Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (951)

Search Parameters:
Keywords = cytokine-cytokine receptor interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3921 KB  
Article
Immune Dysregulation and Cytokine Profiling in Acute Mycoplasma pneumoniae Pneumonia
by Ying Wen, Yanfang Zhai, Shuli Sang, Chen Cao, Yunyun Mao, Enbo Hu, Lina Zhai, Xuanqi Ye, Kai Li, Yanchun Wang and Rui Yu
Microorganisms 2026, 14(1), 229; https://doi.org/10.3390/microorganisms14010229 - 19 Jan 2026
Viewed by 54
Abstract
Mycoplasma pneumoniae pneumonia (MPP) is a common respiratory infection characterized by significant inflammatory responses and lung tissue injury. However, the precise immunological mechanisms and temporal dynamics of key cytokines driving pulmonary inflammation in MPP are still unclear. This study aimed to investigate the [...] Read more.
Mycoplasma pneumoniae pneumonia (MPP) is a common respiratory infection characterized by significant inflammatory responses and lung tissue injury. However, the precise immunological mechanisms and temporal dynamics of key cytokines driving pulmonary inflammation in MPP are still unclear. This study aimed to investigate the underlying immunological mechanisms and cytokine dynamics in MPP. We established an acute MPP murine model via intranasal administration of M. pneumoniae. This model recapitulates key features of human MPP, such as robust airway inflammation and cytokine production. Comprehensive analyses were conducted, including histopathology, flow cytometry, and cytokine profiling. Results showed severe inflammatory responses with prominent infiltration of neutrophils and macrophages in lung tissue, whereas monocyte populations were significantly reduced, indicating a shift towards myeloid cell predominance. Notably, 36 cytokines, including pro-inflammatory interleukins (IL-1β, IL-6, IL-17A) and chemokines, were statistically significantly upregulated in bronchoalveolar lavage fluid compared to the normal group, highlighting a cytokine storm associated with lung inflammation and tissue damage. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analysis further revealed enriched pathways related to cytokine-cytokine receptor interactions and IL-17 signaling, suggesting potential therapeutic targets. In conclusion, this study preclinical provides insights into the innate immune response and cytokine-driven pathology in acute MPP, underscoring the pivotal roles of myeloid cells and pro-inflammatory cytokines. Future research should focus on clinical validation of these findings to assess their translational potential and the exploration of immunomodulatory strategies informed by this model to mitigate MPP severity. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

23 pages, 6694 KB  
Article
TLR9 Inhibition Shortly After Mating Increases Fetal Resorption and Alters B- and T-Cell Costimulatory Phenotypes in an Abortion-Prone Mouse Model
by Daria Lorek, Anna Ewa Kedzierska, Anna Slawek, Paulina Kubik and Anna Chelmonska-Soyta
Int. J. Mol. Sci. 2026, 27(2), 848; https://doi.org/10.3390/ijms27020848 - 14 Jan 2026
Viewed by 198
Abstract
Maternal immune tolerance and controlled inflammatory responses are essential for fetal development and successful pregnancy. Regulatory T cells (Tregs) and B cells with regulatory properties (Bregs) maintain this balance by limiting excessive immune activation through the secretion of anti-inflammatory and tolerogenic cytokines, such [...] Read more.
Maternal immune tolerance and controlled inflammatory responses are essential for fetal development and successful pregnancy. Regulatory T cells (Tregs) and B cells with regulatory properties (Bregs) maintain this balance by limiting excessive immune activation through the secretion of anti-inflammatory and tolerogenic cytokines, such as IL-10, TGF-β, and IL-35. Moreover, alterations in the costimulatory potential of antigen-presenting cells (APCs), including B cells, modulate the activation and differentiation of T cells. Toll-like receptors (TLRs), particularly TLR9, influence B-cell antigen presentation and cytokine production, thereby affecting the balance between pro-inflammatory and tolerogenic responses at the maternal–fetal interface. TLR9 overexpression has been observed in several pregnancy-related disorders in both humans and murine models. In this study, we examine whether blocking TLR9 shortly after mating could improve pregnancy outcomes and modulate the regulatory and antigen-presenting functions of B cells, as well as their interactions with T cells. Using an abortion-prone murine model (CBA/J × DBA/2J), we show that intraperitoneal administration of a TLR9 antagonist (ODN 2088) shortly after mating increases embryo resorption in CBA/J females compared to controls without affecting implantation. Flow cytometry analysis further reveals that mice receiving the TLR9 antagonist are characterized by downregulation of CD80 and upregulation of CD86 on B cells, accompanied by reduced expression of CD40L and CD28 on T cells, as well as a lower percentage of Tregs and activated T cells. In conclusion, blocking TLR9 signaling shortly after mating does not improve pregnancy outcomes; conversely, it exacerbates pregnancy loss in the CBA/J × DBA/2J abortion-prone model, while altering the costimulatory phenotype of B and T cells and impairing Treg development during pregnancy. Full article
(This article belongs to the Special Issue Immune Regulation During Pregnancy)
Show Figures

Figure 1

13 pages, 300 KB  
Review
Mesenchymal Stem/Stromal Cells: A Review for Its Use After Allogeneic Hematopoietic Stem Cell Transplantation
by Ali Durdu, Ugur Hatipoglu, Hakan Eminoglu, Turgay Ulas, Mehmet Sinan Dal and Fevzi Altuntas
Biomolecules 2026, 16(1), 147; https://doi.org/10.3390/biom16010147 - 14 Jan 2026
Viewed by 176
Abstract
Mesenchymal stem/stromal cells (MSCs) exhibit broad differentiation capability and strong immunoregulatory potential mediated through intercellular communication and the release of diverse paracrine mediators. They represent a promising but still investigational therapeutic approach for managing complications associated with allogeneic hematopoietic stem cell transplantation (allo-HSCT). [...] Read more.
Mesenchymal stem/stromal cells (MSCs) exhibit broad differentiation capability and strong immunoregulatory potential mediated through intercellular communication and the release of diverse paracrine mediators. They represent a promising but still investigational therapeutic approach for managing complications associated with allogeneic hematopoietic stem cell transplantation (allo-HSCT). This review provides an updated synthesis of MSC biology, their bidirectional interaction with immune cells, and their functional contribution to the hematopoietic niche. It also evaluates current clinical evidence regarding the therapeutic roles of MSCs and MSC-derived extracellular vesicles (EVs) in acute and chronic graft-versus-host disease (aGVHD/cGVHD), as well as in poor graft function. Mechanistic insights encompass macrophage polarization toward an anti-inflammatory phenotype, inhibition of dendritic cell maturation, enhancement of regulatory T-cell expansion, and modulation of cytokine signaling pathways. Within the bone marrow milieu, MSCs contribute to stromal restoration and angiogenic repair. Recent phase II/III trials in steroid-refractory (SR)-aGVHD have demonstrated overall response rates ranging from 48 to 71%. Efficacy appears particularly enhanced in pediatric patients and with early MSC administration. Across studies, MSC therapy shows a favorable safety profile; however, heterogeneity in response and inconsistent survival outcomes remain notable limitations. For poor graft function, limited prospective studies indicate hematopoietic recovery following third-party MSC infusions, and combination approaches such as co-administration with thrombopoietin receptor agonists are under investigation. MSC-derived EVs emulate many immunomodulatory effects of their parental cells with a potentially safer profile, though clinical validation remains in its infancy. MSC-oriented interventions hold substantial biological and therapeutic promise, offering a favorable safety margin; however, clinical translation is hindered by product variability, suboptimal engraftment and persistence, and inconsistent efficacy across studies. Future directions should emphasize standardized manufacturing and potency assays, biomarker-driven patient and timing selection, optimized conditioning and dosing strategies, and the systematic appraisal of EV-based or genetically modified MSC products through controlled trials. Full article
26 pages, 1203 KB  
Review
Synergy of SARS-CoV-2 and HIV-1 Infections in the Human Brain
by Rajnish S. Dave and Howard S. Fox
Pathogens 2026, 15(1), 89; https://doi.org/10.3390/pathogens15010089 - 13 Jan 2026
Viewed by 276
Abstract
This review explores the interplay between SARS-CoV-2 and HIV-1 infections within the human brain, highlighting the significant neurological implications of these viral infections. SARS-CoV-2 can infect the central nervous system (CNS), with evidence of the virus detected in various brain regions, including the [...] Read more.
This review explores the interplay between SARS-CoV-2 and HIV-1 infections within the human brain, highlighting the significant neurological implications of these viral infections. SARS-CoV-2 can infect the central nervous system (CNS), with evidence of the virus detected in various brain regions, including the hypothalamus, cerebellum, and olfactory bulb. This infection is linked to microglial activation and neuroinflammation, which can lead to severe neurological outcomes in affected individuals. Autopsy studies revealed microglial changes, including downregulation of the P2RY12 receptor, indicating a shift from homeostatic to inflammatory phenotype. Similar changes in microglia are found in the brains of people with HIV-1 (PWH). In SARS-CoV-2, the correlation between inflammatory cytokines, such as IL-1, IL-6, and MCP-1, found in cerebrospinal fluid and brain tissues, indicates significant neurovascular inflammation. Astrogliosis and microglial nodules were observed, further emphasizing the inflammatory response triggered by the viral infections, again in parallel to those found in the brains of PWH. Epidemiologic data indicate that although SARS-CoV-2 infection rates in PWH mirror those in People without HIV (PWoH) populations, Long-COVID prevalence is markedly higher among PWH. Evidence of overlapping cognitive impairment, mental health burden, and persistent neuroinflammation highlights diagnostic complexity and therapeutic gaps. Despite plausible mechanistic synergy, direct neuropathological confirmation remains scarce, warranting longitudinal, biomarker-driven studies. Understanding these interactions is critical for developing targeted interventions to mitigate CNS injury and improve outcomes. Full article
Show Figures

Figure 1

8 pages, 647 KB  
Case Report
Description of a Large Family with Periodic Fever Carrying a Variant in RXFP1 Gene: A Possible Novel Modulator of Inflammation in Autoinflammatory Diseases
by Marianna Buttarelli, Giulia Rapari, Melania Riccio, Raffaele Manna, Donato Rigante and Eugenio Sangiorgi
Int. J. Mol. Sci. 2026, 27(2), 638; https://doi.org/10.3390/ijms27020638 - 8 Jan 2026
Viewed by 161
Abstract
Autoinflammatory diseases involve recurrent systemic inflammation caused by dysregulated innate immunity, arising from genetic or multifactorial mechanisms, as seen in periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) syndrome. About 10% of PFAPA patients show autosomal dominant inheritance. We describe a three-generation family [...] Read more.
Autoinflammatory diseases involve recurrent systemic inflammation caused by dysregulated innate immunity, arising from genetic or multifactorial mechanisms, as seen in periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) syndrome. About 10% of PFAPA patients show autosomal dominant inheritance. We describe a three-generation family with a PFAPA-like recurrent fever syndrome displaying clear autosomal dominant transmission. All affected individuals tested negative on a diagnostic panel of 13 known autoinflammatory genes. Whole-exome sequencing was performed in two distantly related affected members, followed by variant filtering, segregation analysis, and phenotype-based prioritization. A single heterozygous missense variant in RXFP1, c.154G>A p.(Asp52Asn), co-segregated with disease in all affected relatives. This variant is extremely rare in population databases, absent from ClinVar, present in COSMIC, and predicted as damaging by REVEL and CADD. RXFP1, not previously implicated in autoinflammatory or innate immune disorders, encodes the relaxin family peptide receptor 1, a G protein–coupled receptor involved in extracellular matrix regulation, anti-fibrotic pathways, and modulation of inflammatory cytokine production. Protein network analysis showed interactions with RLXN1-3, inflammatory mediators, PTGDR, ADORA2B, and C1QTNF8, supporting an immunomodulatory function. This is the first report linking RXFP1 variation to a hereditary recurrent fever syndrome, identifying relaxin signalling as a potential immune regulatory pathway. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

19 pages, 10246 KB  
Article
Functional Characterization of Suppressor of Cytokine Signalling 6 and Its Interaction with Erythropoietin Receptor in Colorectal Cancer Cells
by Asma Al-Bahri, Fahad Zadjali, Shika Hanif, Zaina Alharthi, Hussein Sakr and Amira Al-Kharusi
Cancers 2026, 18(1), 171; https://doi.org/10.3390/cancers18010171 - 4 Jan 2026
Viewed by 270
Abstract
Background: Suppressor of Cytokine Signalling 6 (SOCS6) is a cytokine signalling suppressor that regulates receptor tyrosine kinase pathways by promoting degradation of signalling proteins, thereby controlling cell growth and survival. One of these tyrosine kinase receptors, Erythropoietin Receptor (EPOR), plays a critical role [...] Read more.
Background: Suppressor of Cytokine Signalling 6 (SOCS6) is a cytokine signalling suppressor that regulates receptor tyrosine kinase pathways by promoting degradation of signalling proteins, thereby controlling cell growth and survival. One of these tyrosine kinase receptors, Erythropoietin Receptor (EPOR), plays a critical role in CRC progression by enhancing tumour metabolism, angiogenesis, proliferation, and growth. This study investigates the molecular mechanisms governing SOCS6’s role in CRC pathogenesis using in vitro cell models and examines its interaction with EPOR expression following gene knockdown. Methods: Bioinformatics interaction between SOCS6 and EPOR were investigated using molecular visualization. HT-29 and COLO 320DM colorectal cancer cells were transfected with SOCS6 siRNA followed by measurement of SOCS6 and EPOR expression levels by qRT-PCR. The selected knockdown concentration was used in functional assays assessing cell viability, colony formation, migration, apoptosis, and invasion. Results: Bioinformatic results showed interaction between SOCS6 and EPOR through polar bonds. Furthermore, SOCS6 silencing increased cell viability and colony formation in both cell lines and significantly enhanced migration in COLO 320DM cells. Active caspase-3 levels were elevated markedly in HT-29 cells post SOCS6 knockdown, consistent with caspase-3’s reported oncogenic role in CRC. Moreover, EPOR knockdown selectively altered SOCS6 expression in HT-29 cells, indicating a regulatory feedback loop. EPOR silencing elevated cell viability at 24 h in both cell lines but caused a significant decrease in COLO 320DM cells at 72 h. Conclusions: These findings identify the SOCS6–EPOR axis as a potential target for personalized CRC therapy, supporting SOCS6’s tumour-suppressive and diagnostic roles. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

15 pages, 1502 KB  
Review
Developmental Pathways of Immature CD11c+ Myeloid Dendritic Cells (mDCs) for Bona Fide Osteoclastogenesis Revisited: A Narrative Review
by Yen Chun G. Liu, Chen-Yi Liang and Andy Yen-Tung Teng
Int. J. Mol. Sci. 2026, 27(1), 480; https://doi.org/10.3390/ijms27010480 - 2 Jan 2026
Viewed by 271
Abstract
Recent studies support that hematopoietic stem cell (HSC)-derived myeloid dendritic cells, monocytes/macrophages (Mo/Mϕ), and osteoclast precursors (OCps) share common progenitor(s) during development. This occurs mainly through receptor activator of NF-κB ligand (RANKL) signaling via its cytoplasmic adaptor protein complex (TRAF6) to subsequent osteoclastogenesis [...] Read more.
Recent studies support that hematopoietic stem cell (HSC)-derived myeloid dendritic cells, monocytes/macrophages (Mo/Mϕ), and osteoclast precursors (OCps) share common progenitor(s) during development. This occurs mainly through receptor activator of NF-κB ligand (RANKL) signaling via its cytoplasmic adaptor protein complex (TRAF6) to subsequent osteoclastogenesis for bone loss and/or remodeling. Presently, mounting new evidence suggests that erythro-myeloid progenitor (EMP)-derived macrophages (Mϕ) and HSC-derived monocytes (Mo) produce embryonic, fetal, and postnatal OCp pools (i.e., primitive OCp), pinpointing a complex network of multiple OCp developmental origins. However, their ontogenic developments, lineage interactions, and contributions to the alternative osteoclastogenesis—in contrast to overall bone remodeling or loss—remain elusive. Interestingly, studies have also elucidated the contributions of immature CD11c+ myeloid DC-like OCps to osteoclastogenesis, with or without the classical so-called Mo/Mϕ-derived OCp subsets, and described that CD11c+ myeloid DCs (mDCs) develop into functionally active OCs; meanwhile, the cytokine TGF-β mediates a stepwise regulation of de novo immature mDCs/OCps through distinct crosstalk(s) with IL-17, an unrecognized interaction featuring TRAF6(−/−)CD11c+ mDDOCps that coexist and proficiently colocalize in the local environment to drive a bona fide route for alternative osteoclastogenesis in vivo. Collectively, new findings—critically hinged on progenitor osteoclastogenic pathways (primitive OCps, mDCs/OCps, osteomorphs, etc.) and involving classical and/or alternative routes to inflammation-induced bone loss—are discussed via the illustrated schemes. This review highlights plausible ontogenic vs. principal or alternative developmental paths and their consequential downstream effects. Full article
Show Figures

Figure 1

13 pages, 2390 KB  
Article
Microglial Expression of Serotonin Receptors Reveals Parallel Regulation of 5-HT2b and BDNF in the Rat Hippocampus
by Andrei Turkin, Maria Sidorova, Ekaterina Kurilova, Natalia Alenina, Oksana Tuchina and Friederike Klempin
Cells 2026, 15(1), 66; https://doi.org/10.3390/cells15010066 - 30 Dec 2025
Viewed by 353
Abstract
Growing evidence suggests that psychiatric disorders are characterized by a prolonged inflammatory state, which may influence the efficacy of compounds targeting serotonin. Serotonin is a key signaling molecule in neuroplasticity of the adult hippocampus and involved in antidepressant action. Recent in vitro studies [...] Read more.
Growing evidence suggests that psychiatric disorders are characterized by a prolonged inflammatory state, which may influence the efficacy of compounds targeting serotonin. Serotonin is a key signaling molecule in neuroplasticity of the adult hippocampus and involved in antidepressant action. Recent in vitro studies indicate the neurotransmitter may also facilitate the response to inflammation and potentially modulate microglial function towards neuroprotection. Using Tph2−/− rats depleted of brain serotonin, we examined microglial expression of various serotonin receptors (5-HTRs) in vivo in both the hippocampus and prefrontal cortex and assessed mRNA levels of cytokines and brain-derived neurotrophic factor (BDNF). We observed age-dependent and region-specific gene expression of 5-HTRs on sorted microglia, paralleling changes in BDNF signaling, especially with 5-HT2b. Notably, both 5-HT2b and BDNF expression in the hippocampus was significantly upregulated in the absence of brain serotonin. Our data indicate distinct roles of 5-HTR subtypes in early network formation (5-HT1b, 5-HT5b) and in the response to endogenous changes (5-HT2b, 5-HT5a). Understanding serotonin–microglia interplay could offer therapeutic insights into the maintenance of mood via brain–immune cell interactions. Full article
(This article belongs to the Special Issue Advanced Research in Neurogenesis and Neuroinflammation)
Show Figures

Figure 1

22 pages, 4989 KB  
Article
Immune-Modulatory Mechanism of Compound Yeast Culture in the Liver of Weaned Lambs
by Chenlu Li, Hui Bai, Pengxiang Bai, Chenxue Zhang, Yuan Wang, Dacheng Liu and Hui Chen
Animals 2026, 16(1), 104; https://doi.org/10.3390/ani16010104 - 30 Dec 2025
Viewed by 207
Abstract
Compound yeast culture (CYC) is known to enhance animal health, but its effects on hepatic immune function are unclear. This study systematically examined CYC’s regulatory effects on the liver of weaned lambs using transcriptomics and integrative bioinformatics. Ten lambs were randomly assigned to [...] Read more.
Compound yeast culture (CYC) is known to enhance animal health, but its effects on hepatic immune function are unclear. This study systematically examined CYC’s regulatory effects on the liver of weaned lambs using transcriptomics and integrative bioinformatics. Ten lambs were randomly assigned to a control diet or a basal diet supplemented with 30 g/d per head of Saccharomyces cerevisiae and Kluyveromyces marxianus co-culture (CYC group) for 42 days. Histological analysis showed that CYC improved hepatocyte arrangement and sinusoidal integrity, suggesting enhanced hepatic tissue stability. Cytokine analysis revealed CYC significantly increased IL-6 and IL-1β while reducing IL-10, TGF-β1, TNF-α, and CXCL9, indicating a bidirectional modulation of the immune response. Additionally, CYC enhanced antioxidant defenses by increasing T-SOD, GSH-Px, and T-AOC activities and decreasing MDA content. Transcriptomic sequencing indicated that CYC reshaped hepatic gene expression. Upregulated genes were enriched in immune-regulatory and structural pathways, including PI3K-AKT signaling, ECM–receptor interactions, Toll-like receptor pathways, and cell adhesion molecules. Protein-level validation further confirmed activation of PI3K and AKTAKT phosphorylation with limited engagement of NF-κB signaling. Conversely, downregulated genes were mainly associated with oxidative stress and energy metabolism, such as ROS-related pathways and MAPK signaling. WGCNA identified key hub genes (PTPRC, CD86, and ITGAV), which correlate with pro-inflammatory factors and participate in immune recognition, T-cell activation, and cell adhesion. These data suggest that CYC promotes hepatic immune homeostasis by enhancing immune signaling, stabilizing tissue architecture, and modulating oxidative stress/metabolic processes. This study provides mechanistic insights into CYC’s regulation of liver immune function and supports its targeted application as a functional feed additive for ruminants. Full article
Show Figures

Figure 1

29 pages, 1499 KB  
Review
Multifaceted Roles of IL-26 in Physiological and Pathological Conditions
by Boryana Georgieva, Danijela Karanović, Ivona Veličković and Danail Minchev
Int. J. Mol. Sci. 2026, 27(1), 325; https://doi.org/10.3390/ijms27010325 - 28 Dec 2025
Viewed by 353
Abstract
Cytokines are a diverse group of signaling proteins that regulate immune responses by mediating cell communication. Among them, interleukins (ILs) play essential roles in immune regulation, influencing diverse cell processes through tightly controlled signaling networks. Dysregulation of interleukin signaling could lead to chronic [...] Read more.
Cytokines are a diverse group of signaling proteins that regulate immune responses by mediating cell communication. Among them, interleukins (ILs) play essential roles in immune regulation, influencing diverse cell processes through tightly controlled signaling networks. Dysregulation of interleukin signaling could lead to chronic inflammation, contributing to the development of autoimmune and inflammatory diseases as well as cancer. IL-26, a cytokine of the IL-10 family, has emerged as a unique modulator of immune function. Although structurally related to IL-10 and sharing one of its receptor subunits, IL-26 exerts distinct biological effects, particularly in promoting inflammatory responses and interacting with extracellular DNA to activate immune pathways. Increasing evidence implicates IL-26 in the development of several chronic conditions, such as psoriasis, rheumatoid arthritis, inflammatory bowel disease, asthma, and various types of cancer. This review summarizes current knowledge on IL-26’s biology, including its structural and receptor characteristics, immunomodulatory functions, and roles in inflammation and disease. Understanding IL-26’s dual functions in normal and inflammatory states may provide insights into novel therapeutic strategies targeting IL-26-mediated pathways in pathological conditions. Full article
(This article belongs to the Special Issue Cytokines and Inflammatory Diseases)
Show Figures

Figure 1

17 pages, 842 KB  
Review
Glial Activation, Neuroinflammation, and Loss of Neuroprotection in Chronic Pain: Cellular Mechanisms and Emerging Therapeutic Strategies
by Alyssa McKenzie, Rachel Dombrower, Nitchanan Theeraphapphong, Sophia McKenzie and Munther A. Hijazin
Biomedicines 2026, 14(1), 58; https://doi.org/10.3390/biomedicines14010058 - 26 Dec 2025
Viewed by 594
Abstract
Chronic pain is increasingly regarded as a condition of glia–neuronal dysregulation driven by persistent neuroinflammatory signaling. Following injury to nerves or tissues, glial cells, including astrocytes or satellite glial cells, undergo changes in their phenotype, thereby amplifying painful stimuli mediated by cytokines, chemokines, [...] Read more.
Chronic pain is increasingly regarded as a condition of glia–neuronal dysregulation driven by persistent neuroinflammatory signaling. Following injury to nerves or tissues, glial cells, including astrocytes or satellite glial cells, undergo changes in their phenotype, thereby amplifying painful stimuli mediated by cytokines, chemokines, or ATP signaling. In response to injuries, activated microglia release several mediators such as BDNF, IL-1β, or TNF-α, thereby disrupting chloride homeostasis and inducing disinhibition in the dorsal horn, and sustaining maladaptive neuroimmune activity. Dysfunction of astrocytes, characterized by impaired glutamate clearance via excitatory amino acid transporter 2 and elevated C-X-C motif chemokine ligand 1 (CXCL1) and ATP release, drives neuronal sensitization, loss of neuroprotective metabolic support, and persistence of pain. In peripheral ganglia, connexin–43–mediated satellite glial cell coupling leads to hyperexcitability, resulting in neuropathic and orofacial pain and contributing to peripheral neuroinflammation. Presently, there is no unified framework for glial cell types, and the molecular mechanisms underlying microglial, astrocyte, and satellite glial cell contributions to the transition to chronic pain from acute pain are not completely elucidated. This review synthesizes current evidence on cellular and molecular mechanisms linking glial reactivity to pain chronification through sustained neuroinflammatory remodeling and impaired neuroprotection. It evaluates therapeutic strategies, including purinergic receptor P2X4 and toll-like receptor 4 antagonists, to metabolic reprogramming, exosome therapy, and neuromodulation, aimed at restoring homeostatic glial function and re-establishing neuroprotective glia–neuron interactions. A deeper understanding of the temporal and spatial dynamics of glial activation may enable personalized, non-opioid interventions that not only achieve durable analgesia but also prevent progressive neuroinflammatory damage and support long-term functional recovery. Full article
(This article belongs to the Special Issue Neuroinflammation and Neuroprotection)
Show Figures

Figure 1

22 pages, 3592 KB  
Article
Phlorotannins from Ecklonia cava Regulate Dual Signaling Pathways, IL-17RA/Act1 and ERK1/2, to Suppress Ovarian Cancer Progression and Tumor-Associated Macrophage Activation
by Eun-Hye Kim, Hwi-Ho Lee, Jung-Hye Choi and Ji-Hye Ahn
Mar. Drugs 2026, 24(1), 12; https://doi.org/10.3390/md24010012 - 24 Dec 2025
Viewed by 474
Abstract
Background: Marine-derived secondary metabolites such as phlorotannins from the edible brown alga Ecklonia cava exhibit diverse bioactivities. However, their mechanisms in inflammation-associated cancer remain insufficiently understood. Methods: This study explored the anticancer potential of three major phlorotannins (dieckol, 7-phloroeckol, and 8,8′-bieckol) through network [...] Read more.
Background: Marine-derived secondary metabolites such as phlorotannins from the edible brown alga Ecklonia cava exhibit diverse bioactivities. However, their mechanisms in inflammation-associated cancer remain insufficiently understood. Methods: This study explored the anticancer potential of three major phlorotannins (dieckol, 7-phloroeckol, and 8,8′-bieckol) through network pharmacology, molecular docking, molecular dynamics simulations, and in vitro validation in SKOV3 ovarian cancer cells and tumor-associated macrophages (TAMs). Results: Computational analyses revealed stable binding of phlorotannins to IL-17RA, with 7-phloroeckol and 8,8′-bieckol preferentially engaging loop-proximal regions of the receptor, while dieckol interacted with spatially distinct residues. In SKOV3 ovarian cancer cells, phlorotannins suppressed migration and invasion by approximately 40 to 60%, accompanied by reduced MMP expression linked to IL-17RA–Act1 signaling attenuation and by increased TIMP1 expression in association with transient ERK1/2 activation. In TAMs, phlorotannins attenuated pro-tumorigenic cytokine production and polarization marker expression, indicating suppression of tumor-supportive immune activity. Conclusions: Collectively, these findings demonstrate that E. cava-derived phlorotannins exert anti-metastatic effects through dual regulation of IL-17RA/Act1 and ERK1/2 signaling pathways, offering mechanistic insight into their therapeutic potential against inflammation-driven malignancies. Full article
Show Figures

Graphical abstract

15 pages, 23101 KB  
Article
Identification of Differentially Expressed Genes and Molecular Pathways Involved in Primary Biliary Cholangitis Using RNA-Seq
by Min Yang, Xiaoyun Shen, Haitao Fu, Jie Lu and Fengying Li
Genes 2026, 17(1), 10; https://doi.org/10.3390/genes17010010 - 22 Dec 2025
Viewed by 424
Abstract
Objective: This study aims to investigate the functional role of lncRNA STX17-DT, which was previously found to be upregulated in peripheral blood mononuclear cells (PBMCs) of PBC patients, by examining its impact on gene expression and cellular behavior in a human monocyte [...] Read more.
Objective: This study aims to investigate the functional role of lncRNA STX17-DT, which was previously found to be upregulated in peripheral blood mononuclear cells (PBMCs) of PBC patients, by examining its impact on gene expression and cellular behavior in a human monocyte model. Methods: STX17-DT was overexpressed in THP-1 cells, which was assessed via plasmid transfection. Transcriptomic changes were analyzed by RNA sequencing, followed by comprehensive bioinformatics analyses including differential expression, functional enrichment, transcription factor network, and protein–protein interaction (PPI) analysis. Functional validation was performed using CCK-8 and TUNEL assays to assess proliferation and apoptosis, respectively. Results: Overexpression of STX17-DT led to 1973 differentially expressed genes (DEGs), with 1201 upregulated and 772 downregulated. Key upregulated genes included interferon-stimulated genes (e.g., interferon induced protein 44 like (IFI44L), interferon induced protein 44 (IFI44), guanylate binding protein 1(GBP1)) and chemokines (CCL4, CCL8). Upregulated DEGs were significantly enriched in immune-related pathways such as NF-κB signaling, Toll-like receptor signaling, TNF signaling, and cytokine–cytokine receptor interaction. Downregulated genes were involved in metabolic and signaling pathways such as PI3K–Akt, cAMP, and butanoate metabolism. Transcription factor analysis revealed significant alterations in regulators like Yes1 associated transcriptional regulator(YAP1), nuclear receptor subfamily 4 group A member 1(NR4A1), and MAF bZIP transcription factor B(MAFB). PPI network analysis suggested TNF, TLR4, TLR6, and STAT2 as central hubs. Functionally, STX17-DT overexpression enhanced THP-1 cell proliferation and significantly reduced apoptosis. Conclusions: STX17-DT promoted a pro-inflammatory transcriptomic profile and enhanced monocyte survival in our study, suggesting a potential role in PBC immunopathology. It may represent a potential biomarker and therapeutic target, particularly for patients with advanced disease or suboptimal response to ursodeoxycholic acid. Further studies in primary cells, animal models, and histological samples are warranted to validate its role in PBC pathogenesis. Full article
(This article belongs to the Section RNA)
Show Figures

Figure 1

40 pages, 2910 KB  
Review
Oral and Gut Health, (Neuro) Inflammation, and Central Sensitization in Chronic Pain: A Narrative Review of Mechanisms, Treatment Opportunities, and Research Agenda
by Ishtiaq Ahmed, Jo Nijs, Matteo Vanroose, Doris Vandeputte, Sébastien Kindt, Ömer Elma, Jolien Hendrix, Eva Huysmans and Astrid Lahousse
Int. J. Mol. Sci. 2026, 27(1), 114; https://doi.org/10.3390/ijms27010114 - 22 Dec 2025
Cited by 1 | Viewed by 1322
Abstract
Given the limited efficacy of current interventions and the complexity of chronic pain, identifying perpetuating factors is crucial for uncovering new mechanistic pathways and treatment targets. The oral and gut microbiome has emerged as a potential modulator of pain through immune, metabolic, and [...] Read more.
Given the limited efficacy of current interventions and the complexity of chronic pain, identifying perpetuating factors is crucial for uncovering new mechanistic pathways and treatment targets. The oral and gut microbiome has emerged as a potential modulator of pain through immune, metabolic, and neural mechanisms. Contemporary evidence indicates that chronic pain populations exhibit altered oral and gut microbiota, characterized by reduced short-chain fatty acid (SCFA)-producing taxa and an overrepresentation of pro-inflammatory species. These compositional changes affect metabolites such as SCFAs, bile acids, and microbial cell wall components, which interact with host receptors to promote peripheral and central sensitization. Microbiota-derived metabolites modulate peripheral sensitization by altering nociceptive neuron excitability and stimulating immune cells to release pro-inflammatory cytokines that increase blood–brain barrier permeability, activate microglia, and amplify neuroinflammation. Activated microglia further disrupt the balance between excitatory and inhibitory neurotransmission by enhancing glutamatergic activity and weakening GABAergic signaling, thereby contributing to the induction and maintenance of central sensitization. While observational studies establish associations between dysbiosis and chronic pain, animal models and early human fecal microbiota transplantation studies suggest a potential causal role of dysbiosis in pain, although human evidence remains preliminary and influenced by diet, lifestyle, and comorbidities. Overall, microbiota appears to regulate pain via peripheral and central mechanisms, and targeting it through specific interventions, such as dietary modulation to enhance SCFA production, alongside broader lifestyle measures like sleep, physical activity, stress management, and oral hygiene, may represent a new therapeutic strategy for the management of chronic pain. Full article
(This article belongs to the Special Issue New Therapeutic Targets for Neuroinflammation and Neurodegeneration)
Show Figures

Figure 1

18 pages, 1954 KB  
Article
Distinct Innate Immune Programs in Nile Tilapia Head Kidney During Infections with Streptococcus agalactiae, Escherichia coli and Vibrio harveyi
by Jiaoni Cheng, Yupeng Luo, Jie Shen, Kangping Yang and Zhangxia Lyu
Fishes 2025, 10(12), 656; https://doi.org/10.3390/fishes10120656 - 18 Dec 2025
Viewed by 372
Abstract
Nile tilapia (Oreochromis niloticus) is a globally important aquaculture species. However, intensive farming conditions increase the risk of bacterial diseases. Despite the fact that a considerable number of transcriptomic studies have examined host responses to single bacterial infections, comparative analyses conducted [...] Read more.
Nile tilapia (Oreochromis niloticus) is a globally important aquaculture species. However, intensive farming conditions increase the risk of bacterial diseases. Despite the fact that a considerable number of transcriptomic studies have examined host responses to single bacterial infections, comparative analyses conducted within a unified experimental framework remain scarce, limiting the understanding of pathogen-specific defence mechanisms. In this study, tilapia were experimentally infected with Streptococcus agalactiae, Escherichia coli, or Vibrio harveyi via thoracic injection. Head kidney tissues were collected at 48 h post-infection for RNA sequencing. The identification of differentially expressed genes (DEGs) was conducted utilising the edgeR, and the assessment of functional enrichment was facilitated through the implementation of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. A comparative analysis was conducted between the bacterial infection groups and the control group. The results of this analysis revealed the identification of 2930, 3328, and 4850 DEGs were identified in the S. agalactiae, E. coli, and V. harveyi infection groups, respectively. Integrated transcriptomic analysis, combining KEGG enrichment and expression profiling of key genes, revealed distinct response patterns across pathogens. The S. agalactiae infection predominantly activated innate immune signaling pathways, including Toll-like receptor, NOD-like receptor, cytokine–cytokine receptor interaction, and NF-κB pathways. In contrast, E. coli infection induced extensive metabolic reprogramming, notably in purine and pyrimidine metabolism, carbon metabolism, and amino acid biosynthesis. Meanwhile, an infection caused by V. harveyi resulted in mucosal and lysosomal defence responses, as evidenced by an increase in lysosome, phagosome, extracellular matrix–receptor interaction, and cell adhesion molecule pathways. Collectively, this study suggests that the head kidney of Nile tilapia employs pathogen-specific defence strategies rather than a uniform antibacterial response, providing one of the first transcriptomic comparisons of distinct bacterial infections in this species. These findings provide fundamental data and theoretical insights for elucidating immune mechanisms in teleost fish and for developing targeted prevention and control strategies in aquaculture. Full article
(This article belongs to the Special Issue Advances in Pathology of Aquatic Animals)
Show Figures

Figure 1

Back to TopTop