Microglial Expression of Serotonin Receptors Reveals Parallel Regulation of 5-HT2b and BDNF in the Rat Hippocampus
Highlights
- Transient, region-specific microglial 5-HTR expression;
- Upregulated microglial 5-HT2b in Tph2−/− rats parallels BDNF levels.
- Temporal differences in 5-HTR signaling may drive adaptive responses to serotonin deficiency, with BDNF compensating at the later stage;
- Interplay between microglial serotonin and BDNF highlights potential targets for interventions in neuroinflammation.
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Fluorescence-Activated Cell Sorting of Microglia
2.3. mRNA Expression Analyses
2.4. Statistical Analysis
3. Results
3.1. Increased Proportion of Microglia in Tph2−/− Rats at P9
3.2. Distinct Microglial Expression of 5-HT1b, 5-HT2b, 5-HT5a, and 5-HT5b
3.3. Downregulation of Microglial 5-HT1b and 5-HT5b with Age
3.4. Upregulation of Microglial 5-HT2b and 5-HT5a with Age
3.5. 5-HT2b Expression Peaks in the Hippocampus
3.6. 5-HT5a Levels Surge in the Prefrontal Cortex
3.7. A Strong Upregulation of 5-HT2b Gene Expression and BDNF in Tph2−/− Rats
3.8. Expression Profiles of IL-1β and IL-10 in the Absence of Brain Serotonin
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sierra, A.; Encinas, J.M.; Deudero, J.J.; Chancey, J.H.; Enikolopov, G.; Overstreet-Wadiche, L.S.; Tsirka, S.E.; Maletic-Savatic, M. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 2010, 7, 483–495. [Google Scholar] [CrossRef]
- Miller, V.K.; Broadie, K. Glia-to-glia serotonin signaling directs MMP-dependent infiltration for experience-dependent synapse pruning. PLoS Biol. 2025, 23, e3003524. [Google Scholar] [CrossRef]
- Parkhurst, C.N.; Yang, G.; Ninan, I.; Savas, J.N.; Yates, J.R., 3rd; Lafaille, J.J.; Hempstead, B.L.; Littman, D.R.; Gan, W.B. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 2013, 155, 1596–1609. [Google Scholar] [CrossRef]
- Klempin, F.; Beis, D.; Mosienko, V.; Kempermann, G.; Bader, M.; Alenina, N. Serotonin is required for exercise-induced adult hippocampal neurogenesis. J. Neurosci. Off. J. Soc. Neurosci. 2013, 33, 8270–8275. [Google Scholar] [CrossRef]
- Wasinski, F.; Batista, R.O.; Bader, R.M.; Araujo, C.; Klempin, F. Bradykinin B2 receptor is essential to running-induced cell proliferation in the adult mouse hippocampus. Brain Struct. Funct. 2018, 223, 3901–3907. [Google Scholar] [CrossRef] [PubMed]
- Franco, R.; Fernández-Suárez, D. Alternatively activated microglia and macrophages in the central nervous system. Prog. Neurobiol. 2015, 131, 65–86. [Google Scholar] [CrossRef] [PubMed]
- Suzumura, A. Neuron-microglia interaction in neuroinflammation. Curr. Protein Pept. Sci. 2013, 14, 16–20. [Google Scholar] [CrossRef]
- Chen, J.-J.; Wang, T.; An, C.; Jiang, C.-Y.; Zhao, J.; Li, S. Brain-derived neurotrophic factor: A mediator of inflammation-associated neurogenesis in Alzheimer’s disease. Rev. Neurosci. 2016, 27, 793–811. [Google Scholar] [CrossRef]
- Turkin, A.; Tuchina, O.; Klempin, F. Microglia Function on Precursor Cells in the Adult Hippocampus and Their Responsiveness to Serotonin Signaling. Front. Cell Dev. Biol. 2021, 9, 665739. [Google Scholar] [CrossRef] [PubMed]
- Brezun, J.M.; Daszuta, A. Serotonergic reinnervation reverses lesion-induced decreases in PSA-NCAM labeling and proliferation of hippocampal cells in adult rats. Hippocampus 2000, 10, 37–46. [Google Scholar] [CrossRef]
- Higuchi, Y.; Arakawa, H. Serotonergic mediation of the brain-wide neurogenesis: Region-dependent and receptor-type specific roles on neurogenic cellular transformation. Curr. Res. Neurobiol. 2023, 5, 100102. [Google Scholar] [CrossRef]
- García-Alcocer, G.; Rodríguez, A.; Moreno-Layseca, P.; Berumen, L.C.; Escobar, J.; Miledi, R. Serotonin receptor 5-HT5A in rat hippocampus decrease by leptin treatment. Neurosci. Lett. 2010, 486, 171–173. [Google Scholar] [CrossRef]
- Pocock, J.M.; Kettenmann, H. Neurotransmitter receptors on microglia. Trends Neurosci. 2007, 30, 527–535. [Google Scholar] [CrossRef]
- Sellner, S.; Paricio-Montesinos, R.; Spieß, A.; Masuch, A.; Erny, D.; Harsan, L.A.; Elverfeldt, D.V.; Schwabenland, M.; Biber, K.; Staszewski, O.; et al. Microglial CX3CR1 promotes adult neurogenesis by inhibiting Sirt 1/p65 signaling independent of CX3CL1. Acta Neuropathol. Commun. 2016, 4, 102. [Google Scholar] [CrossRef] [PubMed]
- Krabbe, G.; Matyash, V.; Pannasch, U.; Mamer, L.; Boddeke, H.W.G.M.; Kettenmann, H. Activation of serotonin receptors promotes microglial injury-induced motility but attenuates phagocytic activity. Brain. Behav. Immun. 2012, 26, 419–428. [Google Scholar] [CrossRef]
- Kaplan, K.; Echert, A.E.; Massat, B.; Puissant, M.M.; Palygin, O.; Geurts, A.M.; Hodges, M.R. Chronic central serotonin depletion attenuates ventilation and body temperature in young but not adult Tph2 knockout rats. J. Appl. Physiol. 2016, 120, 1070–1081. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Homberg, J.R.; Boreggio, L.; Samina, M.C.F.; Castro, R.C.R.; Kolk, S.M.; Alenina, N.; Bader, M.; Dai, J.; Wöhr, M. Socio-affective communication in Tph2-deficient rat pups: Communal nesting aggravates growth retardation despite ameliorating maternal affiliation deficits. Mol. Autism 2024, 15, 50. [Google Scholar] [CrossRef]
- Migliarini, S.; Pacini, G.; Pelosi, D.; Lunardi, G.; Pasqualetti, M. Lack of brain serotonin affects postnatal development and serotonergic neuronal circuitry formation. Mol. Psychiatry 2013, 18, 1106–1118. [Google Scholar] [CrossRef] [PubMed]
- Kronenberg, G.; Mosienko, V.; Gertz, K.; Alenina, N.; Hellweg, R.; Klempin, F. Increased brain-derived neurotrophic factor (BDNF) protein concentrations in mice lacking brain serotonin. Eur. Arch. Psychiatry Clin. Neurosci. 2016, 266, 281–284. [Google Scholar] [CrossRef]
- Brivio, P.; Sbrini, G.; Peeva, P.; Todiras, M.; Bader, M.; Alenina, N.; Calabrese, F. TPH2 Deficiency Influences Neuroplastic Mechanisms and Alters the Response to an Acute Stress in a Sex Specific Manner. Front. Mol. Neurosci. 2018, 11, 389. [Google Scholar] [CrossRef]
- Barnes, N.M.; Ahern, G.P.; Becamel, C.; Bockaert, J.; Camilleri, M.; Chaumont-Dubel, S.; Claeysen, S.; Cunningham, K.A.; Fone, K.C.; Gershon, M.; et al. International Union of Basic and Clinical Pharmacology. CX. Classification of Receptors for 5-hydroxytryptamine; Pharmacology and Function. Pharmacol. Rev. 2021, 73, 310–520. [Google Scholar] [CrossRef]
- Kolodziejczak, M.; Béchade, C.; Gervasi, N.; Irinopoulou, T.; Banas, S.M.; Cordier, C.; Rebsam, A.; Roumier, A.; Maroteaux, L. Serotonin Modulates Developmental Microglia via 5-HT2B Receptors: Potential Implication during Synaptic Refinement of Retinogeniculate Projections. ACS Chem. Neurosci. 2015, 6, 1219–1230. [Google Scholar] [CrossRef]
- Gonzalez, R.; Chávez-Pascacio, K.; Meneses, A. Role of 5-HT5A receptors in the consolidation of memory. Behav. Brain Res. 2013, 252, 246–251. [Google Scholar] [CrossRef]
- Kinsey, A.M.; Wainwright, A.; Heavens, R.; Sirinathsinghji, D.J.; Oliver, K.R. Distribution of 5-ht(5A), 5-ht(5B), 5-ht(6) and 5-HT(7) receptor mRNAs in the rat brain. Brain Res. Mol. Brain Res. 2001, 88, 194–198. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Singh, S.; Rawat, A.; Arshad, M.; Kumar, S. Region specific differential regulation of 5HT-5A and 5B receptor is associated with the difference in stress level between male and female rats. Heliyon 2022, 8, e10242. [Google Scholar] [CrossRef]
- Karimi, B.; Hafidzi, M.N.; Panandam, J.M.; Fuzina, N.H. Comparison of effect of sex hormone manipulation during neonatal period, on mRNA expression of Slc9a4, Nr3c2, Htr5b and Mas1 in hippocampus and frontal cortex of male and female rats. J. Biol. Regul. Homeost. Agents 2013, 27, 869–874. [Google Scholar] [PubMed]
- Béchade, C.; D’Andrea, I.; Etienne, F.; Verdonk, F.; Moutkine, I.; Banas, S.M.; Kolodziejczak, M.; Diaz, S.L.; Parkhurst, C.N.; Gan, W.B.; et al. The serotonin 2B receptor is required in neonatal microglia to limit neuroinflammation and sickness behavior in adulthood. Glia 2021, 69, 638–654. [Google Scholar] [CrossRef]
- Ruan, Z.; Li, Y.; Chen, Y. Astragaloside IV alleviates neuroinflammation in cerebral ischemia-reperfusion injury by inhibiting HTR2B-mediated microglial M1 polarization. Neurol. Res. 2025, 1–14. [Google Scholar] [CrossRef] [PubMed]
- de las Casas-Engel, M.; Domínguez-Soto, A.; Sierra-Filardi, E.; Bragado, R.; Nieto, C.; Puig-Kroger, A.; Samaniego, R.; Loza, M.; Corcuera, M.T.; Gómez-Aguado, F.; et al. Serotonin skews human macrophage polarization through HTR2B and HTR7. J. Immunol. 2013, 190, 2301–2310. [Google Scholar] [CrossRef] [PubMed]
- Makar, T.K.; Bever, C.T.; Singh, I.S.; Royal, W.; Sahu, S.N.; Sura, T.P.; Sultana, S.; Sura, K.T.; Patel, N.; Dhib-Jalbut, S.; et al. Brain-derived neurotrophic factor gene delivery in an animal model of multiple sclerosis using bone marrow stem cells as a vehicle. J. Neuroimmunol. 2009, 210, 40–51. [Google Scholar] [CrossRef]
- Harley, S.B.R.; Willis, E.F.; Shaikh, S.N.; Blackmore, D.G.; Sah, P.; Ruitenberg, M.J.; Bartlett, P.F.; Vukovic, J. Selective Ablation of BDNF from Microglia Reveals Novel Roles in Self-Renewal and Hippocampal Neurogenesis. J. Neurosci. Off. J. Soc. Neurosci. 2021, 41, 4172–4186. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Xu, L. Bidirectional crosstalk between microglia and serotonin signaling in neuroinflammation and CNS disorders. Front. Immunol. 2025, 16, 1646740. [Google Scholar] [CrossRef] [PubMed]
- Cloëz-Tayarani, I.; Petit-Bertron, A.F.; Venters, H.D.; Cavaillon, J.M. Differential effect of serotonin on cytokine production in lipopolysaccharide-stimulated human peripheral blood mononuclear cells: Involvement of 5-hydroxytryptamine2A receptors. Int. Immunol. 2003, 15, 233–240. [Google Scholar] [CrossRef]
- Lobo-Silva, D.; Carriche, G.M.; Castro, A.G.; Roque, S.; Saraiva, M. Balancing the immune response in the brain: IL-10 and its regulation. J. Neuroinflamm. 2016, 13, 297. [Google Scholar] [CrossRef]
- Floden, A.M.; Li, S.; Combs, C.K. Beta-amyloid-stimulated microglia induce neuron death via synergistic stimulation of tumor necrosis factor alpha and NMDA receptors. J. Neurosci. Off. J. Soc. Neurosci. 2005, 25, 2566–2575. [Google Scholar] [CrossRef]
- Burbach, G.J.; Hellweg, R.; Haas, C.A.; Del Turco, D.; Deicke, U.; Abramowski, D.; Jucker, M.; Staufenbiel, M.; Deller, T. Induction of brain-derived neurotrophic factor in plaque-associated glial cells of aged APP23 transgenic mice. J. Neurosci. Off. J. Soc. Neurosci. 2004, 24, 2421–2430. [Google Scholar] [CrossRef] [PubMed]
- Anzalone, M.; Karam, S.A.; Briting, S.R.R.; Petersen, S.; Thomsen, M.B.; Babcock, A.A.; Landau, A.M.; Finsen, B.; Metaxas, A. Serotonin-2B receptor (5-HT2BR) expression and binding in the brain of APPswe/PS1dE9 transgenic mice and in Alzheimer’s disease brain tissue. Neurosci. Lett. 2025, 844, 138013. [Google Scholar] [CrossRef]



| Gene | Forward (5′-3′) | Reverse (5′-3′) |
|---|---|---|
| 5-ht1a | CACTTGGCTCATTGGCTTTC | CGAAAGTGGAGTAGATGGTGTAG |
| 5-ht1b | CGTCCTCTACACGGTCTACT | CGGGCTTCCACATAGATAC |
| 5-ht1d | GCCTTCTACATCCCATCCATC | CGCAGAGCCCGTGATAAG |
| 5-ht1f | CACCACCCAGCCAACTATTTA | CACAGAGTCCTTGTCCCATAATC |
| 5-ht2a | TCCAGAGATGCTAACACTTCG | CCTGGAGATGAAGAATGGAGAG |
| 5-ht2b | GAATAGAGGCTGATGTGGTCAA | CAAAGCGTGAATGGTGAGAAAG |
| 5-ht3a | GAACACCAGAAGAAGTGAGGTC | GAAGATACTGGGCAGCAAGAG |
| 5-ht3b | CGAGAGGTTTGGAATGATGAGT | GGATGGGCTTGTGGTTTCTA |
| 5-ht4 | CTGAGACTAGGAGGTGGTAGG | GCTTTCCTACTGACCTGAACC |
| 5-ht5a | AGGGAACAGAAGGAGCAAAG | GTAGATGAGCGGGTTGAAGAA |
| 5-ht5b | GAACTACAACAATGCCTTCAAGAG | CGGTGTGATTTCTGGAGTGT |
| 5-ht6 | CTGAGACTAGGAGGTGGTAGG | GCTTTCCTACTGACCTGAACC |
| 5-ht7 | CCATCACCTTACCTCCTCTCT | ACACTCTTCCACCTCCTTCT |
| Bdnf | GAGACAAGAACACAGGAGGAAA | CCCAAGAGGTAAAGTGTAGAAGG |
| Il-10 | CTGCTATGTTGCCTGCTCTTA | GGAACTGAGGTATCAGAGGTAATAAATA |
| Il-1β | GCAATGGTCGGGACATAGTT | GTAAGTGGTTGCCTGTCAGAG |
| Gapdh | GCTGTGGGCAAGGTCATCC | CTTCACCACCTTCTTGATGTC |
| Gfap | GTGTGGAGTGCCTTCGTATTAG | GAAGGTTAGCAGAGGTGACAAG |
| Tubb3 | GGAACGCATCAGTGTCTACTAC | GGCCTGAATAGGTGTCCAAA |
| Iba1 | ATGAGCCAGAGCAAGGATTT | GTTGGCTTCTGGTGTTCTTTG |
| Male % | Hippocampus | Female % | Hippocampus | ||
| CTR | Mic | Astro | CTR | Mic | Astro |
| P9 | 1.50 (0.07) | 50.80 (3.13) | P9 | 1.14 (0.03) | 59.18 (1.75) |
| P21 | 0.72 (0.12) | 56.65 (1.27) | P21 | 0.50 (0.10) | 55.25 (3.86) |
| P56 | 0.57 (0.13) | 45.67 (0.57) | P56 | 0.61 (0.24) | 45.13 (1.08) |
| Tph2−/− | Tph2−/− | ||||
| P9 | 1.82 (0.04) * | 48.43 (4.22) | P9 | 1.72 (0.08) *** | 50.95 (4.59) |
| P21 | 0.50 (0.02) | 74.83 (1.37) *** | P21 | 0.75 (0.08) | 52.05 (0.23) |
| P56 | 0.37 (0.11) | 45.03 (0.23) | P56 | 1.66 (0.75) | 44.10 (0.23) |
| Male % | Prefrontal Cortex | Female % | Prefrontal Cortex | ||
| CTR | Mic | Astro | CTR | Mic | Astro |
| P9 | 1.56 (0.08) | 59.28 (7.86) | P9 | 1.36 (0.10) | 46.33 (3.52) |
| P21 | 0.66 (0.08) | 55.43 (2.38) | P21 | 0.75 (0.07) | 52.33 (0.54) |
| P56 | 0.63 (0.07) | 43.87 (0.84) | P56 | 0.48 (0.11) | 45.10 (1.05) |
| Tph2−/− | Tph2−/− | ||||
| P9 | 1.70 (0.04) | 63.63 (4.19) | P9 | 1.40 (0.03) | 45.45 (6.48) |
| P21 | 0.61 (0.05) | 68.83 (5.13) # | P21 | 0.71 (0.05) | 51.43 (0.21) |
| P56 | 0.73 (0.27) | 45.40 (0.35) | P56 | 0.50 (0.03) | 43.93 (1.85) |
| HC | 1a | 5-HT1b | 1d | 1f | 2a | 5-HT2b | 4 | 5-HT5a | 5-HT5b | 6 | 7 | ||||
| male | CTR | Tph2−/− | CTR | Tph2−/− | CTR | Tph2−/− | CTR | Tph2−/− | |||||||
| P9 | n.d. | ∗∗∗ | ∗∗∗ | n.d. | n.d. | n.d. | ∗ | ∗ | n.d. | ∗ | ∗ | ∗∗∗ | ∗∗∗ | n.d. | n.d. |
| P21 | n.d. | ∗ | ∗ | n.d. | n.d. | n.d. | ∗ | ∗∗∗ | n.d. | ∗ | ∗ | ∗∗∗ | ∗∗∗ | n.d. | n.d. |
| P56 | n.d. | ∗ | ∗ | n.d. | n.d. | n.d. | ∗ | ∗∗∗ | n.d. | ∗∗∗ | ∗∗∗ | ∗ | ∗ | n.d. | n.d. |
| female | |||||||||||||||
| P9 | n.d. | ∗∗∗ | ∗∗∗ | n.d. | n.d. | n.d. | ∗ | ∗ | n.d. | ∗ | ∗ | ∗∗∗ | ∗∗∗ | n.d. | n.d. |
| P21 | n.d. | ∗ | ∗ | n.d. | n.d. | n.d. | ∗∗ | ∗∗∗ | n.d. | ∗ | ∗∗ | ∗ | ∗∗ | n.d. | n.d. |
| P56 | n.d. | ∗ | ∗ | n.d. | n.d. | n.d. | ∗ | ∗∗∗ | n.d. | ∗∗∗ | ∗∗∗ | ∗ | ∗ | n.d. | n.d. |
| PFC | 1a | 5-HT1b | 1d | 1f | 2a | 5-HT2b | 4 | 5-HT5a | 5-HT5b | 6 | 7 | ||||
| male | CTR | Tph2−/− | CTR | Tph2−/− | CTR | Tph2−/− | CTR | Tph2−/− | |||||||
| P9 | n.d. | ∗∗∗ | ∗∗∗ | n.d. | n.d. | n.d. | ∗ | ∗ | n.d. | ∗ | ∗ | ∗ | ∗ | n.d. | n.d. |
| P21 | n.d. | ∗ | ∗ | n.d. | n.d. | n.d. | ∗∗ | ∗ | n.d. | ∗∗∗∗ | ∗∗ | ∗∗ | ∗∗∗ | n.d. | n.d. |
| P56 | n.d. | ∗ | ∗ | n.d. | n.d. | n.d. | ∗ | ∗∗∗ | n.d. | ∗∗∗∗ | ∗∗∗∗ | n.d. | n.d. | n.d. | n.d. |
| female | |||||||||||||||
| P9 | n.d. | ∗∗∗ | ∗∗∗ | n.d. | n.d. | n.d. | ∗ | ∗ | n.d. | ∗ | ∗ | ∗ | ∗ | n.d. | n.d. |
| P21 | n.d. | ∗ | ∗∗ | n.d. | n.d. | n.d. | ∗∗ | ∗ | n.d. | ∗∗∗ | ∗∗∗ | ∗∗∗ | ∗ | n.d. | n.d. |
| P56 | n.d. | ∗ | ∗ | n.d. | n.d. | n.d. | ∗ | ∗ | n.d. | ∗∗ | ∗∗ | n.d. | n.d. | n.d. | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Turkin, A.; Sidorova, M.; Kurilova, E.; Alenina, N.; Tuchina, O.; Klempin, F. Microglial Expression of Serotonin Receptors Reveals Parallel Regulation of 5-HT2b and BDNF in the Rat Hippocampus. Cells 2026, 15, 66. https://doi.org/10.3390/cells15010066
Turkin A, Sidorova M, Kurilova E, Alenina N, Tuchina O, Klempin F. Microglial Expression of Serotonin Receptors Reveals Parallel Regulation of 5-HT2b and BDNF in the Rat Hippocampus. Cells. 2026; 15(1):66. https://doi.org/10.3390/cells15010066
Chicago/Turabian StyleTurkin, Andrei, Maria Sidorova, Ekaterina Kurilova, Natalia Alenina, Oksana Tuchina, and Friederike Klempin. 2026. "Microglial Expression of Serotonin Receptors Reveals Parallel Regulation of 5-HT2b and BDNF in the Rat Hippocampus" Cells 15, no. 1: 66. https://doi.org/10.3390/cells15010066
APA StyleTurkin, A., Sidorova, M., Kurilova, E., Alenina, N., Tuchina, O., & Klempin, F. (2026). Microglial Expression of Serotonin Receptors Reveals Parallel Regulation of 5-HT2b and BDNF in the Rat Hippocampus. Cells, 15(1), 66. https://doi.org/10.3390/cells15010066

