Mineralogy and Petrology of Ultrapotassic Lamprophyre Dykes in the Bangbule Area, Xizang, China: Evidence for Open Magma Chamber Fractionation and Mafic Magma Recharge
Abstract
:1. Introduction
2. Geological Setting
3. Petrography
4. Analytical Methods
4.1. Whole-Rock Geochemical Analysis
4.2. Whole-Rock Sr–Nd Isotopic Analysis
4.3. Mica 40Ar-39Ar Dating
4.4. Mineral Chemical Analysis and X-Ray Elemental Maps
5. Results
5.1. Major and Trace Elements
5.2. 40Ar-39Ar Geochronology
5.3. Whole-Rock Sr–Nd Isotopes
5.4. Mineral Compositions
5.5. T-P Conditions
6. Discussion
6.1. Crustal Contamination
6.2. Nature of the Source Region
6.3. Petrogenesis
6.3.1. Fractional Crystallization
6.3.2. Magma Replenishment and Mixing
6.4. Implications for Ore Genesis of Porphyry Deposit in Gangdese
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mo, X.X.; Niu, Y.L.; Dong, G.C.; Zhao, Z.D.; Hou, Z.Q.; Zhou, S.; Ke, S. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chem. Geol. 2008, 250, 49–67. [Google Scholar]
- Chen, J.S.; Huang, B.C.; Sun, L.S. New constraints to the onset of the India-Asia collision: Paleomagnetic reconnaissance on the Linzizong Group in the Lhasa Block, China. Tectonophysics 2010, 489, 189–209. [Google Scholar]
- Gibbons, A.D.; Zahirovic, S.; Müller, R.D.; Whittaker, J.M.; Yatheesh, V. A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys. Gondwana Res. 2015, 28, 451–492. [Google Scholar]
- Westerweel, J.; Roperch, P.; Licht, A.; Dupont-Nivet, G.; Win, Z.; Poblete, F.; Ruffet, G.; Swe, H.H.; Thi, M.K.; Aung, D.W. Burma Terrane part of the Trans-Tethyan arc during collision with India according to palaeomagnetic data. Nat. Geosci. 2019, 12, 863. [Google Scholar]
- Kapp, P.; DeCelles, P.G.; Gehrels, G.E.; Heizier, M.; Ding, L. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geol. Soc. Am. Bull. 2007, 119, 917–933. [Google Scholar]
- Tan, X.D.; Gilder, S.; Kodama, K.P.; Jiang, W.; Han, Y.L.; Zhang, H.; Xu, H.H.; Zhou, D. New paleomagnetic results from the Lhasa block: Revised estimation of latitudinal shortening across Tibet and implications for dating the India-Asia collision. Earth Planet. Sci. Lett. 2010, 293, 396–404. [Google Scholar]
- Hu, X.M.; Wang, J.G.; BouDagher-Fadel, M.; Garzanti, E.; An, W. New insights into the timing of the India-Asia collision from the Paleogene Quxia and Jialazi formations of the Xigaze forearc basin, South Tibet. Gondwana Res. 2016, 32, 76–92. [Google Scholar]
- Owen, J.P. Geochemistry of lamprophyres from the Western Alps, Italy: Implications for the origin of an enriched isotopic component in the Italian mantle. Contrib. Mineral. Petrol. 2008, 155, 341–362. [Google Scholar]
- Huang, F.; Chen, J.L.; Xu, J.F.; Wang, B.D.; Li, J. Os–Nd–Sr isotopes in Miocene ultrapotassic rocks of southern Tibet: Partial melting of a pyroxenite-bearing lithospheric mantle? Geochim. Cosmochim. Acta 2015, 163, 279–298. [Google Scholar] [CrossRef]
- Pandey, A.; Rao, N.V.C.; Chakrabarti, R.; Pankaj, P.; Pandit, D.; Pandey, R.; Sahoo, S. Post-collisional talc-alkaline lamprophyres from the Kadiri greenstone belt: Evidence for the Neoarchean convergence-related evolution of the Eastern Dharwar Craton and its schist belts. Lithos 2018, 320, 105–117. [Google Scholar]
- Ubide, T.; Mollo, S.; Zhao, J.X.; Nazzari, M.; Scarlato, P. Sector-zoned clinopyroxene as a recorder of magma history, eruption triggers, and ascent rates. Geochim. Cosmochim. Acta 2019, 251, 265–283. [Google Scholar]
- Humphreys, M.C.S.; Blundy, J.D.; Sparks, R.S.J. Magma evolution and open system processes at Shiveluch Volcano: Insights from phenocryst zoning. J. Petrol. 2006, 47, 2303–2334. [Google Scholar]
- Xing, C.M.; Wang, C.Y. Periodic mixing of magmas recorded by oscillatory zoning of the clinopyroxene macrocrysts from an ultrapotassic lamprophyre dyke. J. Petrol. 2020, 61, egaa103. [Google Scholar]
- Nomade, S.; Renne, P.R.; Mo, X.X.; Zhao, Z.D.; Zhou, S. Miocene volcanism in the Lhasa block, Tibet: Spatial trends and geodynamic implications. Earth Planet. Sci. Lett. 2004, 221, 227–243. [Google Scholar]
- Foley, S. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos 1992, 28, 435–453. [Google Scholar]
- Yang, Z.M.; Goldfarb, R.; Chang, Z.S. Generation of Postcollisional Porphyry Copper Deposits in Southern Tibet Triggered by Subduction of the Indian Continental Plate; Special Publication 19; Society of Economic Geologists: Denver, CO, USA, 2016; pp. 279–300. [Google Scholar]
- Zindler, A.; Hart, S.R. Chemical geodynamics. Annu. Rev. Earth Plant. Sci. 1986, 14, 493–571. [Google Scholar]
- Miller, C.; Thöni, M.; Frank, W.; Schuster, R.; Melcher, F.; Meisel, T.; Zanetti, A. Geochemistry and tectonomagmatic affinity of the Yungbwa ophiolite, SW Tibet. Lithos 2003, 66, 155–172. [Google Scholar]
- Xu, J.F.; Castillo, P.R. Geochemical and Nd–Pb isotopic characteristics of the Tethyan asthenosphere: Implications for the origin of the Indian Ocean mantle domain. Tectonophysics 2004, 393, 9–27. [Google Scholar]
- Mahoney, J.J.; Frei, R.; Tejada, M.L.G.; Mo, X.X.; Leat, P.T.; Nagler, T.F. Tracing the Indian Ocean mantle domain through time: Isotopic results from old West Indian, East Tethyan, and South Pacific seafloor. J. Petrol. 2005, 39, 1285–1306. [Google Scholar]
- Yin, A.; Harrison, T.M. Geologic evolution of the Himalayan-Tibetan Orogen. Annu. Rev. Earth Planet. Sci. 2000, 28, 211–280. [Google Scholar]
- Hou, Z.Q.; Cook, N.J. Metallogenesis of the Tibetan collisional orogen: A review and introduction to the special issue. Ore Geol. Rev. 2009, 36, 2–24. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Yang, Z.M.; Qu, X.M.; Meng, X.G.; Li, Z.Q.; Beaudoin, G.; Rui, Z.Y.; Gao, Y.F.; Zaw, K. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geol. Rev. 2009, 36, 25–31. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, Z.; Zhu, D.C.; Niu, Y.; DePaolo, D.J.; Harrison, T.M.; Mo, X.; Dong, G.; Zhou, S.; Sun, C.; et al. Postcollisional potassic and ultrapotassic rocks in southern Tibet: Mantle and crustal origins in response to India–Asia collision and convergence. Geochim. Cosmochim. Acta 2014, 143, 207–231. [Google Scholar]
- Zhu, D.C.; Zhao, Z.D.; Niu, Y.; Mo, X.X.; Chung, S.-L.; Hou, Z.Q.; Wang, L.Q.; Wu, F.Y. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth Planet. Sci. Lett. 2011, 301, 241–255. [Google Scholar]
- Guo, Z.F.; Wilson, M.; Zhang, M.L.; Cheng, Z.H.; Zhang, L.H. Post-collisional ultrapotassic mafic magmatism in south Tibet: Products of partial melting of pyroxenite in the mantle wedge induced by roll-back and delamination of the subducted Indian continental lithosphere slab. J. Petrol. 2015, 56, 1365–1406. [Google Scholar] [CrossRef]
- Pan, G.T.; Wang, L.Q.; Li, R.S.; Yuan, S.H.; Ji, W.H.; Yin, F.G.; Zhang, W.P.; Wang, B.D. Tectonic evolution of the Qinghai-Tibet Plateau. J. Asian Earth Sci. 2012, 53, 3–14. [Google Scholar] [CrossRef]
- Zhu, D.C.; Zhao, Z.D.; Niu, Y.; Dilek, Y.; Hou, Z.Q.; Mo, X.X. Origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res. 2013, 23, 1429–1454. [Google Scholar]
- Pan, G.T.; Ding, J.; Yao, D.S.; Wang, L.Q. Guidebook of 1:1500000 Geologic Map of the Qinghai–Xizang (Tibet) Plateau and Adjacent Areas; Chengdu Cartographic Publishing House: Chengdu, China, 2004; pp. 1–48. [Google Scholar]
- Chen, Y.; Zhu, D.C.; Zhao, Z.D.; Meng, F.Y.; Wang, Q.; Santosh, M.; Wang, L.Q.; Dong, G.C.; Mo, X.X. Slab break off triggered ca. 113 Ma magmatism around Xainza area of the Lhasa Terrane, Tibet. Gondwana Res. 2014, 26, 449–463. [Google Scholar]
- Kapp, P.; Yin, A.; Harrison, T.M.; Ding, L. Cretaceous–Tertiary shortening, basin development, and volcanism in central Tibet. Geol. Soc. Am. Bull. 2005, 117, 865–878. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, Z.M.; Liu, F.; Wang, W.; Yu, F.; Shen, K. Zircon U-Pb geochronology of the Nyainqêntanglha Group from the Lhasa terrane: New constraints on the Triassic orogeny of the south Tibet. J. Asian Earth Sci. 2011, 42, 732–739. [Google Scholar] [CrossRef]
- Williams, H.M.; Turner, S.P.; Pearce, J.A.; Kelley, S.P.; Harris, N.B.W. Nature of the source regions for postcollisional, potassic magmatism in southern and northern Tibet from geochemical variations and inverse trace element modelling. J. Petrol. 2004, 45, 555–607. [Google Scholar] [CrossRef]
- Williams, H.; Turner, S.; Kelley, S.; Harris, N. Age and composition of dikes in southern Tibet: New constraints on the timing of east–west extension and its relationship to postcollisional volcanism. Geology 2001, 29, 339–342. [Google Scholar] [CrossRef]
- Zhao, Z.D.; Mo, X.X.; Dilek, Y.; Niu, Y.; DePaolo, D.J.; Robinson, P.; Zhu, D.C.; Sun, C.G.; Dong, G.C.; Zhou, S.; et al. Geochemical and Sr–Nd–Pb–O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos 2009, 113, 190–212. [Google Scholar] [CrossRef]
- Li, W.K.; Yang, Z.M.; Chiaradia, M.; Zhou, L.M.; Hou, Z.Q. Enrichment nature of ultrapotassic rocks in southern Tibet inherited from their mantle source. J. Petrol. 2021, 62, egab060. [Google Scholar] [CrossRef]
- He, C.K.; Wang, Y.; Wang, H.Y.; Tang, J.X.; Yan, P.G.; Wang, Y.Q.; Fu, X.L.; Feng, Y.P. Geochronology, geochemistry and petrogenesis of the Bangbule quartz porphyry: Implications for the ore genesis. Acta Geol. Sin. Engl. Ed. 2023, 97, 744–758. [Google Scholar] [CrossRef]
- Steiger, R.H.; Jager, E. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett. 1977, 36, 359–362. [Google Scholar] [CrossRef]
- Koppers, A.A.P. ArArCALC—Software for 40Ar/39Ar age calculations. Comput. Geosci. 2002, 28, 605–619. [Google Scholar] [CrossRef]
- Zhou, Y.W.; Yang, Z.M.; Zhou, L.M. Prospects of the origin and evolution of chlorine in collisional porphyry copper deposits. Acta Petrol. Mineral. 2023, 42, 417–441, (In Chinese with English abstract). [Google Scholar]
- Wang, R.; Luo, C.H.; Sun, W.J.; Liu, Y.C.; Zhang, J.B. Progresses in the Study of High Magmatic Water and Oxidation State of Post-Collisional Magmas in the Gangdese Porphyry Deposit Belt. Bull. Mineral. Petrol. Geochem. 2021, 40, 1061–1077, (In Chinese with English abstract). [Google Scholar]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. Treatise Geochem. 2003, 3, 1–64. [Google Scholar]
- Le Maitre, R.W. Igneous Rocks: A Classification and Glossary of Terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks; Cambridge University Press: Cambridge, UK, 2002; Volume 208. [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts, implications for mantle composition and processes. Geo. Soc. Lond. Spec. Pub. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Mahoney, J.J.; Mo, X.X.; Ghazi, A.M.; Milani, L.; Crawford, A.J.; Guo, T.Y.; Zhao, Z.D. Evidence for a widespread Tethyan upper mantle with Indian–Oceantype isotopic characteristics. J. Petrol. 2005, 46, 829–858. [Google Scholar] [CrossRef]
- Niu, X.L.; Zhao, Z.D.; Mo, X.X.; DePaolo, D.J.; Dong, G.C.; Zhang, S.Q.; Zhu, D.C.; Guo, T.Y. Elemental and Sr–Nd–Pb isotopic geochemistry for basic rocks from Decun–Angren ophiolites in the Xigaze area, Tibet: Implications for the characteristics of the Tethyan upper mantle domain. Acta Petrol. Sin. 2006, 22, 2875–2888, (In Chinese with English abstract). [Google Scholar]
- Miller, C.; Schuster, R.; Klötzli, U.; Frank, W.; Purtscheller, F. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr–Nd–Pb–O isotopic constraints for mantle source characteristics and petrogenesis. J. Petrol. 1999, 40, 1399–1424. [Google Scholar]
- Harris, N.B.W.; Xu, R.; Lewis, C.L.; Hawkesworth, C.J.; Zhang, Y. Isotope geochemistry of the 1985 Tibet Geotraverse, Lhasa to Golmud. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1988, 327, 263–285. [Google Scholar]
- Morimoto, N. Nomenclature of pyroxenes. Mineral. J. 1989, 14, 198–221. [Google Scholar] [CrossRef]
- Smith, J.V. Feldspar Minerals: Crystal Structure and Physical Properties; Springer: Berlin/Heidelberg, Germany, 1974; Volume 1, p. 318. [Google Scholar]
- Putirka, K.D. Thermometers and barometers for volcanic systems. Reviews in REV Mineral. Geochem. 2008, 9, 61–120. [Google Scholar]
- Li, X.; Zhang, C. Machine learning thermobarometry for biotite-bearing magmas. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024137. [Google Scholar]
- Adam, J.; Green, T. Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour. Contrib. Mineral. Petrol. 2006, 152, 1–17. [Google Scholar]
- Furman, T.; Graham, D. Erosion of lithospheric mantle beneath the East African Rift system: Geochemical evidence from the Kivu volcanic province. Dev. Geotecton. 1999, 24, 237–262. [Google Scholar]
- Reider, M.; Cavazzini, G.; D’yakonov, Y.S.; Frank-Kamenetskii, V.A.; Gottardi, G.; Guggenheim, S.; Koval, P.V.; Muller, G.; Neiva, A.M.R.; Radoslovich, E.W.; et al. Nomenclature of the micas. Mineral. Mag. 1999, 63, 267–279. [Google Scholar] [CrossRef]
- Rock, N.M.S. Lamprophyres; Blackie: Glasgow, UK, 1991; 285p. [Google Scholar]
- Salters, V.J.M.; Stracke, A. Composition of the depleted mantle. Geochem. Geophys. Geosyst. 2004, 5, Q05B07. [Google Scholar] [CrossRef]
- Willbold, M.; Stracke, A. Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust. Geochem. Geophys. Geosyst. 2006, 7, Q04004. [Google Scholar] [CrossRef]
- Tian, S.H.; Yang, Z.S.; Hou, Z.Q.; Mo, X.X.; Hu, W.J.; Zhao, Y.; Zhao, X.Y. Subduction of the Indian lower crust beneath southern Tibet revealed by the post-collisional potassic and ultrapotassic rocks in SW Tibet. Gondwana Res. 2017, 41, 29–50. [Google Scholar] [CrossRef]
- Zhao, L.; Guo, F.; Fan, W.M.; Huang, M.W. Roles of subducted pelagic and terrigenous sediments in Early Jurassic mafic magmatism in NE China: Constraints on the architecture of Paleo-Pacific subduction zone. J. Geophys. Res. Solid Earth 2019, 124, 2525–2550. [Google Scholar] [CrossRef]
- Kirchenbaur, M.; Münker, C. The behaviour of the extended HFSE group (Nb, Ta, Zr, Hf, W, Mo) during the petrogenesis of mafic K-rich lavas: The Eastern Mediterranean case. Geochim. Cosmochim. Acta 2015, 165, 178–199. [Google Scholar] [CrossRef]
- Price, R.C.; Stewart, R.B.; Woodhead, J.D.; Smith, I.E.M. Petrogenesis of high-K arc magmas: Evidence from Egmont volcano, North Island, New Zealand. J. Petrol. 1999, 40, 167–197. [Google Scholar] [CrossRef]
- Ubide, T.; Gale, C.; Arranz, E.; Lago, M.; Larrea, P. Clinopyroxene and amphibole crystal populations in a lamprophyre sill from the Catalonian Coastal Ranges (NE Spain): A record of magma history and a window to mineral-melt partitioning. Lithos 2014, 184, 225–242. [Google Scholar] [CrossRef]
- Sharma, A.; Pandey, R.; Rao, N.V.C.; Sahoo, S.; Belyatsky, B.; Dhote, P. Mineralogy and petrology of lamprophyre and dolerite dykes from the end-Cretaceous (~66 Ma) Phenaimata alkaline igneous complex, north-western India: Evidence for open magma chamber fractionation, mafic recharge, and disaggregation of crystal mush zone in a large igneous province. Mineral. Petrol. 2023, 117, 415–445. [Google Scholar]
- Chen, L.; Zheng, Y.F.; Zhao, Z.F. Geochemical insights from clinopyroxene phenocrysts into the effect of magmatic processes on petrogenesis of intermediate volcanics. Lithos 2018, 316, 137–153. [Google Scholar] [CrossRef]
- Streck, M.J. Mineral textures and zoning as evidence for open system processes. Rev. Mineral. Geochem. 2008, 69, 595–622. [Google Scholar] [CrossRef]
- Tecchiato, V.; Gaeta, M.; Mollo, S.; Bachmann, O.; von Quadt, A.; Scarlato, P. Snapshots of primitive arc magma evolution recorded by clinopyroxene textural and compositional variations: The case of hybrid crystal-rich enclaves from Capo Marargiu Volcanic District (Sardinia, Italy). Am. Mineral. 2018, 103, 899–910. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Zeng, Z.G.; Gaetani, G.; Zhang, L.; Lai, Z.Q. Mineralogical constraints on the magma mixing beneath the Iheya Graben, an active back-arc spreading centre of the Okinawa trough. J. Petrol. 2020, 61, egaa098. [Google Scholar] [CrossRef]
- Neave, D.A.; MacLennan, J. Clinopyroxene dissolution records rapid magma ascent. Front. Earth Sci. 2020, 8, 188. [Google Scholar] [CrossRef]
- Yang, Z.M.; Lu, Y.J.; Hou, Z.Q.; Chang, Z.S. High-Mg Diorite from Qulong in Southern Tibet: Implications for the Genesis of Adakite-like Intrusions and Associated Porphyry Cu Deposits in Collisional Orogens. J. Petrol. 2015, 56, 2227–2254. [Google Scholar] [CrossRef]
- Sun, X.; Lu, Y.J.; McCuaig, T.C.; Zheng, Y.Y.; Chang, H.F.; Guo, F.; Xu, L.J. Miocene ultrapotassic, high-Mg Dioritic, and adakite-like rocks from Zhunuo in Southern Tibet: Implications for mantle metasomatism and porphyry copper mineralization in collisional orogens. J. Petrol. 2018, 59, 341–386. [Google Scholar] [CrossRef]
- Guo, Z.F.; Wilson, M.; Zhang, M.L.; Cheng, Z.H.; Zhang, L.H. Post-collisional, K-rich mafic magmatism in South Tibet: Constraints on Indian slab-to-wedge transport processes and plateau uplift. Contrib. Mineral. Petrol. 2013, 165, 1311–1340. [Google Scholar] [CrossRef]
Spot Number | Mineral | Crystal Number | Location | P/Kbar | Depth (km) | T/°C | |
---|---|---|---|---|---|---|---|
ZK3502-185.45-C1-1 | Clinopyroxene | Cpx-I | phenocryst 1 | core | 13.4 | 50 | 1207 |
ZK3502-185.45-C1-2 | phenocryst 1 | rim | 14.6 | 55 | 1216 | ||
ZK3502-216.2-C2-01 | phenocryst 2 | core | 15.5 | 58 | 1206 | ||
ZK3502-216.2-C3-02 | phenocryst 3 | core | 14.4 | 54 | 1200 | ||
ZK3502-216.2-C3-03 | phenocryst 3 | core | 13.2 | 50 | 1193 | ||
ZK3502-216.2-C3-04 | phenocryst 3 | core | 13.3 | 50 | 1191 | ||
ZK3502-216.2-C1-01 | phenocryst 4 | rim | 15.1 | 57 | 1203 | ||
ZK3502-216.2-C1-02 | phenocryst 4 | rim | 13.2 | 50 | 1207 | ||
ZK3502-216.2-C1-03 | phenocryst 4 | rim | 13 | 49 | 1201 | ||
ZK3502-216.2-C1-04 | phenocryst 4 | core | 12.6 | 47 | 1195 | ||
ZK3503-347.2-C1-01 | Cpx-II | phenocryst 1 | core | 14.1 | 53 | 1272 | |
ZK3503-347.2-C1-02 | phenocryst 1 | rim | 7.6 | 29 | 1244 | ||
ZK3503-347.2-C1-03 | phenocryst 2 | rim | 7 | 26 | 1259 | ||
ZK3503-347.2-C1-04 | phenocryst 2 | core | 9.5 | 36 | 1269 | ||
ZK3503-347.2-C2-03 | phenocryst 3 | core | 5.3 | 20 | 1252 | ||
ZK3503-347.2-C2-04 | phenocryst 3 | rim | 5.4 | 20 | 1248 | ||
ZK3503-347.2-C3-01 | phenocryst 4 | rim | 6.1 | 23 | 1257 | ||
ZK3503-347.2-C3-02 | phenocryst 4 | rim | 4.4 | 17 | 1220 | ||
ZK3502-185.45-2-01 | Biotite | Mi-I | phenocryst 1 | core | 3.6 | 14 | 835 |
ZK3502-185.45-2-02 | phenocryst 1 | rim | 4 | 15 | 841 | ||
ZK3502-185.45-3-01 | phenocryst 2 | core | 3.7 | 14 | 839 | ||
ZK3502-185.45-3-02 | phenocryst 2 | rim | 2.9 | 11 | 833 | ||
ZK3502-216.2-C2-02 | phenocryst 3 | core | 4.4 | 17 | 832 | ||
ZK3502-216.2-C2-03 | phenocryst 3 | core | 4.2 | 16 | 830 | ||
ZK3502-216.2-C2-04 | phenocryst 3 | core | 4.2 | 16 | 832 | ||
ZK3502-216.2-C3-01 | phenocryst 4 | rim | 4.3 | 16 | 830 | ||
ZK3503-347.2-C1-05 | Mi-II | phenocryst 1 | core | 4.2 | 16 | 992 | |
ZK3503-347.2-C1-06 | phenocryst 2 | core | 4.3 | 16 | 965 | ||
ZK3503-347.2-C1-07 | phenocryst 2 | rim | 5.4 | 20 | 963 | ||
ZK3503-347.2-C2-05 | phenocryst 3 | core | 5.2 | 20 | 971 | ||
ZK3503-347.2-C3-03 | phenocryst 4 | rim | 5.8 | 22 | 884 | ||
ZK3503-347.2-C3-04 | phenocryst 5 | rim | 4.2 | 16 | 851 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, C.; Wang, Y.; Zunzhu, S.; He, C.; Wang, H.; Wang, Y.; Bai, Y.; Yan, P.; Xun, S.; Cao, R.; et al. Mineralogy and Petrology of Ultrapotassic Lamprophyre Dykes in the Bangbule Area, Xizang, China: Evidence for Open Magma Chamber Fractionation and Mafic Magma Recharge. Minerals 2025, 15, 332. https://doi.org/10.3390/min15040332
Hong C, Wang Y, Zunzhu S, He C, Wang H, Wang Y, Bai Y, Yan P, Xun S, Cao R, et al. Mineralogy and Petrology of Ultrapotassic Lamprophyre Dykes in the Bangbule Area, Xizang, China: Evidence for Open Magma Chamber Fractionation and Mafic Magma Recharge. Minerals. 2025; 15(4):332. https://doi.org/10.3390/min15040332
Chicago/Turabian StyleHong, Chenyu, Yong Wang, Sangmu Zunzhu, Chuankai He, Haiyong Wang, Yongqiang Wang, Yun Bai, Penggang Yan, Suaijie Xun, Rui Cao, and et al. 2025. "Mineralogy and Petrology of Ultrapotassic Lamprophyre Dykes in the Bangbule Area, Xizang, China: Evidence for Open Magma Chamber Fractionation and Mafic Magma Recharge" Minerals 15, no. 4: 332. https://doi.org/10.3390/min15040332
APA StyleHong, C., Wang, Y., Zunzhu, S., He, C., Wang, H., Wang, Y., Bai, Y., Yan, P., Xun, S., Cao, R., & Chen, D. (2025). Mineralogy and Petrology of Ultrapotassic Lamprophyre Dykes in the Bangbule Area, Xizang, China: Evidence for Open Magma Chamber Fractionation and Mafic Magma Recharge. Minerals, 15(4), 332. https://doi.org/10.3390/min15040332