Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (757)

Search Parameters:
Keywords = damager constitutive model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 11790 KiB  
Article
Uniaxial Mechanical Behavior and Constitutive Modeling of Early-Age Steel Fiber-Reinforced Concrete Under Variable-Temperature Curing Conditions
by Yongkang Xu, Quanmin Xie, Hui Zhou, Yongsheng Jia, Zhibin Zheng and Chong Pan
Materials 2025, 18(15), 3642; https://doi.org/10.3390/ma18153642 (registering DOI) - 2 Aug 2025
Abstract
In high geothermal tunnels (>28 °C), curing temperature critically affects early-age concrete mechanics and durability. Uniaxial compression tests under six curing conditions, combined with CT scanning and machine learning-based crack analysis, were used to evaluate the impacts of curing age, temperature, and fiber [...] Read more.
In high geothermal tunnels (>28 °C), curing temperature critically affects early-age concrete mechanics and durability. Uniaxial compression tests under six curing conditions, combined with CT scanning and machine learning-based crack analysis, were used to evaluate the impacts of curing age, temperature, and fiber content. The test results indicate that concrete exhibits optimal development of mechanical properties under ambient temperature conditions. Specifically, the elastic modulus increased by 33.85% with age in the room-temperature group (RT), by 23.35% in the fiber group (F), and decreased by 26.75% in the varying-temperature group (VT). A Weibull statistical damage-based constitutive model aligned strongly with the experimental data (R2 > 0.99). Fractal analysis of CT-derived cracks revealed clear fractal characteristics in the log(Nr)–log(r) curves, demonstrating internal damage mechanisms under different thermal histories. Full article
(This article belongs to the Section Construction and Building Materials)
21 pages, 4169 KiB  
Article
An Anisotropic Failure Characteristic- and Damage-Coupled Constitutive Model
by Ruiqing Chen, Jieyu Dai, Shuning Gu, Lang Yang, Laohu Long and Jundong Wang
Modelling 2025, 6(3), 75; https://doi.org/10.3390/modelling6030075 (registering DOI) - 1 Aug 2025
Abstract
This study proposes a coupled constitutive model that captures the anisotropic failure characteristics and damage evolution of nickel-based single-crystal (SX) superalloys under various temperature conditions. The model accounts for both creep rate and material damage evolution, enabling accurate prediction of the typical three-stage [...] Read more.
This study proposes a coupled constitutive model that captures the anisotropic failure characteristics and damage evolution of nickel-based single-crystal (SX) superalloys under various temperature conditions. The model accounts for both creep rate and material damage evolution, enabling accurate prediction of the typical three-stage creep curves, macroscopic fracture morphologies, and microstructural features under uniaxial tensile creep for specimens with different crystallographic orientations. Creep behavior of SX superalloys was simulated under multiple orientations and various temperature-stress conditions using the proposed model. The resulting creep curves aligned well with experimental observations, thereby validating the model’s feasibility and accuracy. Furthermore, a finite element model of cylindrical specimens was established, and simulations of the macroscopic fracture morphology were performed using a user-defined material subroutine. By integrating the rafting theory governed by interfacial energy density, the model successfully predicts the rafting morphology of the microstructure at the fracture surface for different crystallographic orientations. The proposed model maintains low programming complexity and computational cost while effectively predicting the creep life and deformation behavior of anisotropic materials. The model accurately captures the three-stage creep deformation behavior of SX specimens and provides reliable predictions of stress fields and microstructural changes at critical cross-sections. The model demonstrates high accuracy in life prediction, with all predicted results falling within a ±1.5× error band and an average error of 14.6%. Full article
Show Figures

Graphical abstract

18 pages, 6795 KiB  
Article
Strain-Rate-Dependent Tensile Behaviour and Viscoelastic Modelling of Kevlar® 29 Plain-Woven Fabric for Ballistic Applications
by Kun Liu, Ying Feng, Bao Kang, Jie Song, Zhongxin Li, Zhilin Wu and Wei Zhang
Polymers 2025, 17(15), 2097; https://doi.org/10.3390/polym17152097 - 30 Jul 2025
Viewed by 136
Abstract
Aramid fibre has become a critical material for individual soft body armour due to its lightweight nature and exceptional impact resistance. To investigate its energy absorption mechanism, quasi-static and dynamic tensile experiments were conducted on Kevlar® 29 plain-woven fabric using a universal [...] Read more.
Aramid fibre has become a critical material for individual soft body armour due to its lightweight nature and exceptional impact resistance. To investigate its energy absorption mechanism, quasi-static and dynamic tensile experiments were conducted on Kevlar® 29 plain-woven fabric using a universal material testing machine and a Split Hopkinson Tensile Bar (SHTB) apparatus. Tensile mechanical responses were obtained under various strain rates. Fracture morphology was characterised using scanning electron microscopy (SEM) and ultra-depth three-dimensional microscopy, followed by an analysis of microstructural damage patterns. Considering the strain rate effect, a viscoelastic constitutive model was developed. The results indicate that the tensile mechanical properties of Kevlar® 29 plain-woven fabric are strain-rate dependent. Tensile strength, elastic modulus, and toughness increase with strain rate, whereas fracture strain decreases. Under quasi-static loading, the fracture surface exhibits plastic flow, with slight axial splitting and tapered fibre ends, indicating ductile failure. In contrast, dynamic loading leads to pronounced axial splitting with reduced split depth, simultaneous rupture of fibre skin and core layers, and fibrillation phenomena, suggesting brittle fracture characteristics. The modified three-element viscoelastic constitutive model effectively captures the strain-rate effect and accurately describes the tensile behaviour of the plain-woven fabric across different strain rates. These findings provide valuable data support for research on ballistic mechanisms and the performance optimisation of protective materials. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

19 pages, 3060 KiB  
Article
Research on Damage Identification in Transmission Tower Structures Based on Cross-Correlation Function Amplitude Vector
by Qing Zhang, Xing Fu, Wenqiang Jiang and Hengdong Jin
Sensors 2025, 25(15), 4659; https://doi.org/10.3390/s25154659 - 27 Jul 2025
Viewed by 299
Abstract
Transmission towers constitute critical power infrastructure, yet structural damage may accumulate over their long-term service, underscoring the paramount importance of research on damage identification. This paper presents a cross-correlation function amplitude vector (CorV) method for damage localization based on time-domain response analysis. The [...] Read more.
Transmission towers constitute critical power infrastructure, yet structural damage may accumulate over their long-term service, underscoring the paramount importance of research on damage identification. This paper presents a cross-correlation function amplitude vector (CorV) method for damage localization based on time-domain response analysis. The approach involves calculating the CorV of structural members before and after damage using dynamic response data, employing the CorV assurance criterion (CVAC) to quantify changes in CorV, and introducing first-order differencing for damage localization. Taking an actual transmission tower in Jiangmen as the engineering backdrop, a finite element model is established. Damage conditions are simulated by reducing the stiffness of specific members, and parameter analyses are conducted to validate the proposed method. Furthermore, experimental validation in a lab is performed to provide additional confirmation. The results indicate that the CVAC value of the damaged structure is significantly lower than that in the healthy state. By analyzing the relative changes in the components of CorV, the damage location can be accurately determined. Notably, this method only requires acquiring the time-domain response signals of the transmission tower under random excitation to detect both the existence and location of damage. Consequently, it is well suited for structural health monitoring of transmission towers under environmental excitation. Full article
(This article belongs to the Special Issue Sensors for Non-Destructive Testing and Structural Health Monitoring)
Show Figures

Figure 1

30 pages, 10277 KiB  
Article
A Finite Element Formulation for True Coupled Modal Analysis and Nonlinear Seismic Modeling of Dam–Reservoir–Foundation Systems: Application to an Arch Dam and Validation
by André Alegre, Sérgio Oliveira, Jorge Proença, Paulo Mendes and Ezequiel Carvalho
Infrastructures 2025, 10(8), 193; https://doi.org/10.3390/infrastructures10080193 - 22 Jul 2025
Viewed by 183
Abstract
This paper presents a formulation for the dynamic analysis of dam–reservoir–foundation systems, employing a coupled finite element model that integrates displacements and reservoir pressures. An innovative coupled approach, without separating the solid and fluid equations, is proposed to directly solve the single non-symmetrical [...] Read more.
This paper presents a formulation for the dynamic analysis of dam–reservoir–foundation systems, employing a coupled finite element model that integrates displacements and reservoir pressures. An innovative coupled approach, without separating the solid and fluid equations, is proposed to directly solve the single non-symmetrical governing equation for the whole system with non-proportional damping. For the modal analysis, a state–space method is adopted to solve the coupled eigenproblem, and complex eigenvalues and eigenvectors are computed, corresponding to non-stationary vibration modes. For the seismic analysis, a time-stepping method is applied to the coupled dynamic equation, and the stress–transfer method is introduced to simulate the nonlinear behavior, innovatively combining a constitutive joint model and a concrete damage model with softening and two independent scalar damage variables (tension and compression). This formulation is implemented in the computer program DamDySSA5.0, developed by the authors. To validate the formulation, this paper provides the experimental and numerical results in the case of the Cahora Bassa dam, instrumented in 2010 with a continuous vibration monitoring system designed by the authors. The good comparison achieved between the monitoring data and the dam–reservoir–foundation model shows that the formulation is suitable for simulating the modal response (natural frequencies and mode shapes) for different reservoir water levels and the seismic response under low-intensity earthquakes, using accelerograms measured at the dam base as input. Additionally, the dam’s nonlinear seismic response is simulated under an artificial accelerogram of increasing intensity, showing the structural effects due to vertical joint movements (release of arch tensions near the crest) and the concrete damage evolution. Full article
(This article belongs to the Special Issue Advances in Dam Engineering of the 21st Century)
Show Figures

Figure 1

16 pages, 7245 KiB  
Article
α-Ketoglutarate Attenuates Oxidative Stress-Induced Neuronal Aging via Modulation of the mTOR Pathway
by Ruoqing Guan, Zhaoyun Xue, Kaikun Huang, Yanqing Zhao, Gongyun He, Yuxing Dai, Mo Liang, Yanzi Wen, Xueshi Ye, Peiqing Liu and Jianwen Chen
Pharmaceuticals 2025, 18(8), 1080; https://doi.org/10.3390/ph18081080 - 22 Jul 2025
Viewed by 378
Abstract
Background/Objectives: Oxidative stress constitutes a principal pathophysiological mechanism driving neurodegeneration and brain aging. α-Ketoglutarate (AKG), a key intermediate of the tricarboxylic acid (TCA) cycle, has shown potential in longevity and oxidative stress resistance. However, the role of AKG in oxidative stress-induced neuronal [...] Read more.
Background/Objectives: Oxidative stress constitutes a principal pathophysiological mechanism driving neurodegeneration and brain aging. α-Ketoglutarate (AKG), a key intermediate of the tricarboxylic acid (TCA) cycle, has shown potential in longevity and oxidative stress resistance. However, the role of AKG in oxidative stress-induced neuronal senescence and its interaction with the mTOR signaling pathway during neuronal aging remain poorly understood, posing a key challenge for developing senescence-targeted therapies. Methods: We investigated the neuroprotective effects of AKG using H2O2-induced senescence in HT22 cells and a D-galactose-induced brain aging mouse model. Assessments encompassed SA-β-gal staining, EdU incorporation, mitochondrial membrane potential (JC-1), and ROS measurement. Antioxidant markers, ATP levels, and the NAD+/NADH ratio were also analyzed. Proteomic profiling (DIA-MS) and KEGG/GSEA enrichment analyses were employed to identify AKG-responsive signaling pathways, and Western blotting validated changes in mTOR signaling and downstream effectors. Results: AKG significantly alleviated H2O2-induced senescence in HT22 cells, evidenced by enhanced cell viability, reduced ROS level, restored mitochondrial function, and downregulated p53/p21 expression. In vivo, AKG administration improved cognitive deficits and vestibulomotor dysfunction while ameliorating brain oxidative damage in aging mice. Proteomics revealed mTOR signaling pathways as key targets for AKG’s anti-aging activity. Mechanistically, AKG suppressed mTOR phosphorylation and activated ULK1, suggesting modulation of autophagy and metabolic homeostasis. These effects were accompanied by enhanced antioxidant enzyme activities and improved redox homeostasis. Conclusions: Our study demonstrates that AKG mitigates oxidative stress-induced neuronal senescence through suppression of the mTOR pathway and enhancement of mitochondrial and antioxidant function. These findings highlight AKG as a metabolic intervention candidate for age-related neurodegenerative diseases. Full article
Show Figures

Graphical abstract

16 pages, 1993 KiB  
Article
A Fractional Derivative Insight into Full-Stage Creep Behavior in Deep Coal
by Shuai Yang, Hongchen Song, Hongwei Zhou, Senlin Xie, Lei Zhang and Wentao Zhou
Fractal Fract. 2025, 9(7), 473; https://doi.org/10.3390/fractalfract9070473 - 21 Jul 2025
Viewed by 252
Abstract
The time-dependent creep behavior of coal is essential for assessing long-term structural stability and operational safety in deep coal mining. Therefore, this work develops a full-stage creep constitutive model. By integrating fractional calculus theory with statistical damage mechanics, a nonlinear fractional-order (FO) damage [...] Read more.
The time-dependent creep behavior of coal is essential for assessing long-term structural stability and operational safety in deep coal mining. Therefore, this work develops a full-stage creep constitutive model. By integrating fractional calculus theory with statistical damage mechanics, a nonlinear fractional-order (FO) damage creep model is constructed through serial connection of elastic, viscous, viscoelastic, and viscoelastic–plastic components. Based on this model, both one-dimensional and three-dimensional (3D) fractional creep damage constitutive equations are acquired. Model parameters are identified using experimental data from deep coal samples in the mining area. The result curves of the improved model coincide with experimental data points, accurately describing the deceleration creep stage (DCS), steady-state creep stage (SCS), and accelerated creep stage (ACS). Furthermore, a sensitivity analysis elucidates the impact of model parameters on coal creep behavior, thereby confirming the model’s robustness and applicability. Consequently, the proposed model offers a solid theoretical basis for evaluating the sustained stability of deep coal mining and has great application potential in deep underground engineering. Full article
Show Figures

Figure 1

22 pages, 3727 KiB  
Article
Johnson–Cook Constitutive Model Parameters Estimation of 22MnB5 Hot Stamping Steel for Automotive Application Produced via the TSCR Process
by Yuxin Song, Yaowen Xu and Gengwei Yang
Metals 2025, 15(7), 811; https://doi.org/10.3390/met15070811 - 20 Jul 2025
Viewed by 2791
Abstract
In the industrial practice of metal forming, the consistent and reasonable characterization of the material behavior under the coupling effect of strain, strain rate, and temperature on the material flow stress is very important for the design and optimization of process parameters. The [...] Read more.
In the industrial practice of metal forming, the consistent and reasonable characterization of the material behavior under the coupling effect of strain, strain rate, and temperature on the material flow stress is very important for the design and optimization of process parameters. The purpose of this work was to establish an appropriate constitutive model to characterize the rheological behavior of a hot-formed steel plate (22MnB5 steel) produced through the TSCR (Thin Slab Casting and Rolling) process under practical deformation temperatures (150–250 °C) and strain rates (0.001–3000 s−1). Subsequently, the material flow behavior was modeled and predicted using the Johnson–Cook flow stress constitutive model. In this study, uniaxial tensile tests were conducted on 22MnB5 steel at room temperature under varying strain rates, along with elevated-temperature tensile tests at different strain rates, to obtain the engineering stress–strain curves and analyze the mechanical properties under various conditions. The results show that during room-temperature tensile testing within the strain rate range of 10−3 to 300 s−1, the 22MnB5 steel exhibited overall yield strength and tensile strength of approximately 1500 MPa, and uniform elongation and fracture elongation of about 7% and 12%, respectively. When the strain rate reached 1000–3000 s−1, the yield strength and tensile strength were approximately 2000 MPa, while the uniform elongation and fracture elongation were about 6% and 10%, respectively. Based on the experimental results, a modified Johnson–Cook constitutive model was developed and calibrated. Compared with the original model, the modified Johnson–Cook model exhibited a higher coefficient of determination (R2), indicating improved fitting accuracy. In addition, to predict the material’s damage behavior, three distinct specimen geometries were designed for quasi-static strain rate uniaxial tensile testing at ambient temperature. The Johnson–Cook failure criterion was implemented, with its constitutive parameters calibrated through integrated finite element analysis to establish the damage model. The determined damage parameters from this investigation can be effectively implemented in metal forming simulations, providing valuable predictive capabilities regarding workpiece material performance. Full article
Show Figures

Figure 1

24 pages, 6323 KiB  
Article
Study on Creep Characteristics of High-Volume Fly Ash-Cement Backfill Considering Initial Damage
by Shuokang Wang, Jingjing Yan, Zihui Dong, Hua Guo, Yuanzhong Yang and Naseer Muhammad Khan
Minerals 2025, 15(7), 759; https://doi.org/10.3390/min15070759 - 19 Jul 2025
Viewed by 338
Abstract
To reveal the long-term deformation behavior of high-volume fly ash-based backfill under continuous mining and backfilling, a fly ash–cement backfill material with 73.0% fly ash content was developed, and creep characteristic tests considering initial damage were conducted. The results demonstrate that: (1) A [...] Read more.
To reveal the long-term deformation behavior of high-volume fly ash-based backfill under continuous mining and backfilling, a fly ash–cement backfill material with 73.0% fly ash content was developed, and creep characteristic tests considering initial damage were conducted. The results demonstrate that: (1) A calculation method for the initial damage of backfill based on stress–strain hysteresis loop cycles is proposed, with cumulative characteristics of initial damage across mining phases analyzed; (2) Creep behaviors of backfill affected by initial damage are investigated, revealing the weakening effect of initial damage on long-term bearing capacity; (3) An enhanced, nonlinear plastic damage element is developed, enabling the construction of an HKBN constitutive model capable of characterizing the complete creep behavior of backfill materials. The research establishes a theoretical framework for engineering applications of backfill materials with early-age strength below 5 MPa, while significantly enhancing the utilization efficiency of coal-based solid wastes. Full article
Show Figures

Figure 1

17 pages, 7633 KiB  
Article
Mechanical Behavior Characteristics of Sandstone and Constitutive Models of Energy Damage Under Different Strain Rates
by Wuyan Xu and Cun Zhang
Appl. Sci. 2025, 15(14), 7954; https://doi.org/10.3390/app15147954 - 17 Jul 2025
Viewed by 207
Abstract
To explore the influence of mine roof on the damage and failure of sandstone surrounding rock under different pressure rates, mechanical experiments with different strain rates were carried out on sandstone rock samples. The strength, deformation, failure, energy and damage characteristics of rock [...] Read more.
To explore the influence of mine roof on the damage and failure of sandstone surrounding rock under different pressure rates, mechanical experiments with different strain rates were carried out on sandstone rock samples. The strength, deformation, failure, energy and damage characteristics of rock samples with different strain rates were also discussed. The research results show that with the increases in the strain rate, peak stress, and elastic modulus show a monotonically increasing trend, while the peak strain decreases in the reverse direction. At a low strain rate, the proportion of the mass fraction of complete rock blocks in the rock sample is relatively high, and the shape integrity is good, while rock samples with a high strain rate retain more small-sized fragmented rock blocks. This indicates that under high-rate loading, the bifurcation phenomenon of secondary cracks is obvious. The rock samples undergo a failure form dominated by small-sized fragments, with severe damage to the rock samples and significant fractal characteristics of the fragments. At the initial stage of loading, the primary fractures close, and the rock samples mainly dissipate energy in the forms of frictional slip and mineral fragmentation. In the middle stage of loading, the residual fractures are compacted, and the dissipative strain energy keeps increasing continuously. In the later stage of loading, secondary cracks accelerate their expansion, and elastic strain energy is released sharply, eventually leading to brittle failure of the rock sample. Under a low strain rate, secondary cracks slowly expand along the clay–quartz interface and cause intergranular failure of the rock sample. However, a high strain rate inhibits the stress relaxation of the clay, forces the energy to transfer to the quartz crystal, promotes the penetration of secondary cracks through the quartz crystal, and triggers transgranular failure. A constitutive model based on energy damage was further constructed, which can accurately characterize the nonlinear hardening characteristics and strength-deformation laws of rock samples with different strain rates. The evolution process of its energy damage can be divided into the unchanged stage, the slow growth stage, and the accelerated growth stage. The characteristics of this stage reveal the sudden change mechanism from the dissipation of elastic strain energy of rock samples to the unstable propagation of secondary cracks, clarify the cumulative influence of strain rate on damage, and provide a theoretical basis for the dynamic assessment of surrounding rock damage and disaster early warning when the mine roof comes under pressure. Full article
Show Figures

Figure 1

19 pages, 10130 KiB  
Article
Dynamic Mechanical Properties and Damage Constitutive Model of Frozen–Thawed Basalt Fiber-Reinforced Concrete Under Wide Strain Rate Range
by Wenbiao Liang, Siyi Wang, Xiao Lv and Yan Li
Materials 2025, 18(14), 3337; https://doi.org/10.3390/ma18143337 - 16 Jul 2025
Viewed by 401
Abstract
To comprehensively investigate the compressive behavior of basalt fiber-reinforced concrete (BFRC) subjected to multiple freeze–thaw cycles, a series of quasi-static and dynamic compression tests were conducted on BFRC at various fiber volume fractions and a wide strain rate range of 1 × 10 [...] Read more.
To comprehensively investigate the compressive behavior of basalt fiber-reinforced concrete (BFRC) subjected to multiple freeze–thaw cycles, a series of quasi-static and dynamic compression tests were conducted on BFRC at various fiber volume fractions and a wide strain rate range of 1 × 10−3–420 s−1. The freeze–thaw deterioration characteristics of BFRC were analyzed from macro and micro perspectives. The influence of freeze–thaw degradation, strain rate effect, and fiber reinforcement effect on the mechanical performance of BFRC was investigated. It was found that when the fiber volume fraction was 0.2%, the fiber reinforcement performance of basalt fiber was optimal. By incorporating the damage factor of freeze–thaw cycles and the dynamic increase factor of strength into the Ottosen nonlinear elastic constitutive model, a dynamic constitutive model that considers the fiber content, strain rate enhancing effect, and freeze–thaw degradation influence was established. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 5957 KiB  
Article
Plasticity and Fracture Behavior of High-Strength Bolts Considering Steel Shear Behavior
by Yajun Zhang, Longteng Liang, Jian Zhu and Ruilin Zhang
Buildings 2025, 15(14), 2430; https://doi.org/10.3390/buildings15142430 - 10 Jul 2025
Viewed by 271
Abstract
The accurate description of plasticity and fracture behavior is essential in numerically investigating the mechanical responses of high-strength bolts under tension, shear and coupling loads. However, based on the von Mises criterion, inputting the constitutive relation and damage model from the tensile coupon [...] Read more.
The accurate description of plasticity and fracture behavior is essential in numerically investigating the mechanical responses of high-strength bolts under tension, shear and coupling loads. However, based on the von Mises criterion, inputting the constitutive relation and damage model from the tensile coupon test into the finite element method cannot properly predict the shear behavior of high-strength bolts. Cylindrical tensile coupons and shear specimens of common and weathering high-strength bolts are tested to obtain the complete tensile and shear responses. The combined S-V model and the modified shear constitutive model are collaboratively used to calibrate and describe the tensile and shear constitutive relations of high-strength bolts, and then the Bao–Wierzbicki model is used to predict the tensile and shear fracture behaviors. Furthermore, the collaborating method is used to discuss the applicable range of tensile and shear constitutive models for high-strength bolts under a tensile–shear coupling load, based on numerical analysis against available experimental data in the literature. The loading angle of 30° along the bolt rod is defined as the cut-off to differentiate high-strength bolts under a tensile- or shear-dominated state, and the corresponding mechanical responses of high-strength bolts can be predicted well based on the tensile and shear constitutive models, respectively. Full article
Show Figures

Figure 1

27 pages, 2130 KiB  
Article
Disaster Risk Reduction in a Manhattan-Type Road Network: A Framework for Serious Game Activities for Evacuation
by Corrado Rindone and Antonio Russo
Sustainability 2025, 17(14), 6326; https://doi.org/10.3390/su17146326 - 10 Jul 2025
Viewed by 262
Abstract
The increasing number of natural and man-made disasters registered at the global level is causing a significant amount of damage. This represents one of the main sustainability challenges at the global level. The collapse of the Twin Towers, Hurricane Katrina, and the nuclear [...] Read more.
The increasing number of natural and man-made disasters registered at the global level is causing a significant amount of damage. This represents one of the main sustainability challenges at the global level. The collapse of the Twin Towers, Hurricane Katrina, and the nuclear accident at the Fukushima power plant are some of the most representative disaster events that occurred at the beginning of the third millennium. These relevant disasters need an enhanced level of preparedness to reduce the gaps between the plan and its implementation. Among these actions, training and exercises play a relevant role because they increase the capability of planners, managers, and the people involved. By focusing on the exposure risk component, the general objective of the research is to obtain quantitative evaluations of the exercise’s contribution to risk reduction through evacuation. The paper aims to analyze serious games using a set of methods and models that simulate an urban risk reduction plan. In particular, the paper proposes a transparent framework that merges transport risk analysis (TRA) and transport system models (TSMs), developing serious game activities with the support of emerging information and communication technologies (e-ICT). Transparency is possible through the explicitation of reproducible analytical formulations and linked parameters. The core framework of serious games is constituted by a set of models that reproduce the effects of players’ choices, including planned actions of decisionmakers and travel users’ choices. The framework constitutes the prototype of a digital platform in a “non-stressful” context aimed at providing more insights about the effects of planned actions. The proposed framework is characterized by transparency, a feature that allows other analysts and planners to reproduce each risk scenario, by applying TRA and relative effects simulations in territorial contexts by means of TSMs and parameters updated by e-ICT. A basic experimentation is performed by using a game, presenting the main results of a prototype test based on a reproducible exercise. The prototype experiment demonstrates the efficacy of increasing preparedness levels and reducing exposure by designing and implementing a serious game. The paper’s methodology and results are useful for policymakers, emergency managers, and the community for increasing the preparedness level. Full article
(This article belongs to the Special Issue Sustainable Transportation Engineering and Mobility Safety Management)
Show Figures

Figure 1

15 pages, 3336 KiB  
Article
Design, Optimization, and Experimental Validation of Dynamic Vibration Absorber for Vibration Suppression in Cantilevered Plate Structures
by Linn Ye, Yiqing Yang, Wenshuo Ma and Wenjing Wu
Vibration 2025, 8(3), 40; https://doi.org/10.3390/vibration8030040 - 8 Jul 2025
Viewed by 436
Abstract
Vibration control constitutes a critical consideration in structural design, as excessive oscillations may precipitate fatigue damage, operational instability, and catastrophic failures. Dynamic vibration absorbers (DVAs), serving as passive control devices, demonstrate remarkable efficacy in mitigating structural vibrations across engineering applications. This study systematically [...] Read more.
Vibration control constitutes a critical consideration in structural design, as excessive oscillations may precipitate fatigue damage, operational instability, and catastrophic failures. Dynamic vibration absorbers (DVAs), serving as passive control devices, demonstrate remarkable efficacy in mitigating structural vibrations across engineering applications. This study systematically investigates the design of DVAs for vibration suppression of a cantilevered plate through integrated theoretical modeling, parameter optimization, structural implementation, and experimental validation. Key methodologies encompass receptance coupling substructure analysis (RCSA) for system dynamics characterization and H∞ optimization for absorber parameter identification. Experimental results reveal 74.2–85.7% vibration amplitude reduction in target mode, validating the proposed design framework. Challenges pertaining to boundary condition uncertainties and manufacturing tolerances are critically discussed, providing insights for practical implementations. Full article
Show Figures

Figure 1

12 pages, 2798 KiB  
Article
Macro-Mesoscale Submodeling Approach for Analysis of Large Masonry Structures
by S. Pietruszczak and P. Przecherski
Buildings 2025, 15(14), 2382; https://doi.org/10.3390/buildings15142382 - 8 Jul 2025
Viewed by 240
Abstract
In this work, a sub-modeling technique is proposed for the analysis of large-scale masonry structures. The approach couples an anisotropic macroscale formulation, derived by incorporating the notion of a fabric tensor for an orthotropic material, with mesoscale analysis. The latter employs distinct inelastic [...] Read more.
In this work, a sub-modeling technique is proposed for the analysis of large-scale masonry structures. The approach couples an anisotropic macroscale formulation, derived by incorporating the notion of a fabric tensor for an orthotropic material, with mesoscale analysis. The latter employs distinct inelastic constitutive relations assigned to the brick material and brick-mortar interfaces, which enable the tracing of localized damage propagation. The mechanical properties at the macro-level are identified from the ‘virtual’ set of data generated through mesoscale analysis, ensuring consistency between the two approaches in representing the masonry material across different scales. In the numerical analysis, the macroscale approach is first applied over the entire domain to interpolate the kinematic boundary conditions in a local region of interest, which is then re-analyzed based on the mesoscale framework. The developed strategy is illustrated by simulating the shear response of a large-scale unreinforced masonry wall with multiple window openings. Full article
(This article belongs to the Special Issue Modeling and Testing the Performance of Masonry Structures)
Show Figures

Figure 1

Back to TopTop