Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (798)

Search Parameters:
Keywords = decay of solution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4360 KB  
Article
Research on the CSODC Strategy Based on Impedance Model Prediction and SSO Stability Assessment of DFIGs
by Xiao Wang, Yina Ren, Linlin Wu, Xiaoyang Deng, Xu Zhang and Qun Wang
Appl. Sci. 2025, 15(20), 11218; https://doi.org/10.3390/app152011218 (registering DOI) - 20 Oct 2025
Abstract
As wind power penetration continues to increase, the sub-synchronous control interaction (SSCI) problem caused by the interaction between doubly fed induction generators (DFIGs) and series-compensated transmission lines has become increasingly prominent, posing a serious threat to power system stability. To address this problem, [...] Read more.
As wind power penetration continues to increase, the sub-synchronous control interaction (SSCI) problem caused by the interaction between doubly fed induction generators (DFIGs) and series-compensated transmission lines has become increasingly prominent, posing a serious threat to power system stability. To address this problem, this research proposes a centralized sub-synchronous oscillation damping controller (CSODC) for wind farms. First, a DFIG impedance model was constructed based on multi-operating-point impedance scanning and a Taylor series expansion, achieving impedance prediction with an error of less than 2% under various power conditions. Subsequently, a CSODC comprising a sub-synchronous damping calculator (SSDC) and a power electronic converter is designed. By optimizing feedback signals, phase shift angles, gain parameters, and filter parameters, dynamic adjustment of controllable impedance in the sub-synchronous frequency band is achieved. Frequency-domain impedance analysis demonstrates that the CSODC significantly enhances the system’s equivalent resistance, reversing it from negative to positive at the resonance frequency point. Time-domain simulations validated the CSODC’s effectiveness in scenarios involving series capacitor switching and wind speed disturbances, demonstrating rapid sub-synchronous current decay. The results confirm that the proposed strategy effectively suppresses sub-synchronous oscillations across multiple scenarios, offering an economical and efficient solution to stability challenges in high-penetration renewable energy grids. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

15 pages, 3527 KB  
Article
Time-Fractional Differential Operator Modeling of Contaminant Transport with Adsorption and Decay
by Shuai Yang, Qing Wei, Senlin Xie, Hongwei Zhou and Lu An
Fractal Fract. 2025, 9(10), 671; https://doi.org/10.3390/fractalfract9100671 - 17 Oct 2025
Viewed by 88
Abstract
In this work, the advection-dispersion model (ADM) is time-fractionalized by the exploitation of Atangana-Baleanu (AB) differential operator to describe contaminant transport in a geological environment. Dispersion, adsorption, and decay, which are known as the foremost transport mechanisms, are considered. The exact solutions of [...] Read more.
In this work, the advection-dispersion model (ADM) is time-fractionalized by the exploitation of Atangana-Baleanu (AB) differential operator to describe contaminant transport in a geological environment. Dispersion, adsorption, and decay, which are known as the foremost transport mechanisms, are considered. The exact solutions of the suggested Atangana-Baleanu advection-dispersion models (AB-ADMs) are acquired using Fourier sine transform and Laplace transform. The classical ADMs are demonstrated to be the special limiting cases of the suggested models. The high consistency among the suggested models and experimental data denotes that the AB-ADMs characterize contaminant transport more effectively. Additionally, the corresponding numerical and graphical results are explored to demonstrate the necessity, effectiveness, and suitability of the suggested models. Full article
Show Figures

Figure 1

19 pages, 4980 KB  
Article
Combustion-Synthesized BaAl2O4: Eu2+, Nd3+, Pr3+ Triple-Co-Doped Long-Afterglow Phosphors: Luminescence and Anti-Counterfeiting Applications
by Chuanming Wang, Jigang Wang, Yuansheng Qi, Jindi Hu, Haiming Li, Jianhui Lv, Xiaohan Cheng, Deyu Pan, Zhenjun Li and Junming Li
Nanomaterials 2025, 15(20), 1578; https://doi.org/10.3390/nano15201578 - 16 Oct 2025
Viewed by 189
Abstract
Solution combustion-synthesized BaAl2O4: Eu2+, Nd3+, and Pr3+ blue–green long-afterglow phosphors are prepared and systematically investigated. First, XRD confirms the BaAl2O4 host and screens for trace residual features. SEM reveals the agglomerated [...] Read more.
Solution combustion-synthesized BaAl2O4: Eu2+, Nd3+, and Pr3+ blue–green long-afterglow phosphors are prepared and systematically investigated. First, XRD confirms the BaAl2O4 host and screens for trace residual features. SEM reveals the agglomerated granular morphology typical of combustion products. XPS verifies the valence states (Eu2+, Nd3+, Pr3+) and the chemical environment of the host lattice. UV-Vis diffuse reflectance spectra, transformed via the Kubelka–Munk function and analyzed using Tauc plots (indirect-allowed), indicate a wide band gap of the BaAl2O4 host with small, systematic shifts upon Nd3+/Pr3+ co-doping. PL measurements show Eu2+ 4f–5d emission and co-dopant-assisted excitation/defect pathways without altering the Eu2+ emission band shape. Afterglow lifetime and decay analyses correlate trap depth/distribution with the extended persistence. Finally, we demonstrate anti-counterfeiting by (i) snowflake printing and (ii) a binary 3 × 3 grid printed with two afterglow inks of different lifetimes to realize multi-level authentication. The sequential evidence links structure, chemistry, optical absorption, carrier trapping, and practical readout, providing a coherent basis for performance enhancement and application. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

12 pages, 544 KB  
Article
Ringing of Reissner–Nordström Black Holes with a Non-Abelian Hair in Gravity’s Rainbow
by Mehrab Momennia
Universe 2025, 11(10), 341; https://doi.org/10.3390/universe11100341 - 15 Oct 2025
Viewed by 140
Abstract
In this paper, we consider massless scalar perturbations minimally coupled to gravity in the background spacetime of charged black holes in Yang–Mills theory with gravity’s rainbow modification. We calculate the corresponding quasinormal frequencies by employing the sixth-order Wentzel—Kramers—Brillouin (WKB) approximation for both asymptotically [...] Read more.
In this paper, we consider massless scalar perturbations minimally coupled to gravity in the background spacetime of charged black holes in Yang–Mills theory with gravity’s rainbow modification. We calculate the corresponding quasinormal frequencies by employing the sixth-order Wentzel—Kramers—Brillouin (WKB) approximation for both asymptotically flat and de Sitter (dS) spacetimes. We show that the Yang–Mills modification of the Reissner–Nordström black holes leads to an increase in the real and imaginary parts of frequencies. Furthermore, we find that the perturbations in asymptotically flat spacetime decay faster with more oscillations compared to dS spacetime, and we study the effects of the rainbow functions on the oscillations. Interestingly, we reveal a novel feature of this black hole case study and show that, unlike typical black hole solutions such as Schwarzschild, RN, and Kerr, the higher multipole numbers live longer than the lower ones in both asymptotically flat and dS spacetimes. Furthermore, the reflection and transmission coefficients are explored for Einstein–Maxwell–Yang–Mills black holes, and the results are compared for flat and dS asymptotes. Full article
Show Figures

Figure 1

21 pages, 1922 KB  
Article
Real-Time Detection of LEO Satellite Orbit Maneuvers Based on Geometric Distance Difference
by Aoran Peng, Bobin Cui, Guanwen Huang, Le Wang, Haonan She, Dandan Song and Shi Du
Aerospace 2025, 12(10), 925; https://doi.org/10.3390/aerospace12100925 - 14 Oct 2025
Viewed by 139
Abstract
Low Earth orbit (LEO) satellites, characterized by low altitudes, high velocities, and strong ground signal reception, have become an essential and dynamic component of modern global navigation satellite systems (GNSS). However, orbit decay induced by atmospheric drag poses persistent challenges to maintaining stable [...] Read more.
Low Earth orbit (LEO) satellites, characterized by low altitudes, high velocities, and strong ground signal reception, have become an essential and dynamic component of modern global navigation satellite systems (GNSS). However, orbit decay induced by atmospheric drag poses persistent challenges to maintaining stable trajectories. Frequent orbit maneuvers, though necessary to sustain nominal orbits, introduce significant difficulties for precise orbit determination (POD) and navigation augmentation, especially under complex operational conditions. Unlike most existing methods that rely on Two-Line Element (TLE) data—often affected by noise and limited accuracy—this study directly utilizes onboard GNSS observations in combination with real-time precise ephemerides. A novel time-series indicator is proposed, defined as the geometric root-mean-square (RMS) distance between reduced-dynamic and kinematic orbit solutions, which is highly responsive to orbit disturbances. To further enhance robustness, a sliding window-based adaptive thresholding mechanism is developed to dynamically adjust detection thresholds, maintaining sensitivity to maneuvers while suppressing false alarms. The proposed method was validated using eight representative maneuver events from the GRACE-FO satellites (May 2018–June 2022), successfully detecting seven of them. One extremely short-duration maneuver was missed due to the limited number of usable GNSS observations after quality-control filtering. To examine altitude-related applicability, two Sentinel-3A maneuvers were also analyzed, both successfully detected, confirming the method’s effectiveness at higher LEO altitudes. Since the thrust magnitudes and durations of the Sentinel-3A maneuvers are not publicly available, these cases primarily serve to verify applicability rather than to quantify sensitivity. Experimental results show that for GRACE-FO maneuvers, the proposed method achieves near-real-time responsiveness under long-duration, high-thrust conditions, with an average detection delay below 90 s. For Sentinel-3A, detections occurred approximately 7 s earlier than the reported maneuver epochs, a discrepancy attributed to the 30 s observation sampling interval rather than methodological bias. Comparative analysis with representative existing methods, presented in the discussion section, further demonstrates the advantages of the proposed approach in terms of sensitivity, timeliness, and adaptability. Overall, this study presents a practical, efficient, and scalable solution for real-time maneuver detection in LEO satellite missions, contributing to improved GNSS augmentation, space situational awareness, and autonomous orbit control. Full article
(This article belongs to the Special Issue Precise Orbit Determination of the Spacecraft)
Show Figures

Figure 1

15 pages, 586 KB  
Article
On Probabilistic Convergence Rates of Symmetric Stochastic Bernstein Polynomials
by Shenggang Zhang, Qinjiao Gao and Chungang Zhu
Mathematics 2025, 13(20), 3281; https://doi.org/10.3390/math13203281 - 14 Oct 2025
Viewed by 130
Abstract
This paper analyzes the exponential convergence properties of Symmetric Stochastic Bernstein Polynomials (SSBPs), a novel approximation framework that combines the deterministic precision of classical Bernstein polynomials (BPs) with the adaptive node flexibility of Stochastic Bernstein Polynomials (SBPs). Through innovative applications of order statistics [...] Read more.
This paper analyzes the exponential convergence properties of Symmetric Stochastic Bernstein Polynomials (SSBPs), a novel approximation framework that combines the deterministic precision of classical Bernstein polynomials (BPs) with the adaptive node flexibility of Stochastic Bernstein Polynomials (SBPs). Through innovative applications of order statistics concentration inequalities and modulus of smoothness analysis, we derive the first probabilistic convergence rates for SSBPs across all Lp (1p) norms and in pointwise approximation. Numerical experiments demonstrate dual advantages: (1) SSBPs achieve comparable L errors to BPs in approximating fundamental stochastic functions (uniform distribution and normal density), while significantly outperforming SBPs; (2) empirical convergence curves validate exponential decay of approximation errors. These results position SSBPs as a principal solution for stochastic approximation problems requiring both mathematical rigor and computational adaptability. Full article
(This article belongs to the Special Issue Nonlinear Functional Analysis: Theory, Methods, and Applications)
Show Figures

Figure 1

17 pages, 3870 KB  
Article
Ethephon Treatment Enhanced Postharvest Litchi Fruit Resistance to Peronophythora litchii by Strengthening Antioxidant Capacity and Defense Systems
by Difa Zhu, Tao Luo, Xiaomeng Guo, Jingyi Li, Qiao Li, Yongqi Chen, Wenbo Ou, Dongmei Han and Zhenxian Wu
Foods 2025, 14(20), 3493; https://doi.org/10.3390/foods14203493 - 14 Oct 2025
Viewed by 242
Abstract
Litchi downy blight, caused by Peronophythora litchii, is a major postharvest disease that leads to severe pericarp browning and fruit decay, significantly reducing market quality. Strengthening the fruit’s innate defense systems represents a promising strategy for minimizing these losses. This study investigated [...] Read more.
Litchi downy blight, caused by Peronophythora litchii, is a major postharvest disease that leads to severe pericarp browning and fruit decay, significantly reducing market quality. Strengthening the fruit’s innate defense systems represents a promising strategy for minimizing these losses. This study investigated the efficacy and underlying mechanisms of ethephon treatment in controlling postharvest litchi downy blight. The results showed that treatment with 400 mg·L−1 ethephon solution via a 2-min immersion significantly suppressed P. litchii infection, reduced the disease index and pericarp browning index, and enhanced the rate of ethylene production. Ethephon application notably increased 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, and the activities of key antioxidant and defense-related enzymes, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), chitinase (CHI), β-1,3-glucanase (GLU), and phenylalanine ammonia lyase (PAL). Concurrently, it up-regulated the expression of corresponding genes LcCAT, LcAPX, LcCHI, LcGLU, LcPAL. In contrast, ethephon treatment reduced the accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA). In summary, ethephon treatment suppresses postharvest litchi downy blight likely through the enhancement of both antioxidant and pathogen defense capacities. These findings provide valuable insights into the potential application of ethephon for maintaining postharvest quality in litchi fruit. Full article
Show Figures

Figure 1

18 pages, 613 KB  
Article
Harnessing Quantum Entanglement and Fidelity in Hydrogen Atoms: Unveiling Dynamics Under Dephasing Noise
by Kamal Berrada and Smail Bougouffa
Appl. Sci. 2025, 15(20), 10938; https://doi.org/10.3390/app152010938 - 11 Oct 2025
Viewed by 158
Abstract
We investigate the quantum dynamics of entanglement and fidelity in the hyperfine structure of hydrogen atoms under dephasing noise, modeled via the Lindblad master equation. The effective Hamiltonian captures the spin–spin interaction between the electron and proton, with dephasing incorporated through local Lindblad [...] Read more.
We investigate the quantum dynamics of entanglement and fidelity in the hyperfine structure of hydrogen atoms under dephasing noise, modeled via the Lindblad master equation. The effective Hamiltonian captures the spin–spin interaction between the electron and proton, with dephasing incorporated through local Lindblad operators. Analytical solutions for the time-dependent density matrix are derived for various initial states, including separable, partially entangled, and maximally entangled configurations. Entanglement is quantified using the concurrence, while fidelity measures the similarity between the evolving state and the initial state. Numerical results demonstrate that entanglement exhibits oscillatory decay modulated by the dephasing rate, with anti-parallel spin states displaying greater robustness compared to parallel configurations, often leading to entanglement sudden death. Fidelity dynamics reveal similar damped oscillations, underscoring the interplay between coherent hyperfine evolution and environmental dephasing. These insights elucidate strategies for preserving quantum correlations in atomic systems, with implications for quantum information processing and metrology. Full article
(This article belongs to the Special Issue Quantum Communication and Quantum Information)
Show Figures

Figure 1

10 pages, 419 KB  
Article
Benchmarking the Cumulant Expansion Method Using Dicke Superradiance
by Martin Fasser, Claudiu Genes, Helmut Ritsch and Raphael Holzinger
Photonics 2025, 12(10), 996; https://doi.org/10.3390/photonics12100996 - 10 Oct 2025
Viewed by 190
Abstract
Collective superradiant decay of a tightly packed inverted quantum emitter ensemble is among the most intensely studied phenomena in quantum optics. Since the seminal work of Dicke more than half a century ago, a plethora of theoretical calculations in quantum many-body physics have [...] Read more.
Collective superradiant decay of a tightly packed inverted quantum emitter ensemble is among the most intensely studied phenomena in quantum optics. Since the seminal work of Dicke more than half a century ago, a plethora of theoretical calculations in quantum many-body physics have followed. Widespread experimental efforts range from the microwave to the X-ray regime. Nevertheless, accurate calculations of the time dynamics of the superradiant emission pulse still remain a challenging task requiring approximate methods for large ensembles. Here, we benchmark the cumulant expansion method for describing collective superradiant decay against a newly found exact solution. The application of two variants of the cumulant expansion exhibits reliable convergence of time and magnitude of the maximum emission power with increasing truncation order. The long-term population evolution is only correctly captured for low emitter numbers, where an individual spin-based cumulant expansion proves more reliable than the collective spin-based variant. Surprisingly, odd orders show unphysical behavior. At sufficiently high spin numbers, both chosen cumulant methods agree, but still fail to reliably converge to the numerically exact result. Generally, on longer time scales the expansions substantially overestimate the remaining population. While numerically fast and efficient, cumulant expansion methods need to be treated with sufficient caution when used for long-time evolution or reliably finding steady states. Full article
(This article belongs to the Special Issue Collective Effects in Light-Matter Interactions)
Show Figures

Figure 1

13 pages, 2376 KB  
Article
Enhancing Xylanase and Cellulase Production by Two Locally Isolated Fungal Strains Under Solid-State Fermentation of Water Hyacinth and Sugarcane Bagasse
by Carlos Soltero-Sánchez, Evelyn Romero-Borbón, Nestor David Ortega-de la Rosa, María Angeles Camacho-Ruiz and Jesús Córdova
Fermentation 2025, 11(10), 578; https://doi.org/10.3390/fermentation11100578 - 9 Oct 2025
Viewed by 489
Abstract
This study aimed to isolate and identify fungi capable of producing xylanases and cellulases. Thirty-eight fungal strains were isolated from decaying water hyacinth (WH), and two were selected based on their superior enzyme production under solid-state fermentation (SSF). The strains were identified through [...] Read more.
This study aimed to isolate and identify fungi capable of producing xylanases and cellulases. Thirty-eight fungal strains were isolated from decaying water hyacinth (WH), and two were selected based on their superior enzyme production under solid-state fermentation (SSF). The strains were identified through morphological, cultural, and molecular analyses as Aspergillus austwickii B6 and Trichoderma harzianum M7. Their ribosomal ITS sequences were deposited in GenBank under accession numbers PQ142799.1 for A. austwickii B6 and PQ007458.1 for T. harzianum M7. Enzyme production was evaluated under SSF using eight culture medium variants prepared with natural or pretreated biomasses of WH and sugarcane bagasse (SCB), combined with either NaNO3 or (NH4)2SO4 as nitrogen sources. The maximum xylanase and cellulase activities were 752 and 65 U/g dry matter (DM), respectively, for A. austwickii B6, and 1724 and 152 U/g DM for T. harzianum M7, when cultivated on a low-cost medium composed of pretreated WH, (NH4)2SO4, and a simple mineral salt solution. These findings highlight the potential of locally isolated fungal strains and lignocellulosic residues as cost-effective substrates and inducers of xylanase and cellulase production under SSF and underscore the importance of WH pretreatment to enhance substrate availability and maximize enzyme yields. Full article
(This article belongs to the Special Issue Lignocellulosic Biomass Valorisation, 2nd Edition)
Show Figures

Graphical abstract

24 pages, 1590 KB  
Article
Synthesis of NiCu–Polymeric Membranes for Electro-Oxidizing Ethylene Glycol Molecules in Alkaline Medium
by Ayman Yousef, R. M. Abdel Hameed, Ibrahim M. Maafa and Ahmed Abutaleb
Catalysts 2025, 15(10), 959; https://doi.org/10.3390/catal15100959 - 6 Oct 2025
Viewed by 534
Abstract
Binary metallic nickel–copper nanocatalysts were anchored onto a polyvinylidene fluoride-co-hexafluoropropylene membrane [NiCu/PVdF–HFP] using the electrospinning technique, followed by the chemical reduction of the relevant precursor salts by introducing sodium borohydride to the synthesis mixture. A series of varied Ni:Cu weight % proportions was [...] Read more.
Binary metallic nickel–copper nanocatalysts were anchored onto a polyvinylidene fluoride-co-hexafluoropropylene membrane [NiCu/PVdF–HFP] using the electrospinning technique, followed by the chemical reduction of the relevant precursor salts by introducing sodium borohydride to the synthesis mixture. A series of varied Ni:Cu weight % proportions was developed in order to optimize the electroactivity of this binary nanocomposite towards the investigated oxidation process. A number of physicochemical tools were used to ascertain the morphology and chemical structure of the formed metallic species on polymeric films. Cyclic voltammetric studies revealed a satisfactory performance of altered NiCu/PVdF–HFP membranes in alkaline solution. Ethylene glycol molecules were successfully electro-oxidized at their surfaces, showing the highest current intensity [564.88 μA cm−2] at the one with Ni:Cu weight ratios of 5:5. The dependence of these metallic membranes’ behavior on the added alcohol concentration to the reaction electrolyte and the adjusted scan rate during the electrochemical measurement was carefully investigated. One hundred repeated scans did not significantly deteriorate the NiCu/PVdF–HFP nanostructures’ durability. Decay percentages of 76.90–87.95% were monitored at their surfaces, supporting the stabilized performance for prolonged periods. A much-decreased Rct value was estimated at Ni5Cu5/PVdF–HFP [392.6 Ohm cm2] as a consequence of the feasibility of the electron transfer step for the electro-catalyzing oxidation process of alcohol molecules. These enhanced study results will hopefully motivate the interested workers to explore the behavior of many binary and ternary combinations of metallic nanomaterials after their deposition onto convenient polymeric films for vital electrochemical reactions. Full article
Show Figures

Graphical abstract

38 pages, 2633 KB  
Review
Preservation of Fruit Quality at Postharvest Through Plant-Based Extracts and Elicitors
by Dixin Chen, Li Liu, Zhongkai Gao, Jianshe Zhao, Yingjun Yang and Zhiguo Shen
Horticulturae 2025, 11(10), 1186; https://doi.org/10.3390/horticulturae11101186 - 2 Oct 2025
Viewed by 945
Abstract
Plant-based extracts and elicitors (signaling molecules that activate the fruit’s innate defense responses) have emerged as promising and sustainable alternatives to synthetic chemicals for preserving postharvest fruit quality and extending shelf life. This review provides a comprehensive analysis, uniquely complemented by a bibliometric [...] Read more.
Plant-based extracts and elicitors (signaling molecules that activate the fruit’s innate defense responses) have emerged as promising and sustainable alternatives to synthetic chemicals for preserving postharvest fruit quality and extending shelf life. This review provides a comprehensive analysis, uniquely complemented by a bibliometric assessment of the research landscape from 2005 to 2025, to identify key trends and effective solutions. This review systematically examined the efficacy of various natural compounds including essential oils (complex volatile compounds with potent antimicrobial activity such as lemongrass and thyme), phenolic-rich botanical extracts like neem and aloe vera, and plant-derived elicitors such as methyl jasmonate and salicylic acid. Their preservative mechanisms are multifaceted, involving direct antimicrobial activity by disrupting microbial membranes, potent antioxidant effects that scavenge free radicals, and the induction of a fruit’s innate defense systems, enhancing the activity of enzymes like superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). Applications of edible coatings of chitosan or aloe vera gel, nano-emulsions, and pre- or postharvest treatments effectively reduce decay by Botrytis cinerea and Penicillium spp.), delay ripening by suppressing ethylene production, minimize water loss, and alleviate chilling injury. Despite their potential, challenges such as sensory changes, batch-to-batch variability, regulatory hurdles, and scaling production costs limit widespread commercialization. Future prospects hinge on innovative technologies like nano-encapsulation to improve stability and mask flavors, hurdle technology combining treatments synergistically, and optimizing elicitor application protocols. This review demonstrates the potential of continued research and advanced formulation to create plant-based preservatives, that can become integral components of an eco-friendly postharvest management strategy, effectively reducing losses and meeting consumer demands for safe, high-quality fruit. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Graphical abstract

17 pages, 306 KB  
Article
Global Existence, General Decay, and Blow Up of the Solution to the Coupled p-Biharmonic Equation of Hyperbolic Type with Degenerate Damping Terms
by Nouri Boumaza, Billel Gheraibia, Hongwei Zhang and Zayd Hajjej
Mathematics 2025, 13(19), 3152; https://doi.org/10.3390/math13193152 - 2 Oct 2025
Viewed by 141
Abstract
In this work, we study a nonlinear system of p-Biharmonic hyperbolic equations with degenerate damping and source terms in a bounded domain. Under appropriate assumptions on the initial data and the damping terms, we establish the global existence of solutions. Furthermore, we [...] Read more.
In this work, we study a nonlinear system of p-Biharmonic hyperbolic equations with degenerate damping and source terms in a bounded domain. Under appropriate assumptions on the initial data and the damping terms, we establish the global existence of solutions. Furthermore, we derive a general decay result, and finally, we prove the occurrence of blow-up for solutions with negative initial energy. Full article
(This article belongs to the Section C: Mathematical Analysis)
17 pages, 828 KB  
Article
Quantum Coherence and Mixedness in Hydrogen Atoms: Probing Hyperfine Structure Dynamics Under Dephasing Constraints
by Kamal Berrada and Smail Bougouffa
Symmetry 2025, 17(10), 1633; https://doi.org/10.3390/sym17101633 - 2 Oct 2025
Cited by 1 | Viewed by 356
Abstract
We investigate the quantum dynamics of coherence in the hyperfine structure of hydrogen atoms subjected to dephasing noise, modeled using the Lindblad master equation. The effective Hamiltonian describes the spin–spin interaction between the electron and proton, with dephasing introduced via Lindblad operators. Analytical [...] Read more.
We investigate the quantum dynamics of coherence in the hyperfine structure of hydrogen atoms subjected to dephasing noise, modeled using the Lindblad master equation. The effective Hamiltonian describes the spin–spin interaction between the electron and proton, with dephasing introduced via Lindblad operators. Analytical solutions for the time-dependent density matrix are derived for various initial states, including separable, partially entangled, and maximally entangled configurations. Quantum coherence is quantified through the l1-norm measures, while purity is evaluated to assess mixedness. Results demonstrate that coherence exhibits oscillatory decay modulated by the dephasing rate, with antiparallel spin states showing greater resilience against noise compared to parallel configurations. These findings highlight the interplay between coherent hyperfine dynamics and environmental dephasing, offering insights into preserving quantum resources in atomic systems for applications in quantum information science. Full article
(This article belongs to the Special Issue Applications Based on Symmetry/Asymmetry in Quantum Mechanics)
Show Figures

Figure 1

16 pages, 913 KB  
Article
Mechanisms of Energy Transfer and Failure Zoning in Rock Mass Blasting: A Mohr–Coulomb Theory and Numerical Simulation Study
by Wei Zhang, Renshan Chen, Kaibo Yang and Jin Li
Appl. Sci. 2025, 15(19), 10600; https://doi.org/10.3390/app151910600 - 30 Sep 2025
Viewed by 213
Abstract
This paper explores the mechanisms of energy transfer and failure zones in rock mass blasting. By combining theoretical derivation with numerical simulation, we examine the deformation, failure features, and source parameters of rock subjected to spherical charge blasting. Using the Mohr–Coulomb yield criterion, [...] Read more.
This paper explores the mechanisms of energy transfer and failure zones in rock mass blasting. By combining theoretical derivation with numerical simulation, we examine the deformation, failure features, and source parameters of rock subjected to spherical charge blasting. Using the Mohr–Coulomb yield criterion, we classify the rock failure process into four zones: the cavity zone, fracture zone, radial fracture zone, and vibration zone. Additionally, we establish a dynamic partitioned model that considers explosion cavity expansion, compression wave propagation, and energy dissipation. Applying elastic failure conditions, we develop a calculation model for vibration parameters in each zone and use MATLAB programming to find numerical solutions for the radius of the failure zone, elastic potential energy, and the interface pressure over time. Verification with a granite underground blasting project in Qingdao shows the ratio of the spherical cavity radius to the charge radius is 1.49, and the crushing zone radius to the charge radius is 2.85. Theoretical results are consistent with the approximate method in magnitude and value, confirming the model’s reliability. The interface pressure sharply peaks and then decays exponentially. The growth of the fracture zone depends heavily on initial pressure, rock strength, and Poisson’s ratio. These findings support blasting engineering design and seismic effect assessment. Full article
(This article belongs to the Special Issue Rock Mechanics in Geotechnical and Tunnel Engineering)
Show Figures

Figure 1

Back to TopTop