Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (157)

Search Parameters:
Keywords = dark current density

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 3725 KiB  
Article
A Strain-Compensated InGaAs/InGaSb Type-II Superlattice Grown on InAs Substrates for Long-Wavelength Infrared Photodetectors
by Hao Zhou, Chang Liu and Yiqiao Chen
Nanomaterials 2025, 15(15), 1143; https://doi.org/10.3390/nano15151143 - 23 Jul 2025
Viewed by 268
Abstract
In this paper, the first demonstration of a highly strained In0.8Ga0.2As/In0.2Ga0.8Sb type-II superlattice structure grown on InAs substrates by molecular beam epitaxy (MBE) for long-wavelength infrared detection was reported. Novel methodologies were developed to optimize [...] Read more.
In this paper, the first demonstration of a highly strained In0.8Ga0.2As/In0.2Ga0.8Sb type-II superlattice structure grown on InAs substrates by molecular beam epitaxy (MBE) for long-wavelength infrared detection was reported. Novel methodologies were developed to optimize the As and Sb flux growth conditions. The quality of the epitaxial layer was characterized using multiple analytical techniques, including differential interference contrast microscopy, atomic force microscopy, high-resolution X-ray diffraction, and high-resolution transmission electron microscopy. The high-quality superlattice structure, with a total thickness of 1.5 μm, exhibited exceptional surface morphology with a root-mean-square roughness of 0.141 nm over a 5 × 5 μm2 area. Single-element devices with PIN architecture were fabricated and characterized. At 77 K, these devices demonstrated a 50% cutoff wavelength of approximately 12.1 μm. The long-wavelength infrared PIN devices exhibited promising performance metrics, including a dark current density of 7.96 × 10−2 A/cm2 at −50 mV bias and a high peak responsivity of 4.90 A/W under zero bias conditions, both measured at 77 K. Furthermore, the devices achieved a high peak quantum efficiency of 65% and a specific detectivity (D*) of 2.74 × 1010 cm·Hz1/2/W at the peak responsivity wavelength of 10.7 µm. These results demonstrate the viability of this material system for long-wavelength infrared detection applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

10 pages, 4230 KiB  
Article
Enhanced UVC Responsivity of Heteroepitaxial α-Ga2O3 Photodetector with Ultra-Thin HfO2 Interlayer
by SiSung Yoon, SeungYoon Oh, GyuHyung Lee, YongKi Kim, SunJae Kim, Ji-Hyeon Park, MyungHun Shin, Dae-Woo Jeon and GeonWook Yoo
Micromachines 2025, 16(7), 836; https://doi.org/10.3390/mi16070836 - 21 Jul 2025
Viewed by 465
Abstract
In this study, the influence of HfO2 interlayer thickness on the performance of heteroepitaxial α-Ga2O3 layer-based metal–insulator–semiconductor–insulator–metal (MISIM) ultraviolet photodetectors is examined. A thin HfO2 interlayer enhances the interface quality and reduces the density of interface traps, thereby [...] Read more.
In this study, the influence of HfO2 interlayer thickness on the performance of heteroepitaxial α-Ga2O3 layer-based metal–insulator–semiconductor–insulator–metal (MISIM) ultraviolet photodetectors is examined. A thin HfO2 interlayer enhances the interface quality and reduces the density of interface traps, thereby improving the performance of UVC photodetectors. The fabricated device with a 1 nm HfO2 interlayer exhibited a significantly reduced dark current and higher photocurrent than a conventional metal–semiconductor–metal (MSM). Specifically, the 1 nm HfO2 MISIM device demonstrated a photocurrent of 2.3 μA and a dark current of 6.61 pA at 20 V, whereas the MSM device exhibited a photocurrent of 1.1 μA and a dark current of 73.3 pA. Furthermore, the photodetector performance was comprehensively evaluated in terms of responsivity, response speed, and high-temperature operation. These results suggest that the proposed ultra-thin HfO2 interlayer is an effective strategy for enhancing the performance of α-Ga2O3-based UVC photodetectors by simultaneously suppressing dark currents and increasing photocurrents and ultimately demonstrate its potential for stable operation under extreme environmental conditions. Full article
(This article belongs to the Special Issue Photodetectors and Their Applications)
Show Figures

Figure 1

14 pages, 21375 KiB  
Article
A Very Thin MCT Film in HDVIP Achieves High Absorption
by Lingwei Jiang, Changhong Sun, Xiaoning Hu, Ruijun Ding and Chun Lin
Sensors 2025, 25(12), 3701; https://doi.org/10.3390/s25123701 - 13 Jun 2025
Viewed by 411
Abstract
Compared to the traditional flip-chip bonded focal plane array, in high-density vertically integrated photodiode (HDVIP) focal plane technology, the thickness of the mercury cadmium telluride (MCT or Hg1−xCdxTe) layer serves as a more critical parameter. This parameter not only [...] Read more.
Compared to the traditional flip-chip bonded focal plane array, in high-density vertically integrated photodiode (HDVIP) focal plane technology, the thickness of the mercury cadmium telluride (MCT or Hg1−xCdxTe) layer serves as a more critical parameter. This parameter not only influences the efficiency of photon energy absorption but also defines the pn junction area, thereby affecting the magnitude of the dark current. Furthermore, it significantly impacts the manufacturability of via-hole etching and formation processes. This paper investigated the photonic crystal resonances and coherent perfect absorption (CPA) effect of a thin MCT layer in HDVIP by using COMSOL Multiphysics® 4.3b and optimized the structure of the loop-hole photodiode device. The CPA, which is formed by this structure, achieves high absorption of illumination in a very thin MCT film. It is demonstrated that an absorption rate of infrared radiation of more than 95% with a wavelength during the 8 µm–10 µm range can be achieved in Hg1−xCdxTe (x = 0.225) with a thickness of only 1.5 µm–3 µm. The benefit of thinner MCT film is that it decreases the dark current of pn junction and reduces the technical difficulty of etching and metallization of the loop-hole photodiode. Full article
(This article belongs to the Special Issue Spectroscopic Techniques for Optical Sensing)
Show Figures

Figure 1

23 pages, 4740 KiB  
Article
Facile Fabrication of CuO Modified TiO2 Heterostructure for Enhanced Photocathodic Corrosion Protection of 304 Stainless Steel
by Abinaya Radhakrishnan, Manoja Tharmaraj, Anuradha Ramani and Nagarajan Srinivasan
Electrochem 2025, 6(2), 21; https://doi.org/10.3390/electrochem6020021 - 12 Jun 2025
Viewed by 1311
Abstract
In recent years, protecting stainless steel from corrosion has become crucial, particularly in harsh environments. The present study focuses on improving the photocathodic corrosion resistance of 304 stainless steel (304SS) by fabricating TiO2/CuO composite coatings using the spin coating technique with [...] Read more.
In recent years, protecting stainless steel from corrosion has become crucial, particularly in harsh environments. The present study focuses on improving the photocathodic corrosion resistance of 304 stainless steel (304SS) by fabricating TiO2/CuO composite coatings using the spin coating technique with varying CuO weight percentages. Structural characterization through X-ray diffraction (XRD) confirmed the presence of the anatase phase of TiO2 and the successful integration of CuO. Raman spectroscopy demonstrated redshifts in the TiO2 characteristic peaks, suggesting changes in bond lengths attributed to CuO incorporation. These findings were further corroborated by Fourier-transform infrared (FTIR) spectroscopy. Surface characterization showed uniform, porous coatings with pore sizes ranging from 75 to 200 nm, which contributed to improved barrier properties. UV–visible diffuse reflectance spectroscopy (UV-DRS) demonstrated enhanced visible light absorption in the heterostructures. Mott–Schottky analysis confirmed improved charge carrier density and favorable band alignment, facilitating efficient charge separation. The electrochemical performance was evaluated in 3.5% NaCl solution under dark and light environments. The results demonstrated that the TiO2/CuO heterostructure significantly enhanced electron transfer and suppressed electron-hole recombination, providing adequate photocathodic protection. Notably, under illumination, the TiO2/CuO (0.005 g) coating achieved a corrosion potential of −255 mV vs SCE and reduced the corrosion current density to 0.460 × 10−6 mA cm−2. These findings suggest that TiO2/CuO coatings offer a promising, durable, and cost-effective solution for corrosion protection in industries such as oil, shipbuilding, and pipelines. Full article
Show Figures

Graphical abstract

13 pages, 1463 KiB  
Article
Weak-Light-Enhanced AlGaN/GaN UV Phototransistors with a Buried p-GaN Structure
by Haiping Wang, Feiyu Zhang, Xuzhi Zhao, Haifan You, Zhan Ma, Jiandong Ye, Hai Lu, Rong Zhang, Youdou Zheng and Dunjun Chen
Electronics 2025, 14(10), 2076; https://doi.org/10.3390/electronics14102076 - 20 May 2025
Viewed by 420
Abstract
We propose a novel ultraviolet (UV) phototransistor (PT) architecture based on an AlGaN/GaN high electron mobility transistor (HEMT) with a buried p-GaN layer. In the dark, the polarization-induced two-dimensional electron gas (2DEG) at the AlGaN/GaN heterojunction interface is depleted by the buried p-GaN [...] Read more.
We propose a novel ultraviolet (UV) phototransistor (PT) architecture based on an AlGaN/GaN high electron mobility transistor (HEMT) with a buried p-GaN layer. In the dark, the polarization-induced two-dimensional electron gas (2DEG) at the AlGaN/GaN heterojunction interface is depleted by the buried p-GaN and the conduction channel is closed. Under UV illumination, the depletion region shrinks to just beneath the AlGaN/GaN interface and the 2DEG recovers. The retraction distance of the depletion region during device turn-on operation is comparable to the thickness of the AlGaN barrier layer, which is an order of magnitude smaller than that in the conventional p-GaN/AlGaN/GaN PT, whose retraction distance spans the entire GaN channel layer. Consequently, the proposed device demonstrates significantly enhanced weak-light detection capability and improved switching speed. Silvaco Atlas simulations reveal that under a weak UV intensity of 100 nW/cm2, the proposed device achieves a photocurrent density of 1.68 × 10−3 mA/mm, responsivity of 8.41 × 105 A/W, photo-to-dark-current ratio of 2.0 × 108, UV-to-visible rejection ratio exceeding 108, detectivity above 1 × 1019 cm·Hz1/2/W, and response time of 0.41/0.41 ns. The electron concentration distributions, conduction band variations, and 2DEG recovery behaviors in both the conventional and novel structures under dark and weak UV illumination are investigated in depth via simulations. Full article
(This article belongs to the Special Issue Advances in Semiconductor GaN and Applications)
Show Figures

Figure 1

10 pages, 3266 KiB  
Article
Extended Shortwave Infrared T2SL Detector Based on AlAsSb/GaSb Barrier Optimization
by Jing Yu, Yuegang Fu, Lidan Lu, Weiqiang Chen, Jianzhen Ou and Lianqing Zhu
Micromachines 2025, 16(5), 575; https://doi.org/10.3390/mi16050575 - 14 May 2025
Viewed by 498
Abstract
Extended shortwave infrared (eSWIR) detectors operating at high temperatures are widely utilized in planetary science. A high-performance eSWIR based on pBin InAs/GaSb/AlSb type-II superlattice (T2SL) grown on a GaSb substrate is demonstrated. It achieves the optimization of the device’s optoelectronic performance by adjusting [...] Read more.
Extended shortwave infrared (eSWIR) detectors operating at high temperatures are widely utilized in planetary science. A high-performance eSWIR based on pBin InAs/GaSb/AlSb type-II superlattice (T2SL) grown on a GaSb substrate is demonstrated. It achieves the optimization of the device’s optoelectronic performance by adjusting the p-type doping concentration in the AlAs0.1Sb0.9/GaSb barrier. Experimental and TCAD simulation results demonstrate that both the device’s dark current and responsivity grow as the doping concentration rises. Here, the bulk dark current density and bulk differential resistance area are extracted to calculate the bulk detectivity for evaluating the photoelectric performance of the device. When the barrier concentration is 5 × 1016 cm−3, the bulk detectivity is 2.1 × 1011 cm·Hz1/2/W, which is 256% higher than the concentration of 1.5 × 1018 cm−3. Moreover, at 300 K (−10 mV), the 100% cutoff wavelength of the device is 1.9 μm, the dark current density is 9.48 × 10−6 A/cm2, and the peak specific detectivity is 7.59 × 1010 cm·Hz1/2/W (at 1.6 μm). An eSWIR focal plane array (FPA) detector with a 320 × 256 array scale was fabricated for this purpose. It demonstrates a remarkably low blind pixel rate of 0.02% and exhibits an excellent imaging quality at room temperature, indicating its vast potential for applications in infrared imaging. Full article
(This article belongs to the Special Issue Integrated Photonics and Optoelectronics, 2nd Edition)
Show Figures

Figure 1

31 pages, 1438 KiB  
Article
FIMP Dark Matter in Bulk Viscous Non-Standard Cosmologies
by Esteban González, Carlos Maldonado, N. Stefanía Mite and Rodrigo Salinas
Symmetry 2025, 17(5), 731; https://doi.org/10.3390/sym17050731 - 9 May 2025
Cited by 1 | Viewed by 372
Abstract
In this paper, we revisit the extension of the classical non-standard cosmological model in which dissipative processes are considered through a bulk viscous term in the new field ϕ, which interacts with the radiation component during the early universe. Specifically, we consider [...] Read more.
In this paper, we revisit the extension of the classical non-standard cosmological model in which dissipative processes are considered through a bulk viscous term in the new field ϕ, which interacts with the radiation component during the early universe. Specifically, we consider an interaction term of the form Γϕρϕ, where Γϕ represents the decay rate of the field and ρϕ denotes its energy density and a bulk viscosity described by ξ=ξ0ρϕ1/2, within the framework of Eckart’s theory. This extended non-standard cosmology is employed to explore the parameter space for the production of Feebly Interacting Massive Particles (FIMPs) as Dark Matter candidates, assuming a constant thermal averaged Dark Matter production cross-section (σv), as well as a preliminary analysis of the non-constant case. In particular, for certain combinations of the model and Dark Matter parameters, namely (Tend,κ) and (mχ,σv), where Tend corresponds to the temperature at which ϕ decays, κ is the ratio between the initial energy density of ϕ and radiation, and mχ is the Dark Matter mass, we identify extensive new parameter regions where Dark Matter can be successfully established while reproducing the currently observed relic density, in contrast to the predictions of ΛCDM and classical non-standard cosmological scenarios. Full article
(This article belongs to the Special Issue Matter and Antimatter Asymmetry in Cosmology and Particle Physics)
Show Figures

Figure 1

19 pages, 7457 KiB  
Article
Preparation and Photoelectric Properties of Nanostructured Native Oxide of Gallium Monoselenide with Applications in Gas Sensors
by Veaceslav Sprincean, Alexandru Macovei, Liviu Leontie, Aurelian Carlescu, Silviu Gurlui and Mihail Caraman
J. Compos. Sci. 2025, 9(4), 194; https://doi.org/10.3390/jcs9040194 - 19 Apr 2025
Viewed by 718
Abstract
Using the Bridgman technique, GaSe single crystals were obtained which were mechanically split into plane-parallel plates with a wide range of thicknesses. By heat treatment in air at 820 °C and 900 °C, for 30 min and 6 h, micro- and nanocomposite layers [...] Read more.
Using the Bridgman technique, GaSe single crystals were obtained which were mechanically split into plane-parallel plates with a wide range of thicknesses. By heat treatment in air at 820 °C and 900 °C, for 30 min and 6 h, micro- and nanocomposite layers of Ga2Se3–Ga2O3 and β–Ga2O3 (native oxide) with surfaces made of nanowires/nanoribbons were obtained. The obtained composite Ga2Se3–Ga2O3 and nanostructured β–Ga2O3 are semiconductor materials with band gaps of 2.21 eV and 4.60 eV (gallium oxide) and photosensitivity bands in the green–red and ultraviolet-C regions that peaked at 590 nm and 262 nm. For an applied voltage of 50 V, the dark current in the photodetector based on the nanostructured β–Ga2O3 layer was of 8.0 × 10−13 A and increased to 9.5 × 10−8 A upon 200 s excitation with 254 nm-wavelength radiation with a power density of 15 mW/cm2. The increase and decrease in the photocurrent are described by an exponential function with time constants of τ1r = 0.92 s, τ2r = 14.0 s, τ1d = 2.18 s, τ2d = 24 s, τ1r = 0.88 s, τ2r = 12.2 s, τ1d = 1.69 s, and τ2d = 16.3 s, respectively, for the photodetector based on the Ga2Se3–Ga2S3–GaSe composite. Photoresistors based on the obtained Ga2Se3–Ga2O3 composite and nanostructured β–Ga2O3 layers show photosensitivity bands in the spectral range of electronic absorption bands of ozone in the same green–red and ultraviolet-C regions, and can serve as ozone sensors (detectors). Full article
Show Figures

Figure 1

15 pages, 5983 KiB  
Article
Mn2+-Doped CsPbBr2I Quantum Dots Photosensitive Films for High-Performance Photodetectors
by Mengwei Chen, Wei Huang, Chenguang Shen, Yingping Yang and Jie Shen
Nanomaterials 2025, 15(6), 444; https://doi.org/10.3390/nano15060444 - 15 Mar 2025
Viewed by 818
Abstract
The variable bandgap and high absorption coefficient of all-inorganic halide perovskite quantum dots (QDs), particularly CsPbBr2I make them highly promising for photodetector applications. However, their high defect density and poor stability limit their performance. To overcome these problems, Mn2+-doped [...] Read more.
The variable bandgap and high absorption coefficient of all-inorganic halide perovskite quantum dots (QDs), particularly CsPbBr2I make them highly promising for photodetector applications. However, their high defect density and poor stability limit their performance. To overcome these problems, Mn2+-doped CsPbBr2I QDs with varying concentrations were synthesized via the one-pot method in this work. By replacing Pb2+ ions, moderate Mn2+ doping caused lattice contraction and improved crystallinity. At the same time, Mn2+-doping effectively passivated surface defects, reducing the defect density by 33%, and suppressed non-radiative recombination, thereby improving photoluminescence (PL) intensity and carrier mobility. The optimized Mn:CsPbBr2I QDs-based photodetector exhibited superior performance, with a dark current of 1.19 × 10−10 A, a photocurrent of 1.29 × 10−5 A, a responsivity (R) of 0.83 A/W, a specific detectivity (D*) of 3.91 × 1012 Jones, an on/off ratio up to 105, and the response time reduced to less than 10 ms, all outperforming undoped CsPbBr2I QDs devices. Stability tests demonstrated enhanced durability, retaining 80% of the initial photocurrent after 200 s of cycling (compared to 50% for undoped devices) and stable operation over 20 days. This work offers a workable strategy for rational doping and structural optimization in the construction of high-performance perovskite optoelectronic devices. Full article
(This article belongs to the Special Issue Advances in Polymer Nanofilms)
Show Figures

Figure 1

20 pages, 7214 KiB  
Article
Effect of Heterojunction Characteristics and Deep Electronic Levels on the Performance of (Cd,Zn)S/Sb2Se3 Solar Cells
by Alessio Bosio, Stefano Pasini, Donato Spoltore, Gianluca Foti, Antonella Parisini, Maura Pavesi, Samaneh Shapouri, Ildikó Cora, Zsolt Fogarassy and Roberto Fornari
Appl. Sci. 2025, 15(6), 2930; https://doi.org/10.3390/app15062930 - 8 Mar 2025
Viewed by 951
Abstract
Antimony selenide (Sb2Se3) is an Earth-abundant and non-toxic material that stands out as a promising absorber for the fabrication of thin film solar cells. Despite significant advancements in recent years, all the devices reported in the literature exhibit open-circuit [...] Read more.
Antimony selenide (Sb2Se3) is an Earth-abundant and non-toxic material that stands out as a promising absorber for the fabrication of thin film solar cells. Despite significant advancements in recent years, all the devices reported in the literature exhibit open-circuit voltages well below the theoretical value. Identifying the factors contributing to this low voltage is an essential step for increasing the efficiency beyond the recently attained 10% milestone and moving closer to the theoretical limit. In this paper, we present the results of an in-depth analysis of a Sb2Se3 solar cell in the common superstrate configuration. By making use of current density–voltage characteristic as a function of both temperature and wavelength, capacitance–voltage measurements, and admittance spectroscopy, we ascribe the low open-circuit voltage to the presence of a potential barrier within the absorber material near the junction interface Furthermore, it was observed that the junction behavior in the dark and under illumination changes, which is compatible with the presence of deep electronic levels connected with intrinsic point defects. Full article
(This article belongs to the Special Issue Advanced Solar Energy Materials: Methods and Applications)
Show Figures

Figure 1

21 pages, 419 KiB  
Article
The Impact of Electric Currents on Majorana Dark Matter at Freeze Out
by Lukas Karoly and David C. Latimer
Universe 2025, 11(2), 66; https://doi.org/10.3390/universe11020066 - 14 Feb 2025
Viewed by 554
Abstract
Thermal relics with masses in the GeV to TeV range remain possible candidates for the Universe’s dark matter (DM). These neutral particles are often assumed to have vanishing electric and magnetic dipole moments so that they do not interact with single real photons, [...] Read more.
Thermal relics with masses in the GeV to TeV range remain possible candidates for the Universe’s dark matter (DM). These neutral particles are often assumed to have vanishing electric and magnetic dipole moments so that they do not interact with single real photons, but the anapole moment, a static electromagnetic property whose features are akin to that of a classical toroidal solenoid, can still be non-zero, permitting interactions with single virtual photons. In some models, DM predominantly annihilates into charged standard model particles through a p-wave process mediated by the anapole moment. The anapole moment is also responsible for another interaction of interest. If a DM medium were subjected to an electric current, a DM particle whose anapole moment was aligned with the current would have lower energy than the state with an antialigned anapole moment. Given these interactions, if a collection of initially unpolarized DM particles were subjected to an electric current, then the DM medium would become partially polarized, according to the Boltzmann distribution. In such a polarized medium, DM annihilation into photons, a subdominant s-wave process realizable through higher order interactions, would be somewhat suppressed. If the local electric current existed during a time in which the DM begins to drop out of thermal equilibrium with the rest of the Universe, the suppressed annihilation could lead to a small local excess in the relic DM density relative to a current-free region. This mechanism by which the local DM density can be perturbed is novel. Using effective interactions to model a DM particle’s anapole moment and polarizabilities (responsible for s-wave annihilation into two photons), we compute the changes in the DM density produced by long- and short-lived currents around freeze out. If we employ the most stringent constraints on DM annihilation into two photons, we find that long-lived currents can result in a fractional change in the DM density on the order of 1017 for DM masses around 100 GeV; for short-lived currents, this fractional change in local DM density is on the order of 1023 for the same DM mass. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

22 pages, 1918 KiB  
Article
Data-Driven Dynamics Learning on Time Simulation of SF6 HVDC-GIS Conical Solid Insulators
by Kenji Urazaki Junior, Francesco Lucchini and Nicolò Marconato
Electronics 2025, 14(3), 616; https://doi.org/10.3390/electronics14030616 - 5 Feb 2025
Viewed by 748
Abstract
An HVDC-GIL system with a conical spacer in a radioactive environment is studied in this work using simulated data on COMSOL® Multiphysics. Electromagnetic simulations on a 2D model were performed with varying ion-pair generation rates and potential applied to the system. This [...] Read more.
An HVDC-GIL system with a conical spacer in a radioactive environment is studied in this work using simulated data on COMSOL® Multiphysics. Electromagnetic simulations on a 2D model were performed with varying ion-pair generation rates and potential applied to the system. This article explores machine learning methods to derive time to steady state, dark current, gas conductivity, and surface charge density expressions. The focus was on constructing symbolic representations, which could be interpretable and less prone to overfitting, using the symbolic regression (SR) and sparse identification of nonlinear dynamics (SINDy) algorithms. The study successfully derived the intended expressions, demonstrating the power of symbolic regression. Predictions of dark currents in the gas–ground electrode interface reported an absolute error and mean absolute percentage error (MAPE) of 1.04 × 104 pA and 0.01%, respectively. The solid–ground electrode interface reported an error of 8.99 × 105 pA and MAPE of 0.04%, showing strong agreement with simulation data. Expressions for time to steady state had a test error of approximately 110 h with MAPE of around 3%. Steady-state gas conductivity expression achieved an absolute error of 0.55 log(S/m) and MAPE of 1%. An interpretable equation was created with SINDy to model the time evolution of surface charge density, achieving a root mean squared error of 1.12 nC/m2/s across time-series data. These results demonstrate the capability of SR and SINDy to provide interpretable and computationally efficient alternatives to time-consuming numerical simulations of HVDC systems under radiation conditions. While the model provides useful insights, performance and practical applications of the expressions can improve with more diverse datasets, which might include experimental data in the future. Full article
Show Figures

Figure 1

28 pages, 7293 KiB  
Article
Integration of p-Type PdPc and n-Type SnZnO into Hybrid Nanofibers Using Simple Chemical Route for Enhancement of Schottky Diode Efficiency
by A. Al-Sayed, Miad Ali Siddiq and Elsayed Elgazzar
Physics 2025, 7(1), 4; https://doi.org/10.3390/physics7010004 - 23 Jan 2025
Viewed by 2392
Abstract
Palladium phthalocyanine (PdPc) and palladium phthalocyanine integrated with tin–zinc oxide (PdPc:SnZnO) were prepared using a simple chemical approach, and their structural and morphological properties were identified using X-ray diffraction, energy dispersive X-ray analysis, scanning electron microscopy, and transmission electron microscopy techniques. The PdPc:SnZnO [...] Read more.
Palladium phthalocyanine (PdPc) and palladium phthalocyanine integrated with tin–zinc oxide (PdPc:SnZnO) were prepared using a simple chemical approach, and their structural and morphological properties were identified using X-ray diffraction, energy dispersive X-ray analysis, scanning electron microscopy, and transmission electron microscopy techniques. The PdPc:SnZnO nanohybrid revealed a polycrystalline structure combining n-type metal oxide SnZnO nanoparticles with p-type organic PdPc molecules. The surface morphology exhibited wrinkled nanofibers decorated with tiny spheres and had a large aspect ratio. The thin film revealed significant optical absorption within the ultraviolet and visible spectra, with narrow band gaps measured at 1.52 eV and 2.60 eV. The electronic characteristics of Al/n-Si/PdPc/Ag and Al/n-Si/PdPc:SnZnO/Ag Schottky diodes were investigated using the current–voltage dependence in both the dark conditions and under illumination. The photodiodes displayed non-ideal behavior with an ideality factor greater than unity. The hybrid diode showed considerably high rectification ratio of 899, quite a low potential barrier, substantial specific photodetectivity, and high enough quantum efficiency, found to be influenced by dopant atoms and the unique topological architecture of the nanohybrid. The capacitance/conductance–voltage dependence measurements revealed the influence of alternative current signals on trapped centers at the interface state, leading to an increase in charge carrier density. Full article
(This article belongs to the Section Applied Physics)
Show Figures

Figure 1

13 pages, 5210 KiB  
Article
The Detection of Pest Contaminants in Chocolate Using Visible-Near-Infrared Single-Pixel Imaging Technology
by Hidemasa Taketoshi, Tetsuya Inagaki, Satoru Tsuchikawa and Te Ma
Foods 2025, 14(2), 206; https://doi.org/10.3390/foods14020206 - 10 Jan 2025
Viewed by 1097
Abstract
Food safety is gaining increasing attention worldwide. Currently, low-density organic foreign objects such as insects are extremely challenging to detect using conventional metal detectors and X-ray inspection systems. This study aimed to develop a visible-near-infrared single-pixel imaging (Vis-NIR-SPI) method to detect small insects [...] Read more.
Food safety is gaining increasing attention worldwide. Currently, low-density organic foreign objects such as insects are extremely challenging to detect using conventional metal detectors and X-ray inspection systems. This study aimed to develop a visible-near-infrared single-pixel imaging (Vis-NIR-SPI) method to detect small insects inside food. The advantages of Vis-NIR light include its ability to analyze samples non-destructively and measure multiple components simultaneously and quickly, while SPI is robust against dark noise, high scattering, and high equipment costs. The experimental results demonstrated that (1) the newly designed system effectively reduces scattering effects from the highly scattering sample (intralipid 20%), allowing for the capture of information beyond the capabilities of a charge-coupled-device camera; (2) insects positioned behind ham and bread were readily detectable using the imaging reconstruction algorithm; and (3) even for chocolate samples with very high light absorption, only 1 uncontaminated sample out of 100 was mistakenly classified as contaminated, yielding an overall accuracy of 99%. This high level of accuracy underscores the potential of the Vis-NIR-SPI method to provide reliable detection while maintaining sample integrity. Furthermore, this method is cost-effective, offering a practical and efficient solution to improve quality control processes and consumer trust in the food industry. Full article
Show Figures

Figure 1

18 pages, 714 KiB  
Article
Implications of the Intriguing Constant Inner Mass Surface Density Observed in Dark Matter Halos
by Jorge Sánchez Almeida
Galaxies 2025, 13(1), 6; https://doi.org/10.3390/galaxies13010006 - 9 Jan 2025
Viewed by 985
Abstract
It has long been known that the observed mass surface density of cored dark matter (DM) halos is approximately constant, independently of the galaxy mass (i.e., ρcrcconstant, with ρc and rc being the central volume [...] Read more.
It has long been known that the observed mass surface density of cored dark matter (DM) halos is approximately constant, independently of the galaxy mass (i.e., ρcrcconstant, with ρc and rc being the central volume density and the radius of the core, respectively). Here, we review the evidence supporting this empirical fact as well as its theoretical interpretation. It seems to be an emergent law resulting from the concentration–halo mass relation predicted by the current cosmological model, where the DM is made of collisionless cold DM particles (CDM). We argue that the prediction ρcrcconstant is not specific to this particular model of DM but holds for any other DM model (e.g., self-interacting) or process (e.g., stellar or AGN feedback) that redistributes the DM within halos conserving its CDM mass. In addition, the fact that ρcrcconstant is shown to allow the estimate of the core DM mass and baryon fraction from stellar photometry alone is particularly useful when the observationally expensive conventional spectroscopic techniques are unfeasible. Full article
Show Figures

Figure 1

Back to TopTop