Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (234)

Search Parameters:
Keywords = dark photons

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4720 KiB  
Article
Optical Response Tailoring via Morphosynthesis of Ag@Au Nanoparticles
by David Oswaldo Romero-Quitl, Siva Kumar Krishnan, Martha Alicia Palomino-Ovando, Orlando Hernández-Cristobal, José Concepción Torres-Guzmán, Jesús Eduardo Lugo and Miller Toledo-Solano
Nanomaterials 2025, 15(14), 1125; https://doi.org/10.3390/nano15141125 - 19 Jul 2025
Viewed by 343
Abstract
We present a simple method for customizing the optical characteristics of gold-core, silver-shell (Au@Ag) nanoparticles through controlled morphosynthesis via a seed-mediated chemical reduction approach. By systematically adjusting the concentration of cetyltrimethylammonium chloride (CTAC), we obtained precise control over both the thickness of the [...] Read more.
We present a simple method for customizing the optical characteristics of gold-core, silver-shell (Au@Ag) nanoparticles through controlled morphosynthesis via a seed-mediated chemical reduction approach. By systematically adjusting the concentration of cetyltrimethylammonium chloride (CTAC), we obtained precise control over both the thickness of the Ag shell and the particle shape, transitioning from spherical nanoparticles to distinctly defined nanocubes. Bright field and high-angle annular dark-field scanning transmission electron microscopy (BF-STEM and HAADF-STEM), and energy-dispersive X-ray spectroscopy (EDS) were employed to validate the structural and compositional changes. To link morphology with optical behavior, we utilized the Mie and Maxwell–Garnett theoretical models to simulate the dielectric response of the core–shell nanostructures, showing trends that align with experimental UV-visible absorption spectra. This research presents an easy and adjustable method for modifying the plasmonic properties of Ag@Au nanoparticles by varying their shape and shell, offering opportunities for advanced applications in sensing, photonics, and nanophotonics. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

17 pages, 1027 KiB  
Review
Photon Detector Technology for Laser Ranging: A Review of Recent Developments
by Zhihui Li, Xin Jin, Changfu Yuan and Kai Wang
Coatings 2025, 15(7), 798; https://doi.org/10.3390/coatings15070798 - 8 Jul 2025
Viewed by 582
Abstract
Laser ranging technology holds a key position in the military, aerospace, and industrial fields due to its high precision and non-contact measurement characteristics. As a core component, the performance of the photon detector directly determines the ranging accuracy and range. This paper systematically [...] Read more.
Laser ranging technology holds a key position in the military, aerospace, and industrial fields due to its high precision and non-contact measurement characteristics. As a core component, the performance of the photon detector directly determines the ranging accuracy and range. This paper systematically reviews the technological development of photonic detectors for laser ranging, with a focus on analyzing the working principles and performance differences of traditional photodiodes [PN (P-N junction photodiode), PIN (P-intrinsic-N photodiode), and APD (avalanche photodiode)] (such as the high-frequency response characteristics of PIN and the internal gain mechanism of APD), as well as their applications in short- and medium-range scenarios. Additionally, this paper discusses the unique advantages of special structures such as transmitting junction-type and Schottky-type detectors in applications like ultraviolet light detection. This article focuses on photon counting technology, reviewing the technological evolution of photomultiplier tubes (PMTs), single-photon avalanche diodes (SPADs), and superconducting nanowire single-photon detectors (SNSPDs). PMT achieves single-photon detection based on the external photoelectric effect but is limited by volume and anti-interference capability. SPAD achieves sub-decimeter accuracy in 100 km lidars through Geiger mode avalanche doubling, but it faces challenges in dark counting and temperature control. SNSPD, relying on the characteristics of superconducting materials, achieves a detection efficiency of 95% and a dark count rate of less than 1 cps in the 1550 nm band. It has been successfully applied in cutting-edge fields such as 3000 km satellite ranging (with an accuracy of 8 mm) and has broken through the near-infrared bottleneck. This study compares the differences among various detectors in core indicators such as ranging error and spectral response, and looks forward to the future technical paths aimed at improving the resolution of photon numbers and expanding the full-spectrum detection capabilities. It points out that the new generation of detectors represented by SNSPD, through material and process innovations, is promoting laser ranging to leap towards longer distances, higher precision, and wider spectral bands. It has significant application potential in fields such as space debris monitoring. Full article
Show Figures

Graphical abstract

29 pages, 3391 KiB  
Article
Near-Infrared and Sono-Enhanced Photodynamic Therapy of Prostate Cancer Cells Using Phyto-Second Harmonic Generation Nanoconjugates
by Efrat Hochma, Michael A. Firer and Refael Minnes
Polymers 2025, 17(13), 1831; https://doi.org/10.3390/polym17131831 - 30 Jun 2025
Viewed by 385
Abstract
This study investigates near-infrared (NIR)-induced, Phyto-enhanced, second harmonic generation-mediated photodynamic therapy (Phyto-SHG-PDT) using barium titanate (BT)/rhein/polyethylene glycol 100 (PEG100) and BT/Yemenite “Etrog” leaf extract/PEG100 nanoconjugates. We compare continuous-wave (CW), multi-line Argon-ion laser illumination in the NIR range with high-peak-power femtosecond (fs) 800 nm [...] Read more.
This study investigates near-infrared (NIR)-induced, Phyto-enhanced, second harmonic generation-mediated photodynamic therapy (Phyto-SHG-PDT) using barium titanate (BT)/rhein/polyethylene glycol 100 (PEG100) and BT/Yemenite “Etrog” leaf extract/PEG100 nanoconjugates. We compare continuous-wave (CW), multi-line Argon-ion laser illumination in the NIR range with high-peak-power femtosecond (fs) 800 nm pulses. Under CW NIR light, BT/rhein nanoconjugates reduced PC3 prostate cancer cell viability by 18% versus non-irradiated controls (p < 0.05), while BT/extract nanoconjugates exhibited 15% dark toxicity. The observed SHG signal matched theoretical predictions and previous CW laser studies. Reactive Oxygen Species (ROS) scavenger 1,3-diphenyl-isobenzofuran (DPBF) showed reduced absorbance at 410 nm upon NIR illumination, indirectly supporting SHG emission at 400 nm from nanoconjugates. Under fs-pulsed laser exposure, pronounced two-photon absorption (TPA) and SHG effects were observed in both nanoconjugate types. Our results demonstrate the effectiveness of BT/rhein nanoconjugates under both laser conditions, while the BT/extract nanoconjugates benefited from high-power pulsed excitation. These results highlight the potential of BT-based Phyto-SHG-PDT nanoconjugates for NIR and blue light applications, leveraging nonlinear optical effects for advanced photochemical cancer therapies. Full article
Show Figures

Graphical abstract

33 pages, 5307 KiB  
Article
SiPM Developments for the Time-Of-Propagation Detector of the Belle II Experiment
by Flavio Dal Corso, Jakub Kandra, Roberto Stroili and Ezio Torassa
Sensors 2025, 25(13), 4018; https://doi.org/10.3390/s25134018 - 27 Jun 2025
Viewed by 280
Abstract
Belle II is a particle physics experiment working at an high luminosity collider within a hard irradiation environment. The Time-Of-Propagation detector, aimed at the charged particle identification, surrounds the Belle II tracking detector on the barrel part. This detector is composed by 16 [...] Read more.
Belle II is a particle physics experiment working at an high luminosity collider within a hard irradiation environment. The Time-Of-Propagation detector, aimed at the charged particle identification, surrounds the Belle II tracking detector on the barrel part. This detector is composed by 16 modules, each module contains a finely fused silica bar, coupled to microchannel plate photomultiplier tube (MCP-PMT) photo-detectors and readout by high-speed electronics. The MCP-PMT lifetime at the nominal collider luminosity is about one year, this is due to the high photon background degrading the quantum efficiency of the photocathode. An alternative to these MCP-PMTs is multi-pixel photon counters (MPPC), known as silicon photomultipliers (SiPM). The SiPMs, in comparison to MCP-PMTs, have a lower cost, higher photon detection efficiency and are unaffected by the presence of a magnetic field, but also have a higher dark count rate that rapidly increases with the integrated neutron flux. The dark count rate can be mitigated by annealing the damaged devices and/or operating them at low temperatures. We tested SiPMs, with different dimensions and pixel sizes from different producers, to study their time resolution (the main constraint that has to satisfy the photon detector) and to understand their behavior and tolerance to radiation. For these studies we irradiated the devices to radiation up to 5×10111 MeV neutrons equivalent (neq) per cm2 fluences; we also started studying the effect of annealing on dark count rates. We performed several measurements on these devices, on top of the dark count rate, at different conditions in terms of overvoltage and temperatures. These measurements are: IV-curves, amplitude spectra, time resolution. For the last two measurements we illuminated the devices with a picosecond pulsed laser at very low intensities (with a number of detected photons up to about twenty). We present results mainly on two types of SiPMs. A new SiPM prototype developed in collaboration with FBK with the aim of improving radiation hardness, is expected to be delivered in September 2025. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

13 pages, 4454 KiB  
Article
Proton Irradiation and Thermal Restoration of SiPMs for LEO Missions
by Alexis Luszczak, Lucas Finazzi, Leandro Gagliardi, Milagros Moreno, Maria L. Ibarra, Federico Golmar and Gabriel A. Sanca
Instruments 2025, 9(3), 15; https://doi.org/10.3390/instruments9030015 - 26 Jun 2025
Viewed by 328
Abstract
Silicon Photomultipliers (SiPMs) are optical sensors widely used in space applications due to their high photon detection efficiency, low power consumption, and robustness. However, in Low Earth Orbit (LEO), their performance degrades over time due to prolonged exposure to ionizing radiation, primarily from [...] Read more.
Silicon Photomultipliers (SiPMs) are optical sensors widely used in space applications due to their high photon detection efficiency, low power consumption, and robustness. However, in Low Earth Orbit (LEO), their performance degrades over time due to prolonged exposure to ionizing radiation, primarily from trapped protons and electrons. The dominant radiation-induced effect in SiPMs is an increase in dark current, which can compromise detector sensitivity. This study investigates the potential of thermal annealing as a mitigation strategy for radiation damage in SiPMs. We designed and tested PCB-integrated heaters to selectively heat irradiated SiPMs and induce recovery processes. A PID-controlled system was developed to stabilize the temperature at 100 °C, and a remotely controlled experimental setup was implemented to operate under irradiation conditions. Two SiPMs were simultaneously irradiated with 9 MeV protons at the EDRA facility, reaching a 1 MeV neutron equivalent cumulative fluence of (9.5 ± 0.2) × 108 cm−2. One sensor underwent thermal annealing between irradiation cycles, while the other served as a control. Throughout the experiment, dark current was continuously monitored using a source measure unit, and I–V curves were recorded before and after irradiation. A recovery of more than 39% was achieved after only 5 min of thermal cycling at 100 °C, supporting this recovery approach as a low-complexity strategy to mitigate radiation-induced damage in space-based SiPM applications and increase device lifetime in harsh environments. Full article
Show Figures

Graphical abstract

21 pages, 7182 KiB  
Article
Nanovesicles and Human Skin Interaction: A Comparative Ex-Vivo Study
by Elisabetta Esposito, Valentyn Dzyhovski, Federico Santamaria, Catia Contado, Cinzia Brenna, Luca Maria Neri, Paola Secchiero, Francesco Spinozzi, Alessia Pepe, Michał Rawski, Maria Grazia Ortore, Paolo Mariani, Andrea Galvan, Laura Calderan and Manuela Malatesta
Nanomaterials 2025, 15(12), 937; https://doi.org/10.3390/nano15120937 - 16 Jun 2025
Viewed by 414
Abstract
The topical administration of drugs on the skin by nanovesicular systems can represent a tool to treat skin pathologies. The study of nanovesicle biodistribution after skin administration is crucial to understanding their transdermal potential. A formative study enabled us to investigate the influence [...] Read more.
The topical administration of drugs on the skin by nanovesicular systems can represent a tool to treat skin pathologies. The study of nanovesicle biodistribution after skin administration is crucial to understanding their transdermal potential. A formative study enabled us to investigate the influence of some methods in the production of nanovesicles based on phosphatidylcholine, differing in their ethanol amount. Particularly, both liposomes and ethosomes produced by different methods, i.e., microfluidics and solvent injection, were considered. The evaluation of size distribution, shape and internal morphology was performed using photon correlation spectroscopy, cryogenic electron microscopy, hyperspectral dark-field microscopy and small-angle X-ray scattering. Transmission electron microscopy was then used to observe and compare the transdermal passage of selected liposomes and ethosomes applied to human skin explants in a bioreactor. The mean diameters of nanovesicles prepared by the ethanol injection method were smaller with respect to those obtained by microfluidics, measuring roughly 140 and 230 nm, respectively. The uni- or multilamellar ultrastructure of the vesicles was influenced by the solvent injection procedure. Ultrastructural analysis of skin penetration revealed (i) the ability of intact vesicles to cross the different skin layers, with ethosomes produced by the water injection method showing greater transdermal potential and (ii) the role of ethanol as a penetration enhancer. Full article
(This article belongs to the Special Issue Green Nanoparticles for Topical Administration of Drugs)
Show Figures

Figure 1

14 pages, 21375 KiB  
Article
A Very Thin MCT Film in HDVIP Achieves High Absorption
by Lingwei Jiang, Changhong Sun, Xiaoning Hu, Ruijun Ding and Chun Lin
Sensors 2025, 25(12), 3701; https://doi.org/10.3390/s25123701 - 13 Jun 2025
Viewed by 428
Abstract
Compared to the traditional flip-chip bonded focal plane array, in high-density vertically integrated photodiode (HDVIP) focal plane technology, the thickness of the mercury cadmium telluride (MCT or Hg1−xCdxTe) layer serves as a more critical parameter. This parameter not only [...] Read more.
Compared to the traditional flip-chip bonded focal plane array, in high-density vertically integrated photodiode (HDVIP) focal plane technology, the thickness of the mercury cadmium telluride (MCT or Hg1−xCdxTe) layer serves as a more critical parameter. This parameter not only influences the efficiency of photon energy absorption but also defines the pn junction area, thereby affecting the magnitude of the dark current. Furthermore, it significantly impacts the manufacturability of via-hole etching and formation processes. This paper investigated the photonic crystal resonances and coherent perfect absorption (CPA) effect of a thin MCT layer in HDVIP by using COMSOL Multiphysics® 4.3b and optimized the structure of the loop-hole photodiode device. The CPA, which is formed by this structure, achieves high absorption of illumination in a very thin MCT film. It is demonstrated that an absorption rate of infrared radiation of more than 95% with a wavelength during the 8 µm–10 µm range can be achieved in Hg1−xCdxTe (x = 0.225) with a thickness of only 1.5 µm–3 µm. The benefit of thinner MCT film is that it decreases the dark current of pn junction and reduces the technical difficulty of etching and metallization of the loop-hole photodiode. Full article
(This article belongs to the Special Issue Spectroscopic Techniques for Optical Sensing)
Show Figures

Figure 1

15 pages, 823 KiB  
Article
Research on the Influence of Orthogonal Design Optimized Elicitor Combinations on Fucoxanthin Accumulation in Phaeodactylum tricornutum and Its Expression Regulation
by Han Yang, Yifu Gong, Boyue Liu, Yuru Chen, Huan Qin, Heyu Wang and Hao Liu
Mar. Drugs 2025, 23(6), 244; https://doi.org/10.3390/md23060244 - 9 Jun 2025
Viewed by 522
Abstract
Fucoxanthin, a carotenoid with notable pharmaceutical potential, has attracted significant attention due to its efficient accumulation in marine microalgae and the importance of optimizing its induction conditions. In this study, Phaeodactylum tricornutum was employed as a model organism to screen optimal conditions for [...] Read more.
Fucoxanthin, a carotenoid with notable pharmaceutical potential, has attracted significant attention due to its efficient accumulation in marine microalgae and the importance of optimizing its induction conditions. In this study, Phaeodactylum tricornutum was employed as a model organism to screen optimal conditions for fucoxanthin accumulation using a three-factor, four-level orthogonal design. Furthermore, the underlying mechanisms related to photosynthetic physiology and gene regulation were explored. The results revealed that both glycine (Gly) and light intensity significantly enhanced fucoxanthin content (p < 0.05). The optimal condition (Combination C: 0.50 g L−1 Gly, 36 μmol photons·m−2·s−1, 12 h light/12 h dark) yielded a fucoxanthin content of 0.87 μg g−1, representing a 35% increase compared to the control. Meanwhile, Combination p (0.50 g L−1 Gly, 36 μmol photons·m−2·s−1, 24 h light/0 h dark) significantly improved cell density (5.11 × 106 cells mL−1; +18%) and fucoxanthin yield (4.10 μg L−1; +47%). Analysis of photosynthetic parameters demonstrated that the non-photochemical quenching coefficient (NPQ) was suppressed. Gene expression profiling showed that Combination C upregulated photosynthetic genes (psbA, rbcL, rbcS) by up to 2.36-fold, while Combination P notably upregulated fcpb (7.59-fold), crtiso, and pds. Principal component analysis identified that rbcS and pds are key regulatory genes. These findings demonstrate that Gly, light intensity, and photoperiod synergistically regulate the expression of genes involved in photosynthesis and carotenoid biosynthesis, thereby promoting fucoxanthin accumulation. This work provides valuable insights and a theoretical basis for optimizing fucoxanthin production in support of marine drug development. Full article
(This article belongs to the Special Issue Algal Cultivation for Obtaining High-Value Products, 2nd Edition)
Show Figures

Figure 1

19 pages, 891 KiB  
Article
Analytic Investigation of the Imprints of Dark Energy and Charge on the Kerr–Newmann–De Sitter Black-Hole Photon Ring
by James Mugambi, Eunice Omwoyo and Dismas Wamalwa
Astronomy 2025, 4(2), 9; https://doi.org/10.3390/astronomy4020009 - 21 May 2025
Viewed by 385
Abstract
In 2019, the Event Horizon Telescope (EHT) released the first image of a black hole, sparking huge interest in the study of black-hole images. We present analytical solutions to the null geodesic equations for Kerr–Newman–de Sitter black holes derived using Jacobi elliptic functions. [...] Read more.
In 2019, the Event Horizon Telescope (EHT) released the first image of a black hole, sparking huge interest in the study of black-hole images. We present analytical solutions to the null geodesic equations for Kerr–Newman–de Sitter black holes derived using Jacobi elliptic functions. Using these solutions, we have performed an analytic ray-tracing simulation to model direct images, lensing rings, and photon rings, considering standard observers and zero angular momentum observers (ZAMOs). Additionally, we have derived analytic expressions for the critical parameters governing the structure of the photon ring and analyzed them in detail. From the foregoing, an increase in charge leads to a decrease in both time delay and Lyapunov exponent, while the change in azimuthal angle is insignificant. These findings improve our understanding of the effects of charge on black-hole photon rings and provide a foundation for future studies. Full article
Show Figures

Figure 1

26 pages, 5622 KiB  
Article
UMFNet: Frequency-Guided Multi-Scale Fusion with Dynamic Noise Suppression for Robust Low-Light Object Detection
by Shihao Gong, Zheng Ma and Xiang Li
Appl. Sci. 2025, 15(10), 5362; https://doi.org/10.3390/app15105362 - 11 May 2025
Viewed by 660
Abstract
The dominant low-light object detectors face the following spectral trilemma: (1) the loss of high-frequency structural details during denoising, (2) the amplification of low-frequency illumination distortion, and (3) cross-band interference in multi-scale features. To resolve these intertwined challenges, we present UMFNet—a frequency-guided [...] Read more.
The dominant low-light object detectors face the following spectral trilemma: (1) the loss of high-frequency structural details during denoising, (2) the amplification of low-frequency illumination distortion, and (3) cross-band interference in multi-scale features. To resolve these intertwined challenges, we present UMFNet—a frequency-guided detection framework that unifies adaptive frequency distillation with inter-band attention coordination. Our technical breakthroughs manifest through three key innovations: (1) a frequency-adaptive fusion (FAF) module employing learnable wavelet kernels (16–64 decomposition basis) with dynamic SNR-gated thresholding, achieving an 89.7% photon utilization rate in ≤1 lux conditions—2.4× higher than fixed-basis approaches; (2) a spatial-channel coordinated attention (SCCA) mechanism with dual-domain nonlinear gating that reduces high-frequency hallucination by 37% through parametric phase alignment (verified via gradient direction alignment coefficient ρG = 0.93); (3) a spectral perception loss combining the frequency-weighted structural similarity index measure (SSIM) with gradient-aware focal modulation, enforcing physics-constrained feature recovery. Extensive validation demonstrates UMFNet’s leadership: 73.1% mAP@50 on EXDark (+6.4% over YOLOv8 baseline), 58.7% on DarkFace (+3.1% over GLARE), and 40.2% on thermal FLIR ADAS (+9.7% improvement). This work pioneers a new paradigm for precision-critical vision systems in photon-starved environments. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

14 pages, 644 KiB  
Review
Very-High-Energy Gamma-Ray Observations as a Probe to the Nature of Dark Matter and Prospects for MACE
by Mani Khurana, Krishna Kumar Singh, Atul Pathania, Pawan Kumar Netrakanti and Kuldeep Kumar Yadav
Galaxies 2025, 13(3), 53; https://doi.org/10.3390/galaxies13030053 - 2 May 2025
Viewed by 598
Abstract
Searching for very-high-energy photons arising from dark matter interactions in selected astrophysical environments is a promising strategy to probe the existence and particle nature of dark matter. Among the many particle candidates, motivated by the extensions of the Standard Model, Weakly Interacting Massive [...] Read more.
Searching for very-high-energy photons arising from dark matter interactions in selected astrophysical environments is a promising strategy to probe the existence and particle nature of dark matter. Among the many particle candidates, motivated by the extensions of the Standard Model, Weakly Interacting Massive Particles (WIMPs) are considered the most compelling candidate for the elusive dark matter in the universe. In this contribution, we report an overview of the important developments in the field of indirect searching for dark matter through cosmic gamma-ray observations. We mainly focus on the role of atmospheric Cherenkov telescopes in probing the dark matter. Finally, we emphasize the opportunities for the Major Atmospheric Cherenkov Experiment (MACE) situated in Hanle, India, to explore WIMPs in the mass range of 200 GeV to 10 TeV for Segue1 and Draco dwarf–spheroidal galaxies. Full article
Show Figures

Figure 1

10 pages, 2636 KiB  
Article
Low Temperature Characteristics of Ge-on-Si Waveguide Photodetectors: A Combined Simulation and Experimental Study
by Jingchuan Liu, Zhenyu Li, Xiaofei Liu, Wentao Yan, Xingyan Zhao, Shaonan Zheng, Yang Qiu, Qize Zhong, Yuan Dong and Ting Hu
Micromachines 2025, 16(5), 542; https://doi.org/10.3390/mi16050542 - 30 Apr 2025
Viewed by 572
Abstract
Benefiting from the progress of the germanium (Ge) epitaxy process on silicon (Si) substrates, waveguide-integrated Ge-on-Si photodetectors (PDs) have demonstrated decent performances in short-wave infrared (SWIR) detection. By lowering the operating temperature, theses PDs can meet the stringent signal-to-noise requirements for high-sensitivity detection. [...] Read more.
Benefiting from the progress of the germanium (Ge) epitaxy process on silicon (Si) substrates, waveguide-integrated Ge-on-Si photodetectors (PDs) have demonstrated decent performances in short-wave infrared (SWIR) detection. By lowering the operating temperature, theses PDs can meet the stringent signal-to-noise requirements for high-sensitivity detection. We systematically investigated the dark current characteristics and optical response in the 1500–1600 nm wavelength range of the waveguide-integrated Ge-on-Si PDs operated at low temperatures (200 K to 300 K). Under a −3 V bias, the PD exhibits a room-temperature dark current of 4.62 nA and a responsivity of 0.87 A/W at 1550 nm. When the temperature was reduced to 200 K, the dark current decreased to 93.69 pA, and the responsivity dropped to 0.34 A/W. Using finite-difference time-domain (FDTD) and technology computer-aided design (TCAD) simulations, we extracted the absorption coefficients of epitaxial Ge on Si at low temperatures. At room temperature, the absorption coefficient at the wavelength of 1550 nm was approximately 1100 cm−1, while at 200 K, the absorption coefficient decreased to 248 cm−1. The outcomes of this work pave the way for the high-performance low-temperature Si photonic systems in the future. Full article
(This article belongs to the Special Issue Research Progress of Silicon-Based Photodetectors)
Show Figures

Figure 1

15 pages, 4722 KiB  
Article
Differing Manifestations of Spatial Curvature in Cosmological FRW Models
by Meir Shimon and Yoel Rephaeli
Universe 2025, 11(5), 143; https://doi.org/10.3390/universe11050143 - 30 Apr 2025
Viewed by 575
Abstract
We found statistical evidence for a mismatch between the (global) spatial curvature parameter K in the geodesic equation for incoming photons and the corresponding parameter in the Friedmann equation that determines the time evolution of the background spacetime and its perturbations. The mismatch, [...] Read more.
We found statistical evidence for a mismatch between the (global) spatial curvature parameter K in the geodesic equation for incoming photons and the corresponding parameter in the Friedmann equation that determines the time evolution of the background spacetime and its perturbations. The mismatch, hereafter referred to as ‘curvature slip’, was especially evident when the SH0ES prior of the current expansion rate was assumed. This result is based on joint analyses of cosmic microwave background (CMB) observations with the PLANCK satellite (P18), the first year results of the Dark Energy Survey (DES), baryonic oscillation (BAO) data, and at a lower level of significance, the Pantheon SNIa (SN) catalog as well. For example, the betting odds against the null hypothesis were greater than 107:1, 1400:1 and 1000:1 when P18+SH0ES, P18+DES+SH0ES and P18+BAO+SH0ES were considered, respectively. Datasets involving SNIa weakened this curvature slip considerably. Notably, even when the SH0ES prior was not imposed, the betting odds for the rejection of the null hypothesis were 70:1 and 160:1 in cases where P18+DES and P18+BAO were considered. When the SH0ES prior was imposed, the global fit of the modified model (that allows for a nonvanishing ‘curvature slip’) strongly outperformed that of ΛCDM, being manifested by significant deviance information criterion (DIC) gains ranging between 7 and 23, depending on the dataset combination considered. Even in comparison with KΛCDM, the proposed model resulted in significant, albeit smaller, DIC gains when SN data were excluded. Our finding could possibly be interpreted as an inherent inconsistency between the (idealized) maximally symmetric nature of the FRW metric and the dynamical evolution of the GR-based homogeneous and isotropic ΛCDM models. As such, this implies that there is apparent tension between the metric curvature and the curvature-like term in the time evolution of the redshift. Full article
(This article belongs to the Section Cosmology)
Show Figures

Figure 1

23 pages, 2348 KiB  
Article
Chaotic Analysis and Wave Photon Dynamics of Fractional Whitham–Broer–Kaup Model with β Derivative
by Muhammad Idrees Afridi, Theodoros E. Karakasidis and Abdullah Alhushaybari
Fractal Fract. 2025, 9(5), 287; https://doi.org/10.3390/fractalfract9050287 - 27 Apr 2025
Cited by 2 | Viewed by 401
Abstract
This study uses a conformable derivative of order β to investigate a fractional Whitham–Broer–Kaup (FWBK) model. This model has significant uses in several scientific domains, such as plasma physics and nonlinear optics. The enhanced modified Sardar sub-equation EMSSE approach is applied [...] Read more.
This study uses a conformable derivative of order β to investigate a fractional Whitham–Broer–Kaup (FWBK) model. This model has significant uses in several scientific domains, such as plasma physics and nonlinear optics. The enhanced modified Sardar sub-equation EMSSE approach is applied to achieve precise analytical solutions, demonstrating its effectiveness in resolving complex wave photons. Bright, solitary, trigonometric, dark, and plane waves are among the various wave dynamics that may be effectively and precisely determined using the FWBK model. Furthermore, the study explores the chaotic behaviour of both perturbed and unperturbed systems, revealing illumination on their dynamic characteristics. By demonstrating its validity in examining wave propagation in nonlinear fractional systems, the effectiveness and reliability of the suggested method in fractional modelling are confirmed through thorough investigation. Full article
Show Figures

Figure 1

10 pages, 5511 KiB  
Review
Multimessenger Studies with the Pierre Auger Observatory
by Jon Paul Lundquist and the Pierre Auger Collaboration
Particles 2025, 8(2), 45; https://doi.org/10.3390/particles8020045 - 22 Apr 2025
Viewed by 639
Abstract
The Pierre Auger Observatory, the world’s largest ultra-high-energy (UHE) cosmic ray (CR) detector, plays a crucial role in multi-messenger astroparticle physics with its high sensitivity to UHE photons and neutrinos. Recent Auger Observatory studies have set stringent limits on the diffuse and point-like [...] Read more.
The Pierre Auger Observatory, the world’s largest ultra-high-energy (UHE) cosmic ray (CR) detector, plays a crucial role in multi-messenger astroparticle physics with its high sensitivity to UHE photons and neutrinos. Recent Auger Observatory studies have set stringent limits on the diffuse and point-like fluxes of these particles, enhancing constraints on dark-matter models and UHECR sources. Although no temporal coincidences of neutrinos or photons with LIGO/Virgo gravitational wave events have been observed, competitive limits on the energy radiated in these particles have been established, particularly from the GW170817 binary neutron star merger. Additionally, correlations between the arrival directions of UHECRs and high-energy neutrinos have been explored using data from the IceCube Neutrino Observatory, ANTARES, and the Auger Observatory, providing additional neutrino flux constraints. Efforts to correlate UHE neutron fluxes with gamma-ray sources within our galaxy continue, although no significant excesses have been found. These collaborative and multi-faceted efforts underscore the pivotal role of the Auger Observatory in advancing multi-messenger astrophysics and probing the most extreme environments of the Universe. Full article
Show Figures

Figure 1

Back to TopTop