Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,484)

Search Parameters:
Keywords = daily time series

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1080 KiB  
Article
Enhancing Real-Time Anomaly Detection of Multivariate Time Series Data via Adversarial Autoencoder and Principal Components Analysis
by Alaa Hussien Ali, Hind Almisbahi, Entisar Alkayal and Abeer Almakky
Electronics 2025, 14(15), 3141; https://doi.org/10.3390/electronics14153141 - 6 Aug 2025
Abstract
Rapid data growth in large systems has introduced significant challenges in real-time monitoring and analysis. One of these challenges is detecting anomalies in time series data with high-dimensional inputs that contain complex inter-correlations between them. In addition, the lack of labeled data leads [...] Read more.
Rapid data growth in large systems has introduced significant challenges in real-time monitoring and analysis. One of these challenges is detecting anomalies in time series data with high-dimensional inputs that contain complex inter-correlations between them. In addition, the lack of labeled data leads to the use of unsupervised learning that relies on daily system data to train models, which can contain noise that affects feature extraction. To address these challenges, we propose PCA-AAE, a novel anomaly detection model for time series data using an Adversarial Autoencoder integrated with Principal Component Analysis (PCA). PCA contributes to analyzing the latent space by transforming it into uncorrelated components to extract important features and reduce noise within the latent space. We tested the integration of PCA into the model’s phases and studied its efficiency in each phase. The tests show that the best practice is to apply PCA to the latent code during the adversarial training phase of the AAE model. We used two public datasets, the SWaT and SMAP datasets, to compare our model with state-of-the-art models. The results indicate that our model achieves an average F1 score of 0.90, which is competitive with state-of-the-art models, and an average of 58.5% faster detection speed compared to similar state-of-the-art models. This makes PCA-AAE a candidate solution to enhance real-time anomaly detection in high-dimensional datasets. Full article
(This article belongs to the Section Artificial Intelligence)
20 pages, 1925 KiB  
Article
Beyond Polarity: Forecasting Consumer Sentiment with Aspect- and Topic-Conditioned Time Series Models
by Mian Usman Sattar, Raza Hasan, Sellappan Palaniappan, Salman Mahmood and Hamza Wazir Khan
Information 2025, 16(8), 670; https://doi.org/10.3390/info16080670 - 6 Aug 2025
Abstract
Existing approaches to social media sentiment analysis typically focus on static classification, offering limited foresight into how public opinion evolves. This study addresses that gap by introducing the Multi-Feature Sentiment-Driven Forecasting (MFSF) framework, a novel pipeline that enhances sentiment trend prediction by integrating [...] Read more.
Existing approaches to social media sentiment analysis typically focus on static classification, offering limited foresight into how public opinion evolves. This study addresses that gap by introducing the Multi-Feature Sentiment-Driven Forecasting (MFSF) framework, a novel pipeline that enhances sentiment trend prediction by integrating rich contextual information from text. Using state-of-the-art transformer models on the Sentiment140 dataset, our framework extracts three concurrent signals from each tweet: sentiment polarity, aspect-based scores (e.g., ‘price’ and ‘service’), and topic embeddings. These features are aggregated into a daily multivariate time series. We then employ a SARIMAX model to forecast future sentiment, using the extracted aspect and topic data as predictive exogenous variables. Our results, validated on the historical Sentiment140 Twitter dataset, demonstrate the framework’s superior performance. The proposed multivariate model achieved a 26.6% improvement in forecasting accuracy (RMSE) over a traditional univariate ARIMA baseline. The analysis confirmed that conversational aspects like ‘service’ and ‘quality’ are statistically significant predictors of future sentiment. By leveraging the contextual drivers of conversation, the MFSF framework provides a more accurate and interpretable tool for businesses and policymakers to proactively monitor and anticipate shifts in public opinion. Full article
(This article belongs to the Special Issue Semantic Networks for Social Media and Policy Insights)
Show Figures

Figure 1

20 pages, 2225 KiB  
Article
Network Saturation: Key Indicator for Profitability and Sensitivity Analyses of PRT and GRT Systems
by Joerg Schweizer, Giacomo Bernieri and Federico Rupi
Future Transp. 2025, 5(3), 104; https://doi.org/10.3390/futuretransp5030104 - 4 Aug 2025
Abstract
Personal Rapid Transit (PRT) and Group Rapid Transit (GRT) are classes of fully automated public transport systems, where passengers can travel in small vehicles on an interconnected, grade-separated network of guideways, non-stop, from origin to destination. PRT and GRT are considered sustainable as [...] Read more.
Personal Rapid Transit (PRT) and Group Rapid Transit (GRT) are classes of fully automated public transport systems, where passengers can travel in small vehicles on an interconnected, grade-separated network of guideways, non-stop, from origin to destination. PRT and GRT are considered sustainable as they are low-emission and able to attract car drivers. The parameterized cost modeling framework developed in this paper has the advantage that profitability of different PRT/GRT systems can be rapidly verified in a transparent way and in function of a variety of relevant system parameters. This framework may contribute to a more transparent, rapid, and low-cost evaluation of PRT/GRT schemes for planning and decision-making purposes. The main innovation is the introduction of the “peak hour network saturation” S: the number of vehicles in circulation during peak hour divided by the maximum number of vehicles running at line speed with minimum time headways. It is an index that aggregates the main uncertainties in the planning process, namely the demand level relative to the supply level. Furthermore, a maximum S can be estimated for a PRT/GRT project, even without a detailed demand estimation. The profit per trip is analytically derived based on S and a series of more certain parameters, such as fares, capital and maintenance costs, daily demand curve, empty vehicle share, and physical properties of the system. To demonstrate the ability of the framework to analyze profitability in function of various parameters, we apply the methods to a single vehicle PRT, a platooned PRT, and a mixed PRT/GRT. The results show that PRT services with trip length proportional fares could be profitable already for S>0.25. The PRT capacity, profitability, and robustness to tripled infrastructure costs can be increased by vehicle platooning or GRT service during peak hours. Full article
Show Figures

Figure 1

27 pages, 4163 KiB  
Article
Rainfall Forecasting Using a BiLSTM Model Optimized by an Improved Whale Migration Algorithm and Variational Mode Decomposition
by Yueqiao Yang, Shichuang Li, Ting Zhou, Liang Zhao, Xiao Shi and Boni Du
Mathematics 2025, 13(15), 2483; https://doi.org/10.3390/math13152483 - 1 Aug 2025
Viewed by 263
Abstract
The highly stochastic nature of rainfall presents significant challenges for the accurate prediction of its time series. To enhance the prediction performance of non-stationary rainfall time series, this study proposes a hybrid deep learning forecasting framework—VMD-IWMA-BiLSTM—that integrates Variational Mode Decomposition (VMD), Improved Whale [...] Read more.
The highly stochastic nature of rainfall presents significant challenges for the accurate prediction of its time series. To enhance the prediction performance of non-stationary rainfall time series, this study proposes a hybrid deep learning forecasting framework—VMD-IWMA-BiLSTM—that integrates Variational Mode Decomposition (VMD), Improved Whale Migration Algorithm (IWMA), and Bidirectional Long Short-Term Memory network (BiLSTM). Firstly, VMD is employed to decompose the original rainfall series into multiple modes, extracting Intrinsic Mode Functions (IMFs) with more stable frequency characteristics. Secondly, IWMA is utilized to globally optimize multiple hyperparameters of the BiLSTM model, enhancing its ability to capture complex nonlinear relationships and long-term dependencies. Finally, experimental validation is conducted using daily rainfall data from 2020 to 2024 at the Xinzheng National Meteorological Observatory. The results demonstrate that the proposed framework outperforms traditional models such as LSTM, ARIMA, SVM, and LSSVM in terms of prediction accuracy. This research provides new insights and effective technical pathways for improving rainfall time series prediction accuracy and addressing the challenges posed by high randomness. Full article
Show Figures

Figure 1

19 pages, 2237 KiB  
Article
Flood Season Division Model Based on Goose Optimization Algorithm–Minimum Deviation Combination Weighting
by Yukai Wang, Jun Li and Jing Fu
Sustainability 2025, 17(15), 6968; https://doi.org/10.3390/su17156968 - 31 Jul 2025
Viewed by 186
Abstract
The division of the flood season is of great significance for the precise operation of water conservancy projects, flood control and disaster reduction, and the rational allocation of water resources, alleviating the contradiction of the uneven spatial and temporal distribution of water resources. [...] Read more.
The division of the flood season is of great significance for the precise operation of water conservancy projects, flood control and disaster reduction, and the rational allocation of water resources, alleviating the contradiction of the uneven spatial and temporal distribution of water resources. The single weighting method can only determine the weight of the flood season division indicators from a certain perspective and cannot comprehensively reflect the time-series attributes of the indicators. This study proposes a Flood Season Division Model based on the Goose Optimization Algorithm and Minimum Deviation Combined Weighting (FSDGOAMDCW). The model uses the Goose Optimization Algorithm (GOA) to solve the Minimum Deviation Combination model, integrating weights from two subjective methods (Expert Scoring and G1) and three objective methods (Entropy Weight, CV, and CRITIC). Combined with the Set Pair Analysis Method (SPAM), it realizes comprehensive flood season division. Based on daily precipitation data of the Nandujiang River (1961–2022), the study determines its flood season from 1 May to 30 October. Comparisons show that: ① GOA converges faster than the Genetic Algorithm, stabilizing at T = 5 and achieving full convergence at T = 24; and ② The model’s division results have the smallest Intra-Class Differences, avoiding indistinguishability between flood and non-flood seasons under special conditions. This research aims to support flood season division studies in tropical islands. Full article
Show Figures

Figure 1

25 pages, 946 KiB  
Article
Short-Term Forecasting of the JSE All-Share Index Using Gradient Boosting Machines
by Mueletshedzi Mukhaninga, Thakhani Ravele and Caston Sigauke
Economies 2025, 13(8), 219; https://doi.org/10.3390/economies13080219 - 28 Jul 2025
Viewed by 491
Abstract
This study applies Gradient Boosting Machines (GBMs) and principal component regression (PCR) to forecast the closing price of the Johannesburg Stock Exchange (JSE) All-Share Index (ALSI), using daily data from 2009 to 2024, sourced from the Wall Street Journal. The models are evaluated [...] Read more.
This study applies Gradient Boosting Machines (GBMs) and principal component regression (PCR) to forecast the closing price of the Johannesburg Stock Exchange (JSE) All-Share Index (ALSI), using daily data from 2009 to 2024, sourced from the Wall Street Journal. The models are evaluated under three training–testing split ratios to assess short-term forecasting performance. Forecast accuracy is assessed using standard error metrics: mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute scaled error (MASE). Across all test splits, the GBM consistently achieves lower forecast errors than PCR, demonstrating superior predictive accuracy. To validate the significance of this performance difference, the Diebold–Mariano (DM) test is applied, confirming that the forecast errors from the GBM are statistically significantly lower than those of PCR at conventional significance levels. These findings highlight the GBM’s strength in capturing nonlinear relationships and complex interactions in financial time series, particularly when using features such as the USD/ZAR exchange rate, oil, platinum, and gold prices, the S&P 500 index, and calendar-based variables like month and day. Future research should consider integrating additional macroeconomic indicators and exploring alternative or hybrid forecasting models to improve robustness and generalisability across different market conditions. Full article
Show Figures

Figure 1

25 pages, 837 KiB  
Article
DASF-Net: A Multimodal Framework for Stock Price Forecasting with Diffusion-Based Graph Learning and Optimized Sentiment Fusion
by Nhat-Hai Nguyen, Thi-Thu Nguyen and Quan T. Ngo
J. Risk Financial Manag. 2025, 18(8), 417; https://doi.org/10.3390/jrfm18080417 - 28 Jul 2025
Viewed by 509
Abstract
Stock price forecasting remains a persistent challenge in time series analysis due to complex inter-stock relationships and dynamic textual signals such as financial news. While Graph Neural Networks (GNNs) can model relational structures, they often struggle with capturing higher-order dependencies and are sensitive [...] Read more.
Stock price forecasting remains a persistent challenge in time series analysis due to complex inter-stock relationships and dynamic textual signals such as financial news. While Graph Neural Networks (GNNs) can model relational structures, they often struggle with capturing higher-order dependencies and are sensitive to noise. Moreover, sentiment signals are typically aggregated using fixed time windows, which may introduce temporal bias. To address these issues, we propose DASF-Net (Diffusion-Aware Sentiment Fusion Network), a multimodal framework that integrates structural and textual information for robust prediction. DASF-Net leverages diffusion processes over two complementary financial graphs—one based on industry relationships, the other on fundamental indicators—to learn richer stock representations. Simultaneously, sentiment embeddings extracted from financial news using FinBERT are aggregated over an empirically optimized window to preserve temporal relevance. These modalities are fused via a multi-head attention mechanism and passed to a temporal forecasting module. DASF-Net integrates daily stock prices and news sentiment, using a 3-day sentiment aggregation window, to forecast stock prices over daily horizons (1–3 days). Experiments on 12 large-cap S&P 500 stocks over four years demonstrate that DASF-Net outperforms competitive baselines, achieving up to 91.6% relative reduction in Mean Squared Error (MSE). Results highlight the effectiveness of combining graph diffusion and sentiment-aware features for improved financial forecasting. Full article
(This article belongs to the Special Issue Machine Learning Applications in Finance, 2nd Edition)
Show Figures

Figure 1

19 pages, 88349 KiB  
Article
Dynamic Assessment of Street Environmental Quality Using Time-Series Street View Imagery Within Daily Intervals
by Puxuan Zhang, Yichen Liu and Yihua Huang
Land 2025, 14(8), 1544; https://doi.org/10.3390/land14081544 - 27 Jul 2025
Viewed by 313
Abstract
Rapid urbanization has intensified global settlement density, significantly increasing the importance of urban street environmental quality, which profoundly affects residents’ physical and psychological well-being. Traditional methods for evaluating urban environmental quality have largely overlooked dynamic perceptual changes occurring throughout the day, resulting in [...] Read more.
Rapid urbanization has intensified global settlement density, significantly increasing the importance of urban street environmental quality, which profoundly affects residents’ physical and psychological well-being. Traditional methods for evaluating urban environmental quality have largely overlooked dynamic perceptual changes occurring throughout the day, resulting in incomplete assessments. To bridge this methodological gap, this study presents an innovative approach combining advanced deep learning techniques with time-series street view imagery (SVI) analysis to systematically quantify spatio-temporal variations in the perceived environmental quality of pedestrian-oriented streets. It further addresses two central questions: how perceived environmental quality varies spatially across sections of a pedestrian-oriented street and how these perceptions fluctuate temporally throughout the day. Utilizing Golden Street, a representative living street in Shanghai’s Changning District, as the empirical setting, street view images were manually collected at 96 sampling points across multiple time intervals within a single day. The collected images underwent semantic segmentation using the DeepLabv3+ model, and emotional scores were quantified through the validated MIT Place Pulse 2.0 dataset across six subjective indicators: “Safe,” “Lively,” “Wealthy,” “Beautiful,” “Depressing,” and “Boring.” Spatial and temporal patterns of these indicators were subsequently analyzed to elucidate their relationships with environmental attributes. This study demonstrates the effectiveness of integrating deep learning models with time-series SVI for assessing urban environmental perceptions, providing robust empirical insights for urban planners and policymakers. The results emphasize the necessity of context-sensitive, temporally adaptive urban design strategies to enhance urban livability and psychological well-being, ultimately contributing to more vibrant, secure, and sustainable pedestrian-oriented urban environments. Full article
(This article belongs to the Special Issue Planning for Sustainable Urban and Land Development, Second Edition)
Show Figures

Figure 1

11 pages, 1161 KiB  
Proceeding Paper
Spatio-Temporal PM2.5 Forecasting Using Machine Learning and Low-Cost Sensors: An Urban Perspective
by Mateusz Zareba, Szymon Cogiel and Tomasz Danek
Eng. Proc. 2025, 101(1), 6; https://doi.org/10.3390/engproc2025101006 - 25 Jul 2025
Viewed by 218
Abstract
This study analyzes air pollution time-series big data to assess stationarity, seasonal patterns, and the performance of machine learning models in forecasting PM2.5 concentrations. Fifty-two low-cost sensors (LCS) were deployed across Krakow city and its surroundings (Poland), collecting hourly air quality data and [...] Read more.
This study analyzes air pollution time-series big data to assess stationarity, seasonal patterns, and the performance of machine learning models in forecasting PM2.5 concentrations. Fifty-two low-cost sensors (LCS) were deployed across Krakow city and its surroundings (Poland), collecting hourly air quality data and generating nearly 20,000 observations per month. The network captured both spatial and temporal variability. The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test confirmed trend-based non-stationarity, which was addressed through differencing, revealing distinct daily and 12 h cycles linked to traffic and temperature variations. Additive seasonal decomposition exhibited time-inconsistent residuals, leading to the adoption of multiplicative decomposition, which better captured pollution outliers associated with agricultural burning. Machine learning models—Ridge Regression, XGBoost, and LSTM (Long Short-Term Memory) neural networks—were evaluated under high spatial and temporal variability (winter) and low variability (summer) conditions. Ridge Regression showed the best performance, achieving the highest R2 (0.97 in winter, 0.93 in summer) and the lowest mean squared errors. XGBoost showed strong predictive capabilities but tended to overestimate moderate pollution events, while LSTM systematically underestimated PM2.5 levels in December. The residual analysis confirmed that Ridge Regression provided the most stable predictions, capturing extreme pollution episodes effectively, whereas XGBoost exhibited larger outliers. The study proved the potential of low-cost sensor networks and machine learning in urban air quality forecasting focused on rare smog episodes (RSEs). Full article
Show Figures

Figure 1

14 pages, 731 KiB  
Article
Readhesion of Tongue-Tie Following Neonatal Frenotomy: Incidence and Impact of Postoperative Exercises in a Prospective Observational Study
by Beatriz Valle-Del Barrio, Silvia Maya-Enero, Jordi Prat-Ortells, María Ángeles López-Vílchez and Júlia Candel-Pau
Children 2025, 12(8), 971; https://doi.org/10.3390/children12080971 - 24 Jul 2025
Viewed by 295
Abstract
Background/Objectives: Frenotomy is the procedure of choice for treating ankyloglossia. The literature reports that readhesion of the frenulum occurs in 2.6–13% of cases. There is no published evidence to support performing tongue exercises to prevent it. We aimed to determine the readhesion rate [...] Read more.
Background/Objectives: Frenotomy is the procedure of choice for treating ankyloglossia. The literature reports that readhesion of the frenulum occurs in 2.6–13% of cases. There is no published evidence to support performing tongue exercises to prevent it. We aimed to determine the readhesion rate of ankyloglossia, the benefits of tongue exercises to prevent it, and the characteristics of patients who experienced readhesion. Methods: This is a prospective, observational study of neonates who underwent a frenotomy between January and August 2024. Following the frenotomy, we recommended that all parents perform a series of exercises 6–8 times daily over 15 days. Patients were re-evaluated 10–15 days post-procedure for signs of ankyloglossia using the Hazelbaker tool and clinical variables such as nipple pain or cracks. Results: We enrolled 212 patients; thirty patients underwent a refrenotomy (14.1%). The raw risk of readhesion in our study was 0.335 (95%CI 0.275–0.401), and for symptomatic readhesion, 0.156 (95%CI 0.113–0.211). Adjusted by sex, the risk of readhesion for female patients was 0.236 (95%CI 0.155–0.344), and for males, 0.390 (95%CI 0.312–0.474). The appearance and function Hazelbaker scores were significantly lower before the frenotomy than post-procedure in all cases. In females, not following the exercise protocol multiplied the risk of readhesion by 1.61 (95%CI 1.03–2.56), whereas in males the risk was multiplied by 1.47 (95%CI 1.03–2.08). Symptomatic readhesion was significantly correlated with age at frenotomy and Hazelbaker score. Conclusions: Readhesion of tongue-tie was higher than previously published (33.5%); however, symptomatic readhesion was less frequent (15.6%). Proper adherence to post-frenotomy exercises significantly reduces the risk of readhesion, although it has less impact on symptomatic readhesion. Full article
(This article belongs to the Section Pediatric Neonatology)
Show Figures

Figure 1

32 pages, 4535 KiB  
Article
A Novel Stochastic Copula Model for the Texas Energy Market
by Sudeesha Warunasinghe and Anatoliy Swishchuk
Risks 2025, 13(7), 137; https://doi.org/10.3390/risks13070137 - 16 Jul 2025
Viewed by 502
Abstract
The simulation of wind power, electricity load, and natural gas prices will allow commodity traders to see the future movement of prices in a more probabilistic manner. The ability to observe possible paths for wind power, electricity load, and natural gas prices enables [...] Read more.
The simulation of wind power, electricity load, and natural gas prices will allow commodity traders to see the future movement of prices in a more probabilistic manner. The ability to observe possible paths for wind power, electricity load, and natural gas prices enables traders to obtain valuable insights for placing their trades on electricity prices. Since the above processes involve a seasonality factor, the seasonality component was modeled using a truncated Fourier series, and the random component was modeled using stochastic differential equations (SDE). It is evident from the literature that all the above processes are mean-reverting processes; thus, three mean-reverting Ornstein–Uhlenbeck (OU) processes were considered the model for wind power, the electricity load, and natural gas prices. Industry experts believe there is a correlation between wind power, the electricity load, and natural gas prices. For example, when wind power is higher and the electricity load is lower, natural gas prices are relatively low. The novelty of this study is the incorporation of the correlation structure between processes into the mean-reverting OU process using a copula function. Thus, the study utilized a vine copula and integrated it into the simulation. The study was conducted for the Texas energy market and used daily time scales for the simulations, and it was able to conclude that the proposed novel mean-reverting OU process outperforms the classical mean-reverting process in the case of wind power and the electricity load. Full article
(This article belongs to the Special Issue Stochastic Modeling and Computational Statistics in Finance)
Show Figures

Figure 1

19 pages, 6796 KiB  
Article
Performance Assessment of Advanced Daily Surface Soil Moisture Products in China for Sustainable Land and Water Management
by Dai Chen, Zhounan Dong and Jingnan Chen
Sustainability 2025, 17(14), 6482; https://doi.org/10.3390/su17146482 - 15 Jul 2025
Viewed by 236
Abstract
This study evaluates the performance of nine satellite and model-based daily surface soil moisture products, encompassing sixteen algorithm versions across mainland China to support sustainable land and water management. The assessment utilizes 2018 in situ measurements from over 2400 stations in China’s Automatic [...] Read more.
This study evaluates the performance of nine satellite and model-based daily surface soil moisture products, encompassing sixteen algorithm versions across mainland China to support sustainable land and water management. The assessment utilizes 2018 in situ measurements from over 2400 stations in China’s Automatic Soil Moisture Monitoring Network. All products were standardized to a 0.25° × 0.25° grid in the WGS-84 coordinate system through reprojection and resampling for consistent comparison. Daily averaged station observations were matched to product pixels using a 10 km radius buffer, with the mean station value as the reference for each time series after rigorous quality control. Results reveal distinct performance rankings, with SMAP-based products, particularly the SMAP_IB descending orbit variant, achieving the lowest unbiased root mean square deviation (ubRMSD) and highest correlation with in situ data. Blended products like ESA CCI and NOAA SMOPS, alongside reanalysis datasets such as ERA5 and MERRA2, outperformed SMOS and China’s FY3 products. The SoMo.ml product showed the broadest spatial coverage and strong temporal consistency, while FY3-based products showed limitations in spatial reliability and seasonal dynamics capture. These findings provide critical insights for selecting appropriate soil moisture datasets to enhance sustainable agricultural practices, optimize water resource allocation, monitor ecosystem resilience, and support climate adaptation strategies, therefore advancing sustainable development across diverse geographical regions in China. Full article
Show Figures

Figure 1

26 pages, 7975 KiB  
Article
Soil Moisture Prediction Using the VIC Model Coupled with LSTMseq2seq
by Xiuping Zhang, Xiufeng He, Rencai Lin, Xiaohua Xu, Yanping Shi and Zhenning Hu
Remote Sens. 2025, 17(14), 2453; https://doi.org/10.3390/rs17142453 - 15 Jul 2025
Viewed by 494
Abstract
Soil moisture (SM) is a key variable in agricultural ecosystems and is crucial for drought prevention and control management. However, SM is influenced by underlying surface and meteorological conditions, and it changes rapidly in time and space. To capture the changes in SM [...] Read more.
Soil moisture (SM) is a key variable in agricultural ecosystems and is crucial for drought prevention and control management. However, SM is influenced by underlying surface and meteorological conditions, and it changes rapidly in time and space. To capture the changes in SM and improve the accuracy of short-term and medium-to-long-term predictions on a daily scale, an LSTMseq2seq model driven by both observational data and mechanism models was constructed. This framework combines historical meteorological elements and SM, as well as the SM change characteristics output by the VIC model, to predict SM over a 90-day period. The model was validated using SMAP SM. The proposed model can accurately predict the spatiotemporal variations in SM in Jiangxi Province. Compared with classical machine learning (ML) models, traditional LSTM models, and advanced transformer models, the LSTMseq2seq model achieved R2 values of 0.949, 0.9322, 0.8839, 0.8042, and 0.7451 for the prediction of surface SM over 3 days, 7 days, 30 days, 60 days, and 90 days, respectively. The mean absolute error (MAE) ranged from 0.0118 m3/m3 to 0.0285 m3/m3. This study also analyzed the contributions of meteorological features and simulated future SM state changes to SM prediction from two perspectives: time importance and feature importance. The results indicated that meteorological and SM changes within a certain time range prior to the prediction have an impact on SM prediction. The dual-driven LSTMseq2seq model has unique advantages in predicting SM and is conducive to the integration of physical mechanism models with data-driven models for handling input features of different lengths, providing support for daily-scale SM time series prediction and drought dynamics prediction. Full article
Show Figures

Figure 1

14 pages, 2907 KiB  
Article
Neural Dynamics of Strategic Early Predictive Saccade Behavior in Target Arrival Estimation
by Ryo Koshizawa, Kazuma Oki and Masaki Takayose
Brain Sci. 2025, 15(7), 750; https://doi.org/10.3390/brainsci15070750 - 15 Jul 2025
Viewed by 273
Abstract
Background/Objectives: Accurately predicting the arrival position of a moving target is essential in sports and daily life. While predictive saccades are known to enhance performance, the neural mechanisms underlying the timing of these strategies remain unclear. This study investigated how the timing [...] Read more.
Background/Objectives: Accurately predicting the arrival position of a moving target is essential in sports and daily life. While predictive saccades are known to enhance performance, the neural mechanisms underlying the timing of these strategies remain unclear. This study investigated how the timing of saccadic strategies—executed early versus late—affects cortical activity patterns, as measured by electroencephalography (EEG). Methods: Sixteen participants performed a task requiring them to predict the arrival position and timing of a parabolically moving target that became occluded midway through its trajectory. Based on eye movement behavior, participants were classified into an Early Saccade Strategy Group (SSG) or a Late SSG. EEG signals were analyzed in the low beta band (13–15 Hz) using the Hilbert transform. Group differences in eye movements and EEG activity were statistically assessed. Results: No significant group differences were observed in final position or response timing errors. However, time-series analysis showed that the Early SSG achieved earlier and more accurate eye positioning. EEG results revealed greater low beta activity in the Early SSG at electrode sites FC6 and P8, corresponding to the frontal eye field (FEF) and middle temporal (MT) visual area, respectively. Conclusions: Early execution of predictive saccades was associated with enhanced cortical activity in visuomotor and motion-sensitive regions. These findings suggest that early engagement of saccadic strategies supports more efficient visuospatial processing, with potential applications in dynamic physical tasks and digitally mediated performance domains such as eSports. Full article
Show Figures

Figure 1

21 pages, 3053 KiB  
Article
An Effective Approach for Wearable Sensor-Based Human Activity Recognition in Elderly Monitoring
by Youssef Errafik, Younes Dhassi, Mohamed Baghrous and Adil Kenzi
BioMedInformatics 2025, 5(3), 38; https://doi.org/10.3390/biomedinformatics5030038 - 9 Jul 2025
Viewed by 417
Abstract
Technological advancements and AI-based research have significantly influenced our daily lives. Human activity recognition (HAR) is a key area at the intersection of various AI technologies and application domains. In this study, we present our novel time series classification approach for monitoring the [...] Read more.
Technological advancements and AI-based research have significantly influenced our daily lives. Human activity recognition (HAR) is a key area at the intersection of various AI technologies and application domains. In this study, we present our novel time series classification approach for monitoring the physical behaviors of the elderly and patients. This approach, which integrates supervised and unsupervised methods with generative models, has been validated for HAR, showing promising results. Our method was specifically adapted for healthcare and surveillance applications, enhancing the classification of physical behaviors in the elderly. The hybrid approach proved its effectiveness on the HAR70+ dataset, surpassing traditional recurrent convolutional network-based approaches. We further evaluated the surveillance system for the elderly (Surv-Sys-Elderly) model on the HARTH and HAR70+ datasets, achieving an accuracy of 94,3% on the HAR70+ dataset for recognizing elderly behaviors, highlighting its robustness and suitability for both clinical and domestic environments. Full article
(This article belongs to the Topic Computational Intelligence and Bioinformatics (CIB))
Show Figures

Figure 1

Back to TopTop