series of short and almost synchronous geological events [...] Read more.
At the end of the Middle Permian Guadeloupe series, the Chinese region recorded the only internationally recognized large igneous provincial eruption event, known as the Emeishan LIP. The Yangtze region of South China records a series of short and almost synchronous geological events that accompanied the development of bio-geological events such as large-scale magmatic intrusion, plate rupture, magnetic pole anomalies, and ecological collapse. These events ultimately triggered the extinction of living organisms. However, the current study leaves several questions unanswered. What was the sequence of geological events? Are the global records of these events synchronized? What is the causal relationship between these events? This study discusses the sedimentary responses to various geological events using biofossils, fluid inclusion, carbon isotopic analysis, and astrochronological analysis. The results reflect the following: (i) Mantle plumes: Mantle plumes act as pathways for heated fluids to ascend from the Earth’s interior. The mantle plume reached the Moho surface in the mid-Wordian and affected the magnetic field at the Earth’s surface; (ii) Magnetic pole anomalies: The anomaly of the Earth’s magnetic poles appeared in the mid-Wordian stage, causing the originally stable plates to begin to split. The sea level changes dramatically, and the ancient landform pattern changes dramatically; (iii) Plate rupture: The rifting of plates accelerated the activity of deep hydrothermal fluids; the hydrothermal fluid gradually infiltrated the paleo-ocean after the J. altudaensis zone; (iv) Emeishan LIP: The volcano erupted at 260 Ma, and eventually led to the mass extinction. We aim to identify the initial triggers of various geological events by analyzing the sedimentary record. Full article
Show Figures

Figure 1

19 pages, 15362 KiB  
Article
Deep Tectonic Environment Analysis of the Lingshan Conjugate Earthquake within the Qinzhou Fold Belt, South China: Insights Derived from 3D Resistivity Structure Model
by Chunheng Yan, Bin Zhou, Yan Zhan, Xiangyu Sun, Sha Li, Lei Li and Peilan Guo
Remote Sens. 2024, 16(19), 3740; https://doi.org/10.3390/rs16193740 - 9 Oct 2024
Viewed by 1664
Abstract
The Qinzhou fold belt, situated at the contact zone between the Yangtze and Cathaysia blocks in South China, was affected by the 1936 Lingshan M6¾ earthquake and the 1958 Lingshan M5¾ earthquake, both of which occurred within the conjugate structure. Understanding the deep [...] Read more.
The Qinzhou fold belt, situated at the contact zone between the Yangtze and Cathaysia blocks in South China, was affected by the 1936 Lingshan M6¾ earthquake and the 1958 Lingshan M5¾ earthquake, both of which occurred within the conjugate structure. Understanding the deep seismogenic setting and causal mechanism of the Lingshan conjugate earthquake is of great significance for assessing the seismic disaster risk in the region. In this study, we utilized 237 magnetotelluric datasets and employed three-dimensional electromagnetic inversion to characterize the deep-seated three-dimensional resistivity structure of the Qinzhou fold belt and the Lingshan seismic zone. The results reveal that: (1) The NE-trending faults within the Qinzhou fold belt and adjacent areas are classified as trans-crustal faults. The faults exhibit crust-mantle ductile shear zones in their deeper sections, which are essential in governing regional tectonic deformation and seismic activity; (2) The electrical structure of the Qinzhou fold belt is in line with the tectonic characteristics of a composite orogenic belt, having experienced several phases of tectonic modification. The southeastern region is being influenced by mantle-derived magmatic activities originating from the Leiqiong area over a significant distance; (3) In the Lingshan seismic zone, the NE-trending Fangcheng-Lingshan fault is a trans-crustal fault and the NW-trending Zhaixu fault is an intra-crustal fault. The electrical structure pattern “two low, one high” in the zone has a significant impact on the deep tectonic framework of the area and influences the deformation behavior of shallow faults; and (4) The seismogenic structure of the 1936 Lingshan M6¾ earthquake was the Fangcheng-Lingshan fault. The earthquake’s genesis was influenced by the coupling effect of tectonic stress and deep thermal dynamics. The seismogenic structure of the 1958 Lingshan M5¾ earthquake was the Zhaixu fault. The earthquake’s genesis was influenced by tectonic stress and static stress triggering from the 1936 Lingshan M6¾ earthquake. The conjugate rupture mode in the Lingshan seismic zone is influenced by various factors, including differences in physical properties, rheology of deep materials, and the scale and depth of fault development. Full article
Show Figures

Figure 1

19 pages, 7085 KiB  
Article
In-Situ Geochemical and Rb–Sr Dating Analysis of Sulfides from a Gold Deposit Offshore of Northern Sanshandao, Jiaodong Peninsula, North China: Implications for Gold Mineralization
by Jiepeng Tian, Jinhui Wang, Tongliang Tian, Ligong Wang, Yingpeng Wang, Xiaowei Yu, Wen Zhang, Tianlong Ren and Bin Sun
Minerals 2024, 14(5), 456; https://doi.org/10.3390/min14050456 - 26 Apr 2024
Cited by 1 | Viewed by 1423
Abstract
The gold deposit offshore of Northern Sanshandao is an ultra-large-scale gold deposit discovered in the Jiaodong ore area in recent years. This deposit is a fractured-zone altered-rock-type gold deposit; however, its ore genesis and precise mineralization processes are still highly controversial. Based on [...] Read more.
The gold deposit offshore of Northern Sanshandao is an ultra-large-scale gold deposit discovered in the Jiaodong ore area in recent years. This deposit is a fractured-zone altered-rock-type gold deposit; however, its ore genesis and precise mineralization processes are still highly controversial. Based on petrographical observation, the trace elements, sulfur isotopes, and rubidium–strontium isotopes of the gold-bearing pyrite were analyzed using LA-MC-ICP-MS to obtain the source of the ore-forming fluids and ore genesis. The results show that Au has a good positive correlation with Ag, As, and Cu. It is speculated that the As in the pyrite of the gold deposit offshore of Northern Sanshandao is in the form of As, replacing S and entering the pyrite, causing its lattice defects, and thus promoting the entry of Au+ into the gold-bearing pyrite. The Co/Ni ratios mainly range between 0.1 and 10, indicating that the mineralization process has experienced different forms of hydrothermal evolution and the mixing of different fluids. The results of the in-situ sulfur isotope analysis show that pyrite δ34S in the mineralization period is characterized by a high sulfur value. The authors of this study believe that the initial sulfur isotope composition has mantle-derived components. The large-scale, deep cutting, and high degree of fragmentation in the Sanshandao fault zone are conducive to the interaction between fluids and rocks, as well as the mixing and addition of seawater, resulting in the characteristic high δ34S value. The Sr isotopic compositions indicate a crust–mantle mixing attribute of the mineralized material source. The Rb–Sr isochron age of the pyrite is 118.5 ± 0.65 Ma, which represents the age of gold mineralization. According to the characteristics of the trace elements and sulfur isotopes, it is inferred that the gold deposit minerals offshore of Northern Sanshandao originated from deep magmatic-hydrothermal reservoirs, and the mixing of seawater and Au–As-rich hydrothermal fluids was the formation mechanism of huge amounts of gold precipitation. Full article
Show Figures

Figure 1

22 pages, 6645 KiB  
Article
Mineral Chemistry of Olivine, Oxy-Spinel, and Clinopyroxene in Lavas and Xenoliths from the Canary, Azores, and Cape Verde Islands (Macaronesia, North Atlantic Ocean): New Data and Comparisons with the Literature
by Federica Zaccarini, Giorgio Garuti, Reinhard Moser, Constantinos Mavrogonatos, Panagiotis Voudouris, Adriano Pimentel and Sabrina Nazzareni
Minerals 2024, 14(2), 161; https://doi.org/10.3390/min14020161 - 1 Feb 2024
Viewed by 3026
Abstract
An electron microprobe study was carried out on olivine, clinopyroxene, and oxy-spinel occurring in basalts and dunite xenoliths from the archipelagos of the Azores, the Canary Islands, and Cape Verde. By comparing our results with previously published data from the volcanic islands of [...] Read more.
An electron microprobe study was carried out on olivine, clinopyroxene, and oxy-spinel occurring in basalts and dunite xenoliths from the archipelagos of the Azores, the Canary Islands, and Cape Verde. By comparing our results with previously published data from the volcanic islands of Macaronesia, we confirmed the validity of the compositions of olivine, clinopyroxene, and oxy-spinel as geochemical tracers. The origin of olivine, i.e., crystallized in the lithospheric mantle or in volcanic rocks, was successfully discriminated. Olivine from Lanzarote dunite xenoliths, which represent fragments of the mantle transported to the surface by host magmas, exhibited higher Fo% values (Fo91.02 to Fo91.94) and a different distribution of minor elements Ca, Ni, and Mn (CaO up to 0.42 wt%, NiO 0.07–0.41 wt%, MnO 0.06–0.3 wt%) when compared with olivine occurring as phenocrysts in basaltic lavas from the Macaronesian islands. The highly variable forsterite contents (Fo75.1 to Fo94.4) in olivine from gabbro and peridotite xenoliths found across the islands of Macaronesia were attributed to fractional crystallization that started in a deep magma reservoir, suggesting that these xenoliths represent cumulate rocks and not mantle fragments. Alternatively, these xenoliths may have been affected by the interaction with metasomatic fluids. The composition of clinopyroxene phenocrysts was used to decipher formation conditions under extensional tectonics. Their composition suggests that the host lavas have an alkaline to calc-alkaline signature. Furthermore, clinopyroxene euhedral shapes and compositions suggest an origin by fractional crystallization in a closed magmatic system. The composition alone of oxy-spinel from Macaronesian basalts and xenoliths was not sufficient to draw conclusions about the geodynamic environment where they were formed. Nevertheless, the relationship between oxy-spinel and olivine crystallized in equilibrium was successfully used as oxybarometers and geothermometers. The oxy-spinel–olivine pairs show evidence that the basaltic lavas were crystallized from melts with higher oxygen fugacity and different cooling histories than those of the mantle xenoliths, as the latter crystallized and re-equilibrated much slower than the basalts. Full article
(This article belongs to the Special Issue Submarine Volcanism, Related Hydrothermal Systems and Mineralizations)
Show Figures

Figure 1

31 pages, 9838 KiB  
Article
Genesis of the Supergiant Shuangjianzishan Ag–Pb–Zn Deposit in the Southern Great Xing’an Range, NE China: Constraints from Geochronology, Isotope Geochemistry, and Fluid Inclusion
by Jiangpeng Shi, Guang Wu, Gongzheng Chen, Fei Yang, Tong Zhang, Biao Jiang and Wenyuan Liu
Minerals 2024, 14(1), 60; https://doi.org/10.3390/min14010060 - 3 Jan 2024
Cited by 5 | Viewed by 1779
Abstract
The supergiant Shuangjianzishan (SJS) Ag–Pb–Zn deposit, located in the southern Great Xing’an Range (SGXR), is the largest Ag deposit in China. The SJS deposit can be divided into two ore blocks: the Shuangjianzishan ore block and the Xinglongshan ore block. Given the importance [...] Read more.
The supergiant Shuangjianzishan (SJS) Ag–Pb–Zn deposit, located in the southern Great Xing’an Range (SGXR), is the largest Ag deposit in China. The SJS deposit can be divided into two ore blocks: the Shuangjianzishan ore block and the Xinglongshan ore block. Given the importance of the Xinglongshan ore block in the SJS deposit, our work is focused on the Xinglongshan ore block. The vein orebodies in the Xionglongshan ore block mainly occur in the NW-, NNW-, and NNE-trending fault zones, and its mineralization is mainly related to a deep concealed syenogranite. Here, we present new geochronology, isotope geochemistry, and fluid inclusion data for the Xinglongshan ore block and provide additional insights into the metallogenic mechanism of the deposit. The dating results show that the syenogranite related to the mineralization formed at approximately 137 Ma, which is coherent with some previous age determinations in sulfides from the ore deposit. The mineralization of the Xinglongshan ore block can be divided into four stages: sphalerite–arsenopyrite–pyrite–chalcopyrite–quartz stage (stage I), sphalerite–galena–pyrite–silver-bearing mineral–quartz stage (stage II), sphalerite–galena–silver-bearing mineral–quartz–calcite stage (stage III), and weakly mineralized quartz–calcite stage (stage IV). Four types of fluid inclusions (FIs) have been identified within quartz and calcite veins: liquid-rich, gas-rich, pure-liquid, and pure-gas FIs. The homogenization temperatures in the four stages exhibit a gradual decrease, with stage I ranging from 253 to 302 °C, stage II from 203 to 268 °C, stage III from 184 to 222 °C, and stage IV from 153 to 198 °C, respectively. The salinity for stages I, II, III, and IV falls within the ranges of 3.4–6.6 wt% NaCl eqv., 2.6–7.2 wt% NaCl eqv., 2.9–7.0 wt% NaCl eqv., and 1.2–4.8 wt% NaCl eqv., respectively, indicative of a low-salinity ore-forming fluid. The δ18Owater and δD values of the ore-forming fluid span from −13.9‰ to 7.4‰ and −145‰ to −65‰, with δ13CV-PDB values between −11.0‰ and −7.9‰. These values suggest that the ore-forming fluid predominantly originated from a mixture of magmatic and meteoric water. The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of sulfides range from 18.278 to 18.361, 15.530 to 15.634, and 38.107 to 38.448, respectively. These ratios imply that the ore-forming material was primarily derived from the Early Cretaceous granitic magma, which resulted from the mixing of depleted mantle- and crustal-derived magmas. The fluid mixing was the dominant mechanism for mineral precipitation. The Xinglongshan ore block belongs to a magmatic-hydrothermal vein-type deposit related to the Early Cretaceous syenogranite, and the Shuangjianzishan ore block belongs to an intermediate sulfidation epithermal deposit related to coeval subvolcanic rocks. The Ag–Pb–Zn mineralization at Shuangjianzishan is genetically related to the Early Cretaceous volcanic–intrusive complex. Full article
(This article belongs to the Special Issue Genesis and Evolution of Pb-Zn-Ag Polymetallic Deposits)
Show Figures

Figure 1

16 pages, 5079 KiB  
Article
Diamonds Discovered in the Forearc Harzburgites Hint at the Deep Mantle Source of the Skenderbeu Massif, Western Mirdita Ophiolite
by Weiwei Wu, Jingsui Yang, Yu Yang, Ibrahim Milushi and Yun Wang
Minerals 2024, 14(1), 34; https://doi.org/10.3390/min14010034 - 28 Dec 2023
Viewed by 1676
Abstract
The ultra-deep genesis of ophiolitic peridotite has reshaped our perception of the genesis of the oceanic mantle. Although ultra-high pressure (UHP) mineral assemblages have been unearthed in dozens of ophiolites in different orogenic belts around the world, the vast majority of them have [...] Read more.
The ultra-deep genesis of ophiolitic peridotite has reshaped our perception of the genesis of the oceanic mantle. Although ultra-high pressure (UHP) mineral assemblages have been unearthed in dozens of ophiolites in different orogenic belts around the world, the vast majority of them have been limited to podiform chromitites formed in suprasubduction zone (SSZ) settings, leaving uncertainty about whether such UHP minerals are intrinsic to the oceanic mantle or influenced by a specific mantle rock type. Here, we report on the occurrence of diamonds recovered from the harzburgites within the Skenderbeu massif, Mirdita ophiolite. The whole-rock, mineralogical major and trace element compositions, and redox states of the harzburgites align with modern abyssal harzburgites. Trace element modeling of clinopyroxene indicates that harzburgites have endured varying degrees of garnet-facies melting (~2%–5%) before progressing to spinel-facies melting (~10%–12%). Mineralogical characteristics further support that the Skenderbeu harzburgites underwent late-period MORB-like melt metasomatism in a forearc spreading center. An unusual mineral assemblage of diamonds has been separated from the studied harzburgites. The first occurrence of ophiolite-hosted diamonds discovered in the forearc harzburgites, together with previous similar discoveries in the SSZ ophiolitic chromitites, suggest that the ophiolite-hosted diamonds are not specific to certain mantle rocks. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

Back to TopTop