Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (134)

Search Parameters:
Keywords = dairy farm contamination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1167 KB  
Review
One Health Perspective on Antimicrobial Resistance in Bovine Mastitis Pathogens—A Narrative Review
by Bigya Dhital, Rameshwor Pudasaini, Jui-Chun Hsieh, Ramchandra Pudasaini, Ying-Tsong Chen, Day-Yu Chao and Hsin-I Chiang
Antibiotics 2026, 15(1), 84; https://doi.org/10.3390/antibiotics15010084 - 14 Jan 2026
Viewed by 714
Abstract
Background/Objectives: Bovine mastitis, a significant global concern in dairy farming, results in substantial economic losses and poses considerable risks to both animal and human health. With the increasing prevalence of antimicrobial resistance (AMR) in mastitis pathogens, the potential for resistant infections to [...] Read more.
Background/Objectives: Bovine mastitis, a significant global concern in dairy farming, results in substantial economic losses and poses considerable risks to both animal and human health. With the increasing prevalence of antimicrobial resistance (AMR) in mastitis pathogens, the potential for resistant infections to spread from livestock to humans and the environment is becoming a critical public health issue. This narrative review summarizes the current evidence on antimicrobial resistance in pathogens causing bovine mastitis and examines it from a One Health perspective, encompassing animal, human, and environmental interfaces. Results: By examining the complex interplay among animal, human, and environmental health, we highlight key factors that drive resistance, including the overuse of antimicrobials, poor farm management, and environmental contamination. We also discuss innovative strategies, such as enhanced surveillance, pathogen-specific diagnostics, alternatives to antimicrobials, and sustainable farm practices, that can mitigate the emergence of resistance. Key knowledge gaps include a limited understanding of antimicrobial residues, resistant pathogens, and gene transmission pathways and inconsistent implementation of antimicrobial stewardship practices. Conclusions: This review emphasizes the need for a coordinated, multidisciplinary effort to reduce the burden of AMR in bovine mastitis pathogens, ensuring the continued efficacy of antimicrobials and safeguarding public health through responsible management and policy interventions. Full article
(This article belongs to the Section The Global Need for Effective Antibiotics)
Show Figures

Figure 1

15 pages, 3041 KB  
Article
Feasibility of Using Animal Manure and Manure-Based Fertilizer as Soil Amendments: Veterinary Drugs Occurrence and Ecological Risk
by Qingshan Li, Dapeng Zhang, Suzhen Yin, Yan Li, Xia Gao, Xiuhua Wu and Lihua Jiang
Toxics 2026, 14(1), 32; https://doi.org/10.3390/toxics14010032 - 26 Dec 2025
Cited by 1 | Viewed by 408
Abstract
Veterinary drugs are widely present in animal manure and manure-based fertilizers, making their safety for use as soil amendments still ambiguous. This study investigated the concentrations of 17 typical veterinary drugs in animal manure and manure-based fertilizers from Shandong Province using solid-phase extraction [...] Read more.
Veterinary drugs are widely present in animal manure and manure-based fertilizers, making their safety for use as soil amendments still ambiguous. This study investigated the concentrations of 17 typical veterinary drugs in animal manure and manure-based fertilizers from Shandong Province using solid-phase extraction coupled with high-performance liquid chromatography–tandem mass spectrometry and assessed their environmental risks to soil organisms based on risk quotient values. The established method demonstrated robust performance, with drug recovery rates ranging from 72.9% to 109%. Tetracyclines were identified as the most prevalent contaminants, with mean concentrations of 1522 μg/kg in animal manure and 144 μg/kg in manure-based fertilizers. Drug concentrations in manure-based fertilizers were generally lower than those in animal manure. Livestock manure contained higher drug concentrations compared to poultry manure. Influenced by farming practices, drug concentrations were higher in beef cattle manure than in dairy cattle manure, and higher in broiler manure than in layer manure. Manure-based fertilizers primarily derived their drug content from chicken, cattle, and sheep manure. Tetracyclines in swine and sheep manure posed high risks to soil organisms, while those in beef cattle manure and dairy cattle manure posed medium risks. In contrast, most drugs in manure-based fertilizers exhibited low risks. Comprehensive analysis of both concentration levels and ecological risks indicates that manure-based fertilizers represent a more feasible option for soil amendment. This study provides a theoretical foundation for better understanding the feasibility of applying animal manure and manure-based fertilizers to agricultural land. Full article
(This article belongs to the Topic Biomass Use and its Health and Environmental Effects)
Show Figures

Graphical abstract

21 pages, 355 KB  
Review
Antibiotic Residues in Milk as a Consequence of Mastitis Treatment: Balancing Animal Welfare and One Health Risks
by Dragana Tomanić, Nebojša Kladar and Zorana Kovačević
Vet. Sci. 2025, 12(12), 1159; https://doi.org/10.3390/vetsci12121159 - 4 Dec 2025
Cited by 1 | Viewed by 1170
Abstract
Bovine mastitis is a prevalent infectious disease in dairy cattle, causing inflammation, pain, reduced milk yield, and economic losses. Antibiotic therapy is the mainstay of treatment, yet irresponsible use can lead to the presence of antibiotic residues in milk and contribute to the [...] Read more.
Bovine mastitis is a prevalent infectious disease in dairy cattle, causing inflammation, pain, reduced milk yield, and economic losses. Antibiotic therapy is the mainstay of treatment, yet irresponsible use can lead to the presence of antibiotic residues in milk and contribute to the emergence of antimicrobial resistance (AMR), posing significant risks to public health and food safety. This review aims to provide a comprehensive synthesis of current knowledge on mastitis management, antibiotic use and resulting residues in milk, their public health and environmental impacts, and alternative strategies to reduce antibiotic dependence, framed within a One Health–One Welfare perspective. Antibiotic residues in milk are closely linked to treatment practices, withdrawal period compliance, and regulatory oversight, with prevalence ranging from <1% in some European countries to over 80% in parts of Africa. Residues, particularly from β-lactams, tetracyclines, and quinolones, can disrupt human intestinal microbiota, promote resistant bacterial strains, trigger immunological reactions, and interfere with dairy processing. Environmental contamination through excreted antibiotics further facilitates the spread of resistance. Sustainable alternatives, including probiotics, phytotherapy, vaccines, and improved farm biosecurity, show promise in reducing antibiotic use while maintaining animal welfare and productivity. Antibiotic therapy remains essential for mastitis control, but its consequences on milk safety, public health, and AMR require prudent management. Integrating monitoring, adherence to withdrawal periods, and sustainable alternatives within a One Health–One Welfare framework is critical for ensuring safe, responsible, and environmentally sustainable dairy production. Full article
(This article belongs to the Special Issue Multidimensional Impacts of Infectious Diseases on Animal Welfare)
23 pages, 6749 KB  
Article
Distribution Characteristics and Pollution Assessment of Lead and Cadmium Content in Selected Dairy Farms in Jiangsu, China
by Yi Yang, Yan-Ni Wu, Yi-Hui Zhang, Xiang-Shun Cui, Xiao-Yang Lv, Zhi Chen, Zhang-Ping Yang and Qin-Yue Lu
Vet. Sci. 2025, 12(11), 1042; https://doi.org/10.3390/vetsci12111042 - 1 Nov 2025
Cited by 1 | Viewed by 646
Abstract
Lead and cadmium are prevalent heavy metal toxins that contaminate the natural environment through animal husbandry and agricultural and industrial activities. Exposing dairy cows to these pollutants can have detrimental effects on milk production and quality, leading to health problems and decreasing the [...] Read more.
Lead and cadmium are prevalent heavy metal toxins that contaminate the natural environment through animal husbandry and agricultural and industrial activities. Exposing dairy cows to these pollutants can have detrimental effects on milk production and quality, leading to health problems and decreasing the animals’ production performance. Therefore, investigating the distribution of lead and cadmium content and assessing the pollution levels at dairy farms are of significant theoretical and practical significance. This study determined the spatial distribution and clustering of lead and cadmium by sampling soil and feces from dairy farms in Jiangsu, China. The data obtained, in conjunction with soil data from Jiangsu Province, were used to evaluate the extent of lead and cadmium pollution at these farms. The results indicate that lead pollution levels are relatively low, whereas cadmium pollution is moderate in multiple regions. Ultimately, this study contributes to the assessment of the risks associated with lead and cadmium in dairy farming production and supports the establishment of a sustainable animal husbandry system, serving as an effective reference for subsequent ecological health farming, disease prevention, and management. Full article
Show Figures

Figure 1

18 pages, 3364 KB  
Article
The Results After One Year of an Experimental Protocol Aimed at Reducing Paratuberculosis in an Intensive Dairy Herd
by Anita Filippi, Giordano Ventura, Antonella Lamontanara, Luigi Orrù, Fabio Ostanello, Riccardo Frontoni, Laura Mazzera, Edoardo Tuccia, Matteo Ricchi and Chiara Garbarino
Animals 2025, 15(18), 2695; https://doi.org/10.3390/ani15182695 - 15 Sep 2025
Viewed by 708
Abstract
Paratuberculosis or Johne’s disease is caused by Mycobacterium avium subsp. paratuberculosis (MAP). The disease is characterized by a chronic and incurable enteritis in ruminants and it is responsible for significant economic losses, also raising concerns about food safety and animal welfare. Effective control [...] Read more.
Paratuberculosis or Johne’s disease is caused by Mycobacterium avium subsp. paratuberculosis (MAP). The disease is characterized by a chronic and incurable enteritis in ruminants and it is responsible for significant economic losses, also raising concerns about food safety and animal welfare. Effective control is hindered by diagnostic limitations, long incubation periods, and the environmental resistance of the pathogen. This study aimed to reduce the apparent prevalence of paratuberculosis in a single intensive dairy herd through an integrated approach that combines diagnostics and management strategies. All cows over 24 months of age were tested using both fecal PCR and ELISA serology. Digital PCR (dPCR) was used to quantify MAP shedding in fecal-positive animals, enabling prioritization for removal based on environmental contamination risk. Integrating diagnostic tools allowed the precise identification and quantification of high-risk animals. Meanwhile, structural improvements and biosecurity measures were implemented on the farm. Preliminary outcomes suggest a marked reduction in herd-level MAP prevalence, lowering the seroprevalence from 7.6% to 4.5% and the fecal PCR prevalence from 6.5% to 2.8%. This case highlights the effectiveness of combining laboratory testing (serology and molecular diagnostics) and targeted changes in farm management to control paratuberculosis in high-density dairy systems. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

34 pages, 2185 KB  
Review
Impact of Mixed Rations on Rumen Fermentation, Microbial Activity and Animal Performance: Enhancing Livestock Health and Productivity—Invited Review
by Methun C. Dey, Gauri Jairath, Ishaya U. Gadzama, Susana P. Alves and Eric N. Ponnampalam
Ruminants 2025, 5(3), 42; https://doi.org/10.3390/ruminants5030042 - 9 Sep 2025
Cited by 1 | Viewed by 3360
Abstract
Feeding a balanced diet such as total mixed ration (TMR) is a widely adopted feeding strategy providing a uniformly blended diet of roughages, concentrates, and supplements that enhances ruminant productivity by optimizing nutrient utilization, stabilizing rumen fermentation, and improving microbial activity. Scientific studies [...] Read more.
Feeding a balanced diet such as total mixed ration (TMR) is a widely adopted feeding strategy providing a uniformly blended diet of roughages, concentrates, and supplements that enhances ruminant productivity by optimizing nutrient utilization, stabilizing rumen fermentation, and improving microbial activity. Scientific studies have confirmed that TMR increases dry matter intake (DMI), milk yield, and growth performance in dairy and beef cattle, as well as in sheep and goats. TMR’s advantages include consistent feed quality, reduced selective feeding, and improved feed efficiency. A key benefit of TMR is its ability to promote the production of volatile fatty acids (VFAs), which are the primary energy source for ruminants, particularly propionate. This enhances energy metabolism, resulting in higher carcass yields, increased milk production, and economic benefits compared to conventional or supplementary feeding systems. However, TMR feeding is also susceptible to mycotoxin contamination (e.g., aflatoxins, zearalenone), potential effects on methane emissions, and the need for precise formulation to maintain consistency and optimise profitability. Prevention and good practices, including routine inspection of feed for pathogens and vulnerable ingredients, as well as careful management of particle size and forage-to-concentrate ratios, are crucial in preventing subacute ruminal acidosis (SARA) and the development of other subclinical diseases. Mycotoxin binders, such as hydrated sodium calcium aluminosilicate, can also reduce mycotoxin absorption. Another advantage of practicing TMR is that it can support sustainable farming by integrating agro-industrial byproducts, which minimises environmental impact. In conclusion, TMR is a widely adopted feeding strategy that significantly enhances ruminant productivity by optimizing nutrient utilization, stabilizing rumen fermentation, and improving microbial activity, leading to increased dry matter intake, milk yield, and growth performance. It offers key benefits such as consistent feed quality, reduced selective feeding, improved feed efficiency, and enhanced energy metabolism, providing economic advantages and supporting sustainable farming through agro-industrial byproduct integration. However, its implementation requires careful management to mitigate risks, including mycotoxin contamination, potential impacts on methane emissions, and digestive issues like SARA if formulation is not precise. Therefore, for sustainable production, future research should focus on optimizing TMR formulations with alternative ingredients (e.g., agro-industrial byproducts) and precision feeding strategies to enhance livestock health and animal productivity while minimizing environmental impacts. Full article
(This article belongs to the Special Issue Feature Papers of Ruminants 2024–2025)
Show Figures

Figure 1

14 pages, 935 KB  
Systematic Review
The Global Prevalence of Bacillus spp. in Milk and Dairy Products: A Systematic Review and Meta-Analysis
by Tianmei Sun, Ran Wang, Yanan Sun, Xiaoxu Zhang, Chongtao Ge and Yixuan Li
Foods 2025, 14(15), 2599; https://doi.org/10.3390/foods14152599 - 24 Jul 2025
Cited by 1 | Viewed by 1777
Abstract
The spoilage of dairy products and foodborne diseases caused by Bacillus spp. are important public concerns. The objective of this study was to estimate the global prevalence of Bacillus spp. in a range of milk and dairy products by using a meta-analysis of [...] Read more.
The spoilage of dairy products and foodborne diseases caused by Bacillus spp. are important public concerns. The objective of this study was to estimate the global prevalence of Bacillus spp. in a range of milk and dairy products by using a meta-analysis of literature data published between 2001 and 2023. A total of 3624 publications were collected from Web of Science and PubMed databases. Following the principles of systematic review, 417 sets of prevalence data were extracted from 142 eligible publications. Estimated by the random-effects model, the overall prevalence of Bacillus spp. in milk and dairy products was 11.8% (95% CI: 10.1–13.7%), with highly severe heterogeneity (94.8%). Subgroup analyses revealed substantial heterogeneity in Bacillus spp. prevalence according to geographical continents, sources of sampling, types of dairy products, microbial species, and detection methods. The prevalence of Bacillus spp. was highest in Asia (15.4%, 95% CI: 12.3–19.1%), lowest in Oceania (3.5%, 95% CI: 3.3–3.7%) and generally higher in developing versus developed countries. The prevalence of Bacillus spp. isolated from retail markets (16.1%, 95% CI: 13.0–19.7%) was higher than from farms (10.3%, 95% CI: 6.9–15.0%) or dairy plants (9.2%, 95% CI: 7.1–12.0%). This finding is likely attributable to its inherent characteristic of the resistant endospores and ubiquitous presence in the environment—Bacillus spp. can potentially cyclically contaminate farms, dairy products and human markets. Regarding the species distribution, Bacillus cereus presented a cosmopolitan distribution across all continents. The epidemic patterns of different Bacillus species vary depending on the sample sources. In addition, the detection method utilized also affected the reported prevalence of Bacillus spp. It is recommended to use molecular-based rapid detection methods to obtain a more accurate prevalence of Bacillus contamination. Therefore, a better understanding of variations in Bacillus spp. prevalence across different factors will enable competent authorities, industries, and other relevant stakeholders to tailor their interventions for effectively controlling Bacillus spp. in milk and dairy products. Full article
Show Figures

Figure 1

19 pages, 2160 KB  
Article
Genetic Diversity and Phylogenetic Analysis Among Multidrug-Resistant Pseudomonas spp. Isolated from Solid Waste Dump Sites and Dairy Farms
by Tuhina Das, Arkaprava Das, Neha Das, Rittika Mukherjee, Mousumi Saha, Dipanwita Das and Agniswar Sarkar
Acta Microbiol. Hell. 2025, 70(3), 30; https://doi.org/10.3390/amh70030030 - 16 Jul 2025
Viewed by 1303
Abstract
The excessive use of antimicrobials drives the emergence of multidrug resistance (MDR) in bacterial strains, which harbor resistance genes to survive under diverse drug pressures. Such resistance can result in life-threatening infections. The predominance of MDR Pseudomonas spp. poses significant challenges to public [...] Read more.
The excessive use of antimicrobials drives the emergence of multidrug resistance (MDR) in bacterial strains, which harbor resistance genes to survive under diverse drug pressures. Such resistance can result in life-threatening infections. The predominance of MDR Pseudomonas spp. poses significant challenges to public health and environmental sustainability, particularly in ecosystems affected by human activities. Characterizing MDR Pseudomonas spp. is crucial for developing effective diagnostic tools and biosecurity protocols, with broader implications for managing other pathogenic bacteria. Strains were diagnosed through 16S rRNA PCR and sequencing, complemented by phylogenetic analysis to evaluate local and global evolutionary connections. Antibiotic susceptibility tests revealed extensive resistance across multiple classes, with MIC values surpassing clinical breakpoints. This study examined the genetic diversity, resistance potential, and phylogenetic relationships among Pseudomonas aeruginosa strain DG2 and Pseudomonas fluorescens strain FM3, which were isolated from solid waste dump sites (n = 30) and dairy farms (n = 22) in West Bengal, India. Phylogenetic analysis reveals distinct clusters that highlight significant geographic linkages and genetic variability among the strains. Significant biofilm production under antibiotic exposure markedly increased resistance levels. RAPD-PCR profiling revealed substantial genetic diversity among the isolates, indicating variations in their genetic makeup. In contrast, SDS-PAGE analysis provided insights into the protein expression patterns that are activated by stress, which are closely linked to MDR. This dual approach offers a clearer perspective on their adaptive responses to environmental stressors. This study underscores the need for vigilant monitoring of MDR Pseudomonas spp. in anthropogenically impacted environments to mitigate risks to human and animal health. Surveillance strategies combining phenotypic and molecular approaches are essential to assess the risks posed by resilient pathogens. Solid waste and dairy farm ecosystems emerge as critical reservoirs for the evolution and dissemination of MDR Pseudomonas spp. Full article
Show Figures

Figure 1

21 pages, 681 KB  
Article
Qualitative Risk Assessment of Foot-and-Mouth Disease Virus Introduction and Transmission to Dairy Farms via Raw Milk Transportation in Thailand: A Scenario-Based Approach
by Patidpong Chumsang, Tawatchai Singhla and Warangkhana Chaisowwong
Vet. Sci. 2025, 12(7), 623; https://doi.org/10.3390/vetsci12070623 - 27 Jun 2025
Viewed by 2504
Abstract
Foot-and-mouth disease (FMD) significantly impacts global livestock industries, with raw milk transportation posing a recognized pathway for viral dissemination, particularly in endemic regions. This study aimed to evaluate the risk of FMD virus (FMDV) introduction and transmission to dairy farms via raw milk [...] Read more.
Foot-and-mouth disease (FMD) significantly impacts global livestock industries, with raw milk transportation posing a recognized pathway for viral dissemination, particularly in endemic regions. This study aimed to evaluate the risk of FMD virus (FMDV) introduction and transmission to dairy farms via raw milk transportation in Ban Thi District, Thailand. A qualitative risk assessment methodology, adhering to WOAH guidelines, was employed. Data were collected through structured farmer surveys (n = 109), expert interviews (n = 12), and reviews of national disease surveillance data and scientific literature. The risk assessment, utilizing a scenario tree approach for domestic dairy cattle, revealed a moderate overall risk of FMDV transmission. This finding is primarily attributed to critical gaps in on-farm biosecurity practices, potential contamination at milk collection centers, and significant challenges in detecting subclinical carrier animals. While the qualitative approach presented inherent limitations and uncertainties, the study successfully highlighted key vulnerabilities. The results underscore the urgent necessity for implementing targeted biosecurity protocols, developing more robust surveillance strategies for FMDV carriers, and establishing standardized risk assessment frameworks to mitigate potential outbreaks and protect the regional dairy industry. Full article
Show Figures

Figure 1

13 pages, 255 KB  
Communication
Aerobic Uterine Pathogens in Dairy Cattle: Surveillance and Antimicrobial Resistance Profiles in Postpartum Endometritis
by Ionica Iancu, Sebastian Alexandru Popa, Janos Degi, Alexandru Gligor, Ionela Popa, Vlad Iorgoni, Paula Nistor, Kálmán Imre, Ileana Nichita and Viorel Herman
Antibiotics 2025, 14(7), 650; https://doi.org/10.3390/antibiotics14070650 - 26 Jun 2025
Cited by 2 | Viewed by 1594
Abstract
Bovine uterine infections remain a widespread challenge in dairy production systems, contributing to reduced fertility and overall herd performance. Background/Objectives: Postpartum uterine infections significantly affect dairy cattle fertility and productivity. This study aimed to identify aerobic bacterial pathogens associated with clinical endometritis [...] Read more.
Bovine uterine infections remain a widespread challenge in dairy production systems, contributing to reduced fertility and overall herd performance. Background/Objectives: Postpartum uterine infections significantly affect dairy cattle fertility and productivity. This study aimed to identify aerobic bacterial pathogens associated with clinical endometritis in Romanian dairy cows and evaluate their antimicrobial resistance profiles. Methods: Uterine swab samples (n = 348) were collected from clinically affected cows across multiple farms. Bacteria were isolated and identified using conventional culture methods and MALDI-TOF MS. Antimicrobial susceptibility testing was performed using the VITEK® 2 system with GN 96 and GP 79 cards. Statistical analysis was conducted using the chi-square (χ2) test. Results: A total of 387 bacterial isolates were recovered, with over half of the samples showing mixed bacterial contamination. Escherichia coli was the most frequently identified pathogen (44.9%), followed by Staphylococcus spp. (17.3%) and Klebsiella spp. (14.5%). Gram-negative isolates showed high resistance to tetracycline and ampicillin, while retaining susceptibility to imipenem and polymyxin B. Among Gram-positive isolates, Streptococcus spp. were highly susceptible to β-lactams, while Staphylococcus spp. showed moderate resistance to penicillin and macrolides. Conclusions: This study highlights the prevalence of key aerobic pathogens and their resistance profiles in Romanian dairy herds. These findings support the need for targeted diagnostics and rational antimicrobial use to improve uterine health and therapeutic outcomes in dairy cattle. Full article
(This article belongs to the Special Issue Detection of Bacteria and Antibiotics Surveillance in Livestock)
13 pages, 1367 KB  
Article
Prevalence and Characterization of Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus Isolated from Guangxi Dairy Farms
by Kai Ma, Jia Guo, Jie Hu, Qiuyuan Liu, Hui Wang and Ting Xue
Foods 2025, 14(13), 2221; https://doi.org/10.3390/foods14132221 - 24 Jun 2025
Viewed by 914
Abstract
Staphylococcus aureus (S. aureus) is a major pathogen responsible for mastitis in dairy cows and can contaminate raw milk, thereby posing significant health risks to consumers. The emergence of methicillin-resistant S. aureus (MRSA) has further heightened public health concerns due to [...] Read more.
Staphylococcus aureus (S. aureus) is a major pathogen responsible for mastitis in dairy cows and can contaminate raw milk, thereby posing significant health risks to consumers. The emergence of methicillin-resistant S. aureus (MRSA) has further heightened public health concerns due to its antibiotic resistance and infectious potential. In this study, we examined the prevalence, virulence genes, antimicrobial resistance, spa types, and biofilm formation of S. aureus isolates from dairy farms in Guangxi Province, China. Among 242 randomly selected samples, 37 S. aureus strains were identified (15.3% infection rate), including 67.5% MRSA. Antibiotic resistance was observed in 78.4% of isolates, with 35.1% exhibiting multidrug resistance (MDR). Enterotoxin gene analysis showed sea as the most common (67.6%), followed by ser (54.1%) and seh (51.4%), whereas seb and selj were absent. All isolates formed biofilms in vitro, with 64.8% showing strong biofilm-forming ability. Staphylococcal protein A (spa) typing classified the 37 S. aureus strains into 11 spa types, with t030 being the most prevalent (43.2%). These findings indicate that S. aureus is moderately prevalent in raw milk, often carrying multiple virulence genes, forming robust biofilms, and showing antimicrobial resistance. The MRSA that is “latent” in raw milk reminds us of the need for monitoring at the farm level. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

17 pages, 484 KB  
Article
Annual and Seasonal Trends in Mastitis Pathogens Isolated from Milk Samples from Dairy Cows of California’s San Joaquin Valley Dairies Between January 2009 and December 2023
by Daniela R. Bruno, Karen H. Tonooka, Terry W. Lehenbauer, Sharif S. Aly and Wagdy R. ElAshmawy
Vet. Sci. 2025, 12(7), 609; https://doi.org/10.3390/vetsci12070609 - 21 Jun 2025
Cited by 1 | Viewed by 2213
Abstract
Bovine mastitis is a significant disease affecting dairy cattle worldwide, impacting milk quality and farm profitability. Understanding pathogen distribution is crucial for effective disease management. This study analyzed 319,634 individual cow milk samples submitted to the UC Davis Milk Quality Laboratory between 2009 [...] Read more.
Bovine mastitis is a significant disease affecting dairy cattle worldwide, impacting milk quality and farm profitability. Understanding pathogen distribution is crucial for effective disease management. This study analyzed 319,634 individual cow milk samples submitted to the UC Davis Milk Quality Laboratory between 2009 and 2023 to assess pathogen prevalence, seasonal variations, and long-term trends. Routine microbiological cultures identified major and minor mastitis pathogens, with additional testing for Mycoplasma spp. Statistical analyses evaluated annual and seasonal trends in bacterial isolation rates. Results indicated that environmental pathogens, particularly non-aureus staphylococci and coliforms, were most frequently isolated, while contagious pathogens (Staphylococcus aureus, Streptococcus agalactiae, and Mycoplasma spp.) were less prevalent. Seasonal trends revealed higher contamination rates in Winter and increased no-growth samples in Summer. The study also observed a decline in sample submissions in recent years, possibly reflecting evolving dairy management practices. These findings provide a comprehensive perspective on mastitis pathogen dynamics in California’s Central Valley, supporting improved milk quality control measures and tailored mastitis prevention strategies. Full article
Show Figures

Figure 1

20 pages, 2425 KB  
Article
Data Analysis in Newly Developed Milk Sensor Platforms: Good Practices, Common Pitfalls, and Hard-Earned Lessons from Field Application
by Francesco Martelli, Claudia Giacomozzi, Roberto Dragone, Chiara Frazzoli and Gerardo Grasso
Foods 2025, 14(10), 1724; https://doi.org/10.3390/foods14101724 - 13 May 2025
Cited by 2 | Viewed by 1267
Abstract
In the last decade, the demand for healthier and safer food has increased alongside greater consumer awareness of food consumption, particularly in developed countries. This trend has pushed the food industry to implement a wide range of food quality control measures and surveillance [...] Read more.
In the last decade, the demand for healthier and safer food has increased alongside greater consumer awareness of food consumption, particularly in developed countries. This trend has pushed the food industry to implement a wide range of food quality control measures and surveillance systems for detecting contaminants. While high-end laboratory techniques remain the gold standard detection techniques, there is a growing need for simpler, more robust diagnostic tools that can be applied in the early stages of the food production chain to promptly identify deviations that may compromise food safety or quality. A complementary approach using both techniques can result in an enhancement of the overall contaminant-detection effectiveness and a better balance between food safety decision-making and the preservation of production value. This need is particularly relevant in farming and in the dairy industry. Developing milk process analytics requires careful consideration of both the nature of the processed sample and the conditions under which it is collected. Moreover, newly introduced techniques require the development of sound methodologies for data collection, analysis, and statistical process control. For this reason, this paper presents a detailed analysis of our previous milk data-collection campaigns involving technological prototypes, aiming to identify and suggest ways to preventively minimize issues related to experimental data collection, interpretation, errors, and mishandling. This analysis resulted in a set of practical observations and recommendations reported in the paper. Full article
(This article belongs to the Special Issue Recent Advances in the Detection of Food Contaminants and Pollutants)
Show Figures

Figure 1

14 pages, 295 KB  
Review
The Potential of Lactic Acid Bacteria and Dairy By-Products in Controlling Campylobacter jejuni in Poultry
by Naga Pavan Kumar Reddy Jonnagiri, Gintare Zakariene, Naila Nawaz, Ausra Gabinaitiene and Artūras Stimbirys
Microorganisms 2025, 13(5), 996; https://doi.org/10.3390/microorganisms13050996 - 26 Apr 2025
Viewed by 1332
Abstract
Campylobacter jejuni (C. jejuni) is the primary Campylobacter species and a major cause of foodborne illness associated with poultry products. This review focuses on lactic acid bacteria (LAB), especially Lactobacillus species, and acid whey as a dairy by-product for C. jejuni [...] Read more.
Campylobacter jejuni (C. jejuni) is the primary Campylobacter species and a major cause of foodborne illness associated with poultry products. This review focuses on lactic acid bacteria (LAB), especially Lactobacillus species, and acid whey as a dairy by-product for C. jejuni control in poultry as a sustainable method. LAB strains L. crispatus exhibit a cecal colonization reduction of >90% by competitive exclusion and bacteriocin activity, while L. johnsonii FI9785 decrease bacterial load 4–5 log10. Acid whey, which is abundant in organic acids (e.g., lactic acid) and bioactive peptides (e.g., lactoferrin), reduces C. jejuni viability, decreasing the food product contamination on the carcass for a short time by 40%. LAB antimicrobial function becomes more effective when used with acid whey, although specific farm-related variables require additional optimization. Some of the key strategies include co-encapsulating LAB with acid whey or plant-derived antimicrobials for improving survival, conducting in vivo trials in commercial farm conditions to evaluate scalability, and adding whey into feed (1–2% inclusion) or applying it as a pre-slaughter spray. These strategies enable the antibiotic-free production and circular economy goals through repurposing low-cost acid whey. Future studies should directly compare them with standard antimicrobials to confirm their scalability for poultry safety. Full article
(This article belongs to the Section Veterinary Microbiology)
18 pages, 300 KB  
Review
Chlorine Disinfection Byproducts: A Public Health Concern Associated with Dairy Food Contamination
by Mark Slattery and Mary Garvey
Dairy 2025, 6(2), 18; https://doi.org/10.3390/dairy6020018 - 9 Apr 2025
Cited by 2 | Viewed by 6450
Abstract
The prevention of human infectious diseases associated with waterborne pathogens is reliant on the effective disinfection of water supplies by drinking water treatment plants and adequately maintained distribution networks. For decades, the chlorination of water has safeguarded public health, where chlorine is broadly [...] Read more.
The prevention of human infectious diseases associated with waterborne pathogens is reliant on the effective disinfection of water supplies by drinking water treatment plants and adequately maintained distribution networks. For decades, the chlorination of water has safeguarded public health, where chlorine is broadly applied in both water disinfection and food production facilities, including the dairy industry, from farm to fork. The identification of chlorine disinfection byproducts in water supplies and dairy food produce is of great concern, however, due to their cytotoxic, genotoxic, mutagenic, teratogenic, and potential endocrine-disrupting activity. The association between the trihalomethanes (THMs) and haloacetic acids (HAAs) and tumour formation is documented and has led to the implementation of maximum contaminant levels enforced by the European Union. Furthermore, chlorine resistance in bacterial species is associated with multidrug resistance in clinically relevant pathogens, where antibiotic- and biocidal-resistant genes are also environmental pollutants. Increasing the concentration of chlorine to surmount this resistance will ultimately lead to increasing concentrations of byproducts in both water and food products, exceeding the EU requirements. This article provides insight into chlorine DBPs as a toxicological public health risk and the relationship between chlorine resistance and antibiotic resistance in microbes relevant to dairy food production. Full article
Back to TopTop