Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (138)

Search Parameters:
Keywords = decarbonize industrial heat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1517 KiB  
Article
Physics-Informed Neural Network Enhanced CFD Simulation of Two-Dimensional Green Ammonia Synthesis Reactor
by Ran Xu, Shibin Zhang, Fengwei Rong, Wei Fan, Xiaomeng Zhang, Yunlong Wang, Liang Zan, Xu Ji and Ge He
Processes 2025, 13(8), 2457; https://doi.org/10.3390/pr13082457 - 3 Aug 2025
Viewed by 191
Abstract
The synthesis of “green ammonia” from “green hydrogen” represents a critical pathway for renewable energy integration and industrial decarbonization. This study investigates the green ammonia synthesis process using an axial–radial fixed-bed reactor equipped with three catalyst layers. A simplified two-dimensional physical model was [...] Read more.
The synthesis of “green ammonia” from “green hydrogen” represents a critical pathway for renewable energy integration and industrial decarbonization. This study investigates the green ammonia synthesis process using an axial–radial fixed-bed reactor equipped with three catalyst layers. A simplified two-dimensional physical model was developed, and a multiscale simulation approach combining computational fluid dynamics (CFD) with physics-informed neural networks (PINNs) employed. The simulation results demonstrate that the majority of fluid flows axially through the catalyst beds, leading to significantly higher temperatures in the upper bed regions. The reactor exhibits excellent heat exchange performance, ensuring effective preheating of the feed gas. High-pressure zones are concentrated near the top and bottom gas outlets, while the ammonia mole fraction approaches 100% near the bottom outlet, confirming superior conversion efficiency. By integrating PINNs, the prediction accuracy was substantially improved, with flow field errors in the catalyst beds below 4.5% and ammonia concentration prediction accuracy above 97.2%. Key reaction kinetic parameters (pre-exponential factor k0 and activation energy Ea) were successfully inverted with errors within 7%, while computational efficiency increased by 200 times compared to traditional CFD. The proposed CFD–PINN integrated framework provides a high-fidelity and computationally efficient simulation tool for green ammonia reactor design, particularly suitable for scenarios with fluctuating hydrogen supply. The reactor design reduces energy per unit ammonia and improves conversion efficiency. Its radial flow configuration enhances operational stability by damping feed fluctuations, thereby accelerating green hydrogen adoption. By reducing fossil fuel dependence, it promotes industrial decarbonization. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
Show Figures

Figure 1

20 pages, 2735 KiB  
Article
Techno-Economic Assessment of Electrification and Hydrogen Pathways for Optimal Solar Integration in the Glass Industry
by Lorenzo Miserocchi and Alessandro Franco
Solar 2025, 5(3), 35; https://doi.org/10.3390/solar5030035 - 1 Aug 2025
Viewed by 116
Abstract
Direct electrification and hydrogen utilization represent two key pathways for decarbonizing the glass industry, with their effectiveness subject to adequate furnace design and renewable energy availability. This study presents a techno-economic assessment for optimal solar energy integration in a representative 300 t/d oxyfuel [...] Read more.
Direct electrification and hydrogen utilization represent two key pathways for decarbonizing the glass industry, with their effectiveness subject to adequate furnace design and renewable energy availability. This study presents a techno-economic assessment for optimal solar energy integration in a representative 300 t/d oxyfuel container glass furnace with a specific energy consumption of 4.35 GJ/t. A mixed-integer linear programming formulation is developed to evaluate specific melting costs, carbon emissions, and renewable energy self-consumption and self-production rates across three scenarios: direct solar coupling, battery storage, and a hydrogen-based infrastructure. Battery storage achieves the greatest reductions in specific melting costs and emissions, whereas hydrogen integration minimizes electricity export to the grid. By incorporating capital investment considerations, the study quantifies the cost premiums and capacity requirements under varying decarbonization targets. A combination of 30 MW of solar plant and 9 MW of electric boosting enables the realization of around 30% carbon reduction while increasing total costs by 25%. Deeper decarbonization targets require more advanced systems, with batteries emerging as a cost-effective solution. These findings offer critical insights into the economic and environmental trade-offs, as well as the technical constraints associated with renewable energy adoption in the glass industry, providing a foundation for strategic energy and decarbonization planning. Full article
Show Figures

Figure 1

34 pages, 2504 KiB  
Review
Review of Challenges in Heat Exchanger Network Development for Electrified Industrial Energy Systems
by Stanislav Boldyryev, Oleksandr S. Ivashchuk, Goran Krajačić and Volodymyr M. Atamanyuk
Energies 2025, 18(14), 3685; https://doi.org/10.3390/en18143685 - 12 Jul 2025
Viewed by 368
Abstract
Shifting towards electrified industrial energy systems is pivotal for meeting global decarbonization objectives, especially since process heat is a significant contributor to greenhouse gas emissions in the industrial sector. This review examines the changing role of heat exchanger networks (HENs) within electrified process [...] Read more.
Shifting towards electrified industrial energy systems is pivotal for meeting global decarbonization objectives, especially since process heat is a significant contributor to greenhouse gas emissions in the industrial sector. This review examines the changing role of heat exchanger networks (HENs) within electrified process industries, where electricity-driven technologies, including electric heaters, steam boilers, heat pumps, mechanical vapour recompression, and organic Rankine cycles, are increasingly supplanting traditional fossil-fuel-based utilities. The analysis identifies key challenges associated with multi-utility integration, multi-pinch configurations, and low-grade heat utilisation that influence HEN design, retrofitting, and optimisation efforts. A comparative evaluation of various methodological frameworks, including mathematical programming, insights-based methods, and hybrid approaches, is presented, highlighting their relevance to the specific constraints and opportunities of electrified systems. Case studies from the chemicals, food processing, and cement sectors demonstrate the practicality and advantages of employing electrified heat exchanger networks (HENs), particularly in terms of energy efficiency, emissions reduction, and enhanced operational flexibility. The review concludes that effective strategies for the design of HENs are crucial in industrial electrification, facilitating increases in efficiency, reductions in emissions, and improvements in economic feasibility, especially when they are integrated with renewable energy sources and advanced control systems. Future initiatives must focus on harmonising technical advances with system-level resilience and economic sustainability considerations. Full article
Show Figures

Figure 1

35 pages, 2556 KiB  
Article
Technical Trends, Radical Innovation, and the Economics of Sustainable, Industrial-Scale Electric Heating for Energy Efficiency and Water Savings
by A. A. Vissa and J. A. Sekhar
Sustainability 2025, 17(13), 5916; https://doi.org/10.3390/su17135916 - 27 Jun 2025
Viewed by 898
Abstract
This article examines the energy efficiency and climate impact of various heating methods commonly employed across industrial sectors. Fossil fuel combustion heat sources, which are predominantly employed for industrial heating, contribute significantly to atmospheric pollution and associated asset losses. The electrification of industrial [...] Read more.
This article examines the energy efficiency and climate impact of various heating methods commonly employed across industrial sectors. Fossil fuel combustion heat sources, which are predominantly employed for industrial heating, contribute significantly to atmospheric pollution and associated asset losses. The electrification of industrial heating has the potential to substantially reduce the total energy consumed in industrial heating processes and significantly mitigate the rate of global warming. Advances in electrical heating technologies are driven by enhanced energy conversion, compactness, and precision control capabilities, ensuring attractive financial payback periods for clean, energy-efficient equipment. These advancements stem from the use of improved performance materials, process optimization, and waste heat utilization practices, particularly at high temperatures. The technical challenges associated with large-scale, heavy-duty electric process heating are addressed through the novel innovations discussed in this article. Electrification and the corresponding energy efficiency improvements reduce the water consumed for industrial steam requirements. The article reviews new technologies that replace conventional process gas heaters and pressure boilers with efficient electric process gas heaters and instant steam generators, operating in the high kilowatt and megawatt power ranges with very high-temperature capabilities. Financial payback calculations for energy-optimized processes are illustrated with examples encompassing a range of comparative energy costs across various temperatures. The economics and implications of waste heat utilization are also examined in this article. Additionally, the role of futuristic, radical technical innovations is evaluated as a sustainable pathway that can significantly lower energy consumption without compromising performance objectives. The potential for a new paradigm of self-organization in processes and final usage objectives is briefly explored for sustainable innovations in thermal engineering and materials development. The policy implications and early adoption of large-scale, energy-efficient thermal electrification are discussed in the context of temperature segmentation for industrial-scale processes and climate-driven asset losses. Policy shifts towards incentivizing energy efficiency at the manufacturing level of heater use are recommended as a pathway for deep decarbonization. Full article
Show Figures

Figure 1

25 pages, 1652 KiB  
Review
Review of the Role of Heat Pumps in Decarbonization of the Building Sector
by Agnieszka Żelazna and Artur Pawłowski
Energies 2025, 18(13), 3255; https://doi.org/10.3390/en18133255 - 21 Jun 2025
Viewed by 612
Abstract
The transition to low-carbon heating systems is fundamental to achieving climate neutrality, particularly within the building sector, which accounts for a significant share of global greenhouse gas emissions. Among various technologies, heat pumps have emerged as a leading solution due to their high [...] Read more.
The transition to low-carbon heating systems is fundamental to achieving climate neutrality, particularly within the building sector, which accounts for a significant share of global greenhouse gas emissions. Among various technologies, heat pumps have emerged as a leading solution due to their high energy efficiency and potential to significantly reduce CO2 emissions, especially when powered by renewable electricity. This systematic review synthesizes findings from the recent literature, including peer-reviewed studies and industry reports, to evaluate the technical performance, environmental impact, and deployment potential of air source, ground source, and water source heat pumps. This review also investigates life cycle greenhouse gas emissions, the influence of geographical energy mix diversity, and the integration of heat pumps within hybrid and district heating systems. Results indicate that hybrid HP systems achieve the lowest specific GHG emissions (0.108 kgCO2eq/kWh of heat delivered on average), followed by WSHPs (0.018 to 0.216 kgCO2eq/kWh), GSHPs (0.050–0.211 kgCO2eq/kWh), and ASHPs (0.083–0.216 kgCO2eq/kWh). HP systems show a potential GHG emission reduction of up to 90%, depending on the kind of technology and energy mix. Despite higher investment costs, the lower environmental footprint of GSHPs and WSHPs makes them attractive options for decarbonizing the building sector due to better performance resulting from more stable thermal input and higher SCOP. The integration of heat pumps with thermal storage, renewable energy, and smart control technologies further enhances their efficiency and climate benefits, regardless of the challenges facing their market potential. This review concludes that heat pumps, particularly in hybrid configurations, are a cornerstone technology for sustainable building heat supply and energy transition. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Graphical abstract

24 pages, 3957 KiB  
Article
Steam Generation for Industry Using Linear Fresnel Solar Collectors and PV-Driven High-Temperature Heat Pumps: Techno-Economic Analysis
by Antonio Famiglietti and Ruben Abbas
Solar 2025, 5(2), 27; https://doi.org/10.3390/solar5020027 - 17 Jun 2025
Viewed by 434
Abstract
Steam is widely used in industry as a heat carrier for thermal processes and is primarily generated by gas-fired steam boilers. The decarbonization of industrial thermal demand relies on the capability of clean and renewable technologies to provide steam through reliable and cost-effective [...] Read more.
Steam is widely used in industry as a heat carrier for thermal processes and is primarily generated by gas-fired steam boilers. The decarbonization of industrial thermal demand relies on the capability of clean and renewable technologies to provide steam through reliable and cost-effective systems. Concentrating solar thermal technologies are attracting attention as a heat source for industrial steam generation. In addition, electricity-driven high-temperature heat pumps can provide heat using either renewable or grid electricity by upgrading ambient or waste heat to the required temperature level. In this study, linear Fresnel solar collectors and high-temperature heat pumps driven by photovoltaics are considered heat sources for steam generation in industrial processes. Energetic and economic analyses are performed across the European countries to assess and compare their performances. The results demonstrate that for a given available area for the solar field, solar thermal systems provide a higher annual energy yield in southern countries and at lower costs than heat pumps. On the other hand, heat pumps driven by photovoltaics provide higher annual energy for decreasing solar radiation conditions (central and northern Europe), although it leads to higher costs than solar thermal systems. A hybrid scheme combining the two technologies is the favorable option in central Europe, allowing a trade-off between the costs and the energy yield per unit area. Full article
Show Figures

Figure 1

29 pages, 1645 KiB  
Review
Energy Storage: From Fundamental Principles to Industrial Applications
by Tania Itzel Serrano-Arévalo, Rogelio Ochoa-Barragán, César Ramírez-Márquez, Mahmoud El-Halwagi, Nabil Abdel Jabbar and José María Ponce-Ortega
Processes 2025, 13(6), 1853; https://doi.org/10.3390/pr13061853 - 12 Jun 2025
Viewed by 1611
Abstract
The increasing global energy demand and the transition toward sustainable energy systems have highlighted the importance of energy storage technologies by ensuring efficiency, reliability, and decarbonization. This study reviews chemical and thermal energy storage technologies, focusing on how they integrate with renewable energy [...] Read more.
The increasing global energy demand and the transition toward sustainable energy systems have highlighted the importance of energy storage technologies by ensuring efficiency, reliability, and decarbonization. This study reviews chemical and thermal energy storage technologies, focusing on how they integrate with renewable energy sources, industrial applications, and emerging challenges. Chemical Energy Storage systems, including hydrogen storage and power-to-fuel strategies, enable long-term energy retention and efficient use, while thermal energy storage technologies facilitate waste heat recovery and grid stability. Key contributions to this work are the exploration of emerging technologies, challenges in large-scale implementation, and the role of artificial intelligence in optimizing Energy Storage Systems through predictive analytics, real-time monitoring, and advanced control strategies. This study also addresses regulatory and economic barriers that hinder widespread adoption, emphasizing the need for policy incentives and interdisciplinary collaboration. The findings suggest that energy storage will be a fundamental pillar of the sustainable energy transition. Future research should focus on improving material stability, enhancing operational efficiency, and integrating intelligent management systems to maximize the benefits of these technologies for a resilient and low-carbon energy infrastructure. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Graphical abstract

37 pages, 2520 KiB  
Review
Sustainable Transition Pathways for Steel Manufacturing: Low-Carbon Steelmaking Technologies in Enterprises
by Jinghua Zhang, Haoyu Guo, Gaiyan Yang, Yan Wang and Wei Chen
Sustainability 2025, 17(12), 5329; https://doi.org/10.3390/su17125329 - 9 Jun 2025
Viewed by 1357
Abstract
Amid escalating global climate crises and the urgent imperative to meet the Paris Agreement’s carbon neutrality targets, the steel industry—a leading contributor to global greenhouse gas emissions—confronts unprecedented challenges in driving sustainable industrial transformation through innovative low-carbon steelmaking technologies. This paper examines decarbonization [...] Read more.
Amid escalating global climate crises and the urgent imperative to meet the Paris Agreement’s carbon neutrality targets, the steel industry—a leading contributor to global greenhouse gas emissions—confronts unprecedented challenges in driving sustainable industrial transformation through innovative low-carbon steelmaking technologies. This paper examines decarbonization technologies across three stages (source, process, and end-of-pipe) for two dominant steel production routes: the long process (BF-BOF) and the short process (EAF). For the BF-BOF route, carbon reduction at the source stage is achieved through high-proportion pellet charging in the blast furnace and high scrap ratio utilization; at the process stage, carbon control is optimized via bottom-blowing O2-CO2-CaO composite injection in the converter; and at the end-of-pipe stage, CO2 recycling and carbon capture are employed to achieve deep decarbonization. In contrast, the EAF route establishes a low-carbon production system by relying on green and efficient electric arc furnaces and hydrogen-based shaft furnaces. At the source stage, energy consumption is reduced through the use of green electricity and advanced equipment; during the process stage, precision smelting is realized through intelligent control systems; and at the end-of-pipe stage, a closed-loop is achieved by combining cascade waste heat recovery and steel slag resource utilization. Across both process routes, hydrogen-based direct reduction and green power-driven EAF technology demonstrate significant emission reduction potential, providing key technical support for the low-carbon transformation of the steel industry. Comparative analysis of industrial applications reveals varying emission reduction efficiencies, economic viability, and implementation challenges across different technical pathways. The study concludes that deep decarbonization of the steel industry requires coordinated policy incentives, technological innovation, and industrial chain collaboration. Accelerating large-scale adoption of low-carbon metallurgical technologies through these synergistic efforts will drive the global steel sector toward sustainable development goals. This study provides a systematic evaluation of current low-carbon steelmaking technologies and outlines practical implementation strategies, contributing to the industry’s decarbonization efforts. Full article
Show Figures

Figure 1

26 pages, 1615 KiB  
Review
Economic Analysis of Nuclear Energy Cogeneration: A Comprehensive Review on Integrated Utilization
by Guobin Jia, Guifeng Zhu, Yang Zou, Yuwen Ma, Ye Dai, Jianhui Wu and Jian Tian
Energies 2025, 18(11), 2929; https://doi.org/10.3390/en18112929 - 3 Jun 2025
Viewed by 861
Abstract
Nuclear energy cogeneration, which integrates electricity generation with thermal energy utilization, presents a transformative pathway for enhancing energy efficiency and decarbonizing industrial and urban sectors. This comprehensive review synthesizes advancements in technological stratification, economic modeling, and sectoral practices to evaluate the viability of [...] Read more.
Nuclear energy cogeneration, which integrates electricity generation with thermal energy utilization, presents a transformative pathway for enhancing energy efficiency and decarbonizing industrial and urban sectors. This comprehensive review synthesizes advancements in technological stratification, economic modeling, and sectoral practices to evaluate the viability of nuclear cogeneration as a cornerstone of low-carbon energy transitions. By categorizing applications based on temperature requirements (low: <250 °C, medium: 250–550 °C, high: >550 °C), the study highlights the adaptability of reactor technologies, including light water reactors (LWRs), high-temperature gas-cooled reactors (HTGRs), and molten salt reactors (MSRs), to sector-specific demands. Key findings reveal that nuclear cogeneration systems achieve thermal efficiencies exceeding 80% in low-temperature applications and reduce CO2 emissions by 1.5–2.5 million tons annually per reactor by displacing fossil fuel-based heat sources. Economic analyses emphasize the critical role of cost allocation methodologies, with exergy-based approaches reducing levelized costs by 18% in high-temperature applications. Policy instruments, such as carbon pricing, value-added tax (VAT) exemptions, and subsidized loans, enhance project viability, elevating net present values by 25–40% for district heating systems. Case studies from Finland, China, and Canada demonstrate operational successes, including 30% emission reductions in oil sands processing and hydrogen production costs as low as USD 3–5/kg via thermochemical cycles. Hybrid nuclear–renewable systems further stabilize energy supply, reducing the levelized cost of heat by 18%. The review underscores the necessity of integrating Generation IV reactors, thermal storage, and policy alignment to unlock nuclear cogeneration’s full potential in achieving global decarbonization and energy security goals. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

16 pages, 2908 KiB  
Article
Substituting Natural Gas with Hydrogen for Thermal Application in a Hard-to-Abate Industry: A Real Case Study
by Seyed Ariana Mirshokraee, Stefano Bedogni, Massimiliano Bindi and Carlo Santoro
Hydrogen 2025, 6(2), 37; https://doi.org/10.3390/hydrogen6020037 - 1 Jun 2025
Viewed by 583
Abstract
To pursue the total decarbonization goal set at 2050, the introduction of hydrogen to replace the usage of fossil fuel in hard-to-abate industrial sectors is crucial. Hydrogen will replace natural gas in hard-to-abate sectors where natural gas is required to make heat necessary [...] Read more.
To pursue the total decarbonization goal set at 2050, the introduction of hydrogen to replace the usage of fossil fuel in hard-to-abate industrial sectors is crucial. Hydrogen will replace natural gas in hard-to-abate sectors where natural gas is required to make heat necessary for the industrial process. Naturally, all this is worthwhile if hydrogen is produced following a green pathway, meaning that it is connected with renewable sources. In this manuscript, a techno-economic analysis related to a real case scenario is carried out. The real system addressed involves continuous high-temperature industrial furnace operation with a seasonally variable but stable thermal energy demand, representing typical conditions of hard-to-abate industrial processes. Solar photovoltaic panels combined with batteries are used to generate and store electricity that in turn is used to generate green hydrogen. Different scenarios are considered, including mixed natural gas/hydrogen, the seasonal variability of industrial needs, and the variability of solar production. The economic aspects considered include the usage of anion exchange membrane water electrolyzers (AEMWEs) to produce green hydrogen, the improvement in efficiency during operations (operational costs, OPEX), and the decrease in the AEMWE cost (Capital expenditures, CAPEX) that occur over time. The study shows that the hydrogen production cost could decrease from 12.6 EUR kg−1 in 2024 to 9.7 EUR kg−1 in 2030, with further reduction to 8.7 EUR kg−1 achievable through seasonal blending strategies. CO2 emissions are significantly reduced through partial displacement of natural gas with green hydrogen, highlighting the environmental potential of the system. Full article
Show Figures

Figure 1

18 pages, 7828 KiB  
Article
Study on Roof Ventilation and Optimized Layout of Photovoltaics for Semi-Outdoor Main Transformer Rooms in Substations
by Xiaohui Wu, Yanfeng Wang, Zhiwen Cai and Ping Su
Appl. Sci. 2025, 15(11), 6223; https://doi.org/10.3390/app15116223 - 31 May 2025
Viewed by 547
Abstract
In the context of global decarbonization goals and increasing urban electricity demand, the green transformation of power industry buildings to enhance the utilization of renewable energy represents a significant contribution to sustainable social development. Rooftop photovoltaic (PV) systems can reduce unnecessary radiative heat [...] Read more.
In the context of global decarbonization goals and increasing urban electricity demand, the green transformation of power industry buildings to enhance the utilization of renewable energy represents a significant contribution to sustainable social development. Rooftop photovoltaic (PV) systems can reduce unnecessary radiative heat gain and generate clean electricity to support this transition; however, they also alter the rooftop wind environment. Deploying rooftop PV systems requires well-planned design strategies to optimize renewable energy production while ensuring adequate natural ventilation, particularly for semi-outdoor main transformer rooms where ventilation and heat dissipation are crucial for safe substation operations. This concept was tested at a 220 kV substation in Guangzhou, China, using Computational Fluid Dynamics (CFD) and PVSYST to assess the impact of different rooftop PV systems on natural ventilation and power generation. The analysis showed that while the horizontal PV system achieved the highest energy output, it also resulted in a wind speed reduction of 13.2% or 11.8%. In contrast, the 10° symmetrical PV system offers the most balanced solution, with only a 0.6% decrease in ventilation performance but at the cost of a 13.87% reduction in PV output. The unilateral pitched PV system results in ventilation losses of less than 4%, and the power generation loss is also kept below 4%. However, this configuration may lead to increased wind loads. This approach can be developed into a practical design tool to further support the integration of PV systems in substation green retrofitting projects. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

20 pages, 1922 KiB  
Article
Electrification of Compressor in Steam Cracker Plant: A Path to Reduced Emissions and Optimized Energy Integration
by Joana Cordeiro Torcato, Rodrigo Silva and Mário Eusébio
ChemEngineering 2025, 9(3), 55; https://doi.org/10.3390/chemengineering9030055 - 27 May 2025
Viewed by 1124
Abstract
Electrification is a highly effective decarbonization and environmental incentive strategy for the chemical industry. Nevertheless, it may lead to downstream challenges in the process. This study analyzes the consequences of electrifying compressors within the steam cracker (SC) condensate system, focusing on the reduction [...] Read more.
Electrification is a highly effective decarbonization and environmental incentive strategy for the chemical industry. Nevertheless, it may lead to downstream challenges in the process. This study analyzes the consequences of electrifying compressors within the steam cracker (SC) condensate system, focusing on the reduction in greenhouse gas (GHG) emissions and energy consumption without compromising the process’s energy efficiency. The aim is to study the impact that the reduction in steam expanded by turbines has on boiler feedwater (BFW) temperature and, subsequently, the behavior it triggers in fuel gas (FG) consumption and carbon dioxide (CO2) emissions in furnaces. It was concluded that condensate imports from the Energies and Utilities Plant (E&U) would increase by a factor of four, with approximately 60% of the imported condensate being cold condensate. The study revealed a mitigation of CO2 emissions, resulting in a 1.3% reduction and a reduction in FG consumption of 1.8% preventing an increase in site energy consumption by 795.4 kW in furnaces. Condenser optimization reduces CO2 emissions by 60%. Energy integration with quench water resulted in heat saving of 1824 kW in hot utility consumption and generating annual savings of EUR 2.3 M. The global carbon dioxide balance can achieve up to a 25% reduction. Full article
Show Figures

Figure 1

55 pages, 2227 KiB  
Review
Is Green Hydrogen an Environmentally and Socially Sound Solution for Decarbonizing Energy Systems Within a Circular Economy Transition?
by Patrizia Ghisellini, Renato Passaro and Sergio Ulgiati
Energies 2025, 18(11), 2769; https://doi.org/10.3390/en18112769 - 26 May 2025
Cited by 3 | Viewed by 815
Abstract
Green hydrogen (GH2) is expected to play an important role in future energy systems in their fight against climate change. This study, after briefly recalling how GH2 is produced and the main steps throughout its life cycle, analyses its current [...] Read more.
Green hydrogen (GH2) is expected to play an important role in future energy systems in their fight against climate change. This study, after briefly recalling how GH2 is produced and the main steps throughout its life cycle, analyses its current development, environmental and social impacts, and a series of case studies from selected literature showing its main applications as fuel in transportation and electricity sectors, as a heat producer in high energy intensive industries and residential and commercial buildings, and as an industrial feedstock for the production of other chemical products. The results show that the use of GH2 in the three main areas of application has the potential of contributing to the decarbonization goals, although its generation of non-negligible impacts in other environmental categories requires attention. However, the integration of circular economy (CE) principles is important for the mitigation of these impacts. In social terms, the complexity of the value chain of GH2 generates social impacts well beyond countries where GH2 is produced and used. This aspect makes the GH2 value chain complex and difficult to trace, somewhat undermining its renewability claims as well as its expected localness that the CE model is centred around. Full article
(This article belongs to the Collection Energy-Efficient Chemistry)
Show Figures

Figure 1

22 pages, 48320 KiB  
Article
The Synergistic Utilization of Glass Aggregates and Glass Powder on the Thermal and Mechanical Properties of Concrete
by Bo Wen, Huaizheng Wang, Guanyi Gao, Lu Zhang, Zhengyao Yu and Zhihao Wang
Materials 2025, 18(10), 2405; https://doi.org/10.3390/ma18102405 - 21 May 2025
Viewed by 554
Abstract
Enhancing the utilization rate of waste glass in concrete is crucial for achieving solid waste reduction and low carbon emissions in the construction industry. This study employs the method of simultaneously replacing fine aggregate and cementitious materials in concrete with glass sand and [...] Read more.
Enhancing the utilization rate of waste glass in concrete is crucial for achieving solid waste reduction and low carbon emissions in the construction industry. This study employs the method of simultaneously replacing fine aggregate and cementitious materials in concrete with glass sand and glass powder to prepare composite waste glass concrete (CGC). The compressive strength, alkali–silicate expansion, and thermal properties of CGC were investigated experimentally. The experimental results show that the pozzolanic activity of fine glass powder in CGC can effectively mitigate the ASR reaction, enhance glass utilization, and allow the glass content to reach up to 17.79% of the total concrete mass. The thermal conductivity of the compounded waste glass concrete decreased linearly with increasing temperature, and the specific heat capacity showed three distinct peaks in the range of 180–800 °C, which were caused by chemical dehydration, quartz phase transition, and CaCO3 decarbonization, respectively. Furthermore, to examine the impact of replacement mode on the high-temperature resistance of waste glass concrete, the residual strength, physical properties, and microstructure of the concrete were evaluated. It was found that the residual strength ratio of CGC (0.73) exhibited a distinct advantage at 600 °C. At this time, the melting effect of glass can reduce the pore size of concrete and transform large pores into capillary pores. However, as the temperature rises to 800 °C, the melting effect of glass no longer alleviates the high-temperature damage to concrete, and the degree of decomposition of hydration products determines the concrete strength. Full article
Show Figures

Graphical abstract

17 pages, 1789 KiB  
Article
Studying the Sintering Behavior of H2-Reduced Bauxite Residue Pellets Using High-Temperature Thermal Analysis
by Dali Hariswijaya and Jafar Safarian
Materials 2025, 18(10), 2378; https://doi.org/10.3390/ma18102378 - 20 May 2025
Viewed by 442
Abstract
Treating bauxite residue as an alternative source of metals for iron and aluminum industry is an approach to promote circular economy in metal industries. Reduction of metal oxides with a H2-based process is an important step for the decarbonization of metal [...] Read more.
Treating bauxite residue as an alternative source of metals for iron and aluminum industry is an approach to promote circular economy in metal industries. Reduction of metal oxides with a H2-based process is an important step for the decarbonization of metal industry. In this study, bauxite residue (BR) pellets were prepared and were reduced with different H2-H2O gas compositions at different temperatures, which yielded with various degrees of reduction. The bauxite residue pellets were made from a mixture of bauxite residue and Ca(OH)2 powders and sintered at 1150 °C. Hydrogen reduction was carried out on the oxide pellets using a resistance furnace at elevated temperatures in controlled reduction atmosphere of H2-H2O gas mixtures, which resulted in the reduction of iron oxides in the pellets. Unreduced and reduced pellets were subsequently heated to 1400 °C to study their sintering behavior during H2 reduction using differential thermal analysis (DTA) and thermogravimetric analysis (TGA) techniques to investigate the evolution of phases related to slag formation. Equilibrium module of Factsage™ was utilized to analyze results of thermal analysis. Both chemical and physical changes that occurred during the sintering process of the H2-reduced BR pellets were successfully detected by TG–DTA analysis, and the initial slag- and gas-phase formation were detected to occur from 900 °C and 1180 °C, respectively. One of the most notable chemical reactions to occur during the analysis was formation of mayenite at 810 °C, which is easily leachable, providing potential for recovery of alumina. Full article
Show Figures

Graphical abstract

Back to TopTop