Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = cyclonic vorticity advection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3399 KB  
Article
On the Quasi-Steady Vorticity Balance in the Mature Stage of Hurricane Irma (2017)
by Jasper de Jong, Aarnout J. van Delden and Michiel L. J. Baatsen
Atmosphere 2025, 16(10), 1146; https://doi.org/10.3390/atmos16101146 - 29 Sep 2025
Viewed by 822
Abstract
Vorticity budgets in traditional height or pressure coordinates are commonly examined to help explain how tropical cyclones evolve over time. One disadvantage of using these coordinates is that the vorticity flux due to diabatic heating cannot be easily assessed. Isentropic coordinates naturally lend [...] Read more.
Vorticity budgets in traditional height or pressure coordinates are commonly examined to help explain how tropical cyclones evolve over time. One disadvantage of using these coordinates is that the vorticity flux due to diabatic heating cannot be easily assessed. Isentropic coordinates naturally lend themselves to determine the effect of diabatic heating—the vorticity budget simplifies, and a clear-cut distinction can be made between adiabatic (advective) and diabatic vorticity fluxes. Above the boundary layer, advective vorticity fluxes alone would lead to a quick spin-down of the mature tropical cyclone. Do diabatic processes prevent this from happening? If so, how? This paper investigates the vorticity budget of Hurricane Irma (2017) in its mature quasi-steady phase. We analyse a simulation of Irma with an operational high-resolution weather forecasting model. During Irma’s remarkably long period (37 h) of steady peak intensity, the radially outward advective isentropic vorticity flux in the eyewall above the boundary layer is balanced by a radially inward diabatic isentropic vorticity flux. Frictional effects and asymmetrical flow properties are of little importance to the maintenance of cyclone intensity in its mature phase, provided enough latent heat is released in the eyewall to maintain an inward vorticity flux that balances the advective flux. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

30 pages, 14172 KB  
Article
Synoptic and Dynamic Analyses of an Intense Mediterranean Cyclone: A Case Study
by Ahmad E. Samman
Climate 2025, 13(6), 126; https://doi.org/10.3390/cli13060126 - 15 Jun 2025
Viewed by 1369
Abstract
On 3 February 2006, a powerful Mediterranean cyclone instigated a widespread dust storm across Saudi Arabia. Meteorological observations from one station recorded strong westerly to southwesterly winds, with gusts reaching 40 m/s, accompanied by thunderstorms and dust storms. This study delves into the [...] Read more.
On 3 February 2006, a powerful Mediterranean cyclone instigated a widespread dust storm across Saudi Arabia. Meteorological observations from one station recorded strong westerly to southwesterly winds, with gusts reaching 40 m/s, accompanied by thunderstorms and dust storms. This study delves into the formation and development of this significant Mediterranean cyclone, which impacted the Mediterranean basin and the Arabian Peninsula from 26 January to 4 February 2006. Utilizing ECMWF ERA5 reanalysis data, this research analyzes the synoptic and dynamic conditions that contributed to the cyclone’s evolution and intensification. The cyclone originated over the North Atlantic as cold air from higher latitudes and was advected southward, driven by a strong upper-level trough. The initial phase of cyclogenesis was triggered by baroclinic instability, facilitated by an intense upper-level jet stream interacting with a pre-existing low-level baroclinic zone over coastal regions. Upper-level dynamics enhanced surface frontal structures, promoting the formation of the intense cyclone. As the system progressed, low-level diabatic processes became the primary drivers of its evolution, reducing the influence of upper-level baroclinic mechanisms. The weakening of the upper-level dynamics led to the gradual distortion of the low-level baroclinicity and frontal structures, transitioning the system to a more barotropic state during its mature phase. Vorticity analysis revealed that positive vorticity advection and warm air transport toward the developing cyclone played key roles in its intensification, leading to the development of strong low-level winds. Atmospheric kinetic energy analysis showed that the majority of the atmospheric kinetic energy was concentrated at 400 hPa and above, coinciding with intense jet stream activity. The generation of the atmospheric kinetic energy was primarily driven by cross-contour flow, acting as a major energy source, while atmospheric kinetic energy dissipation from grid to subgrid scales served as a major energy sink. The dissipation pattern closely mirrored the generation pattern but with the opposite sign. Additionally, the horizontal flux of the atmospheric kinetic energy was identified as a continuous energy source throughout the cyclone’s lifecycle. Full article
(This article belongs to the Section Weather, Events and Impacts)
Show Figures

Figure 1

27 pages, 26505 KB  
Article
Dynamic Diagnosis of an Extreme Precipitation Event over the Southern Slope of Tianshan Mountains Using Multi-Source Observations
by Jiangliang Peng, Zhiyi Li, Lianmei Yang and Yunhui Zhang
Remote Sens. 2025, 17(9), 1521; https://doi.org/10.3390/rs17091521 - 25 Apr 2025
Cited by 1 | Viewed by 1142
Abstract
The southern slope of the Tianshan Mountains features complex terrain and an arid climate, yet paradoxically experiences frequent extreme precipitation events (EPEs), which pose significant challenges for weather forecasting. This study investigates an EPE that occurred from 20 to 21 August 2019 using [...] Read more.
The southern slope of the Tianshan Mountains features complex terrain and an arid climate, yet paradoxically experiences frequent extreme precipitation events (EPEs), which pose significant challenges for weather forecasting. This study investigates an EPE that occurred from 20 to 21 August 2019 using multi-source data to examine circulation patterns, mesoscale characteristics, moisture dynamics, and energy-instability mechanisms. The results reveal distinct spatiotemporal variability in precipitation, prompting a two-stage analytical framework: stage 1 (western plains), dominated by localized convective cells, and stage 2 (northeastern mountains), characterized by orographically enhanced precipitation clusters. The event was associated with a “two ridges and one trough” circulation pattern at 500 hPa and a dual-core structure of the South Asian high at 200 hPa. Dynamic forcing stemmed from cyclonic convergence, vertical wind shear, low-level convergence lines, water vapor (WV) transport, and jet-induced upper-level divergence. A stronger vorticity, divergence, and vertical velocity in stage 1 resulted in more intense precipitation. The thermodynamic analysis showed enhanced low-level cold advection in the plains before the event. Sounding data revealed increases in precipitable water and convective available potential energy (CAPE) in both stages. WV tracing showed vertical differences in moisture sources: at 3000 m, ~70% originated from Central Asia via the Caspian and Black Seas; at 5000 m, source and path differences emerged between stages. In stage 1, specific humidity along each vapor track was higher than in stage 2 during the EPE, with a 12 h pre-event enhancement. Both stages featured rapid convective cloud growth, with decreases in total black body temperature (TBB) associated with precipitation intensification. During stage 1, the EPE center aligned with a large TBB gradient at the edge of a cold cloud zone, where vigorous convection occurred. In contrast to typical northern events, which are linked to colder cloud tops and vigorous convection, the afternoon EPE in stage 2 formed near cloud edges with lesser negative TBB values. These findings advance the understanding of multi-scale extreme precipitation mechanisms in arid mountains, aiding improved forecasting in complex terrains. Full article
Show Figures

Figure 1

17 pages, 22804 KB  
Article
The Diagnostic Analysis of the Thermodynamic Characteristics of Typhoon “Maysak” during Its Transformation Process
by Guanbo Zhou and Han Du
Atmosphere 2024, 15(9), 1058; https://doi.org/10.3390/atmos15091058 - 1 Sep 2024
Viewed by 1685
Abstract
This study utilized high-resolution numerical simulation data from the WRF model to conduct a thermodynamic diagnosis of the process by which Typhoon “Maysak” transformed and merged with the Northeast Cold Vortex. The results indicated that the continuous intrusion of cold vortex air and [...] Read more.
This study utilized high-resolution numerical simulation data from the WRF model to conduct a thermodynamic diagnosis of the process by which Typhoon “Maysak” transformed and merged with the Northeast Cold Vortex. The results indicated that the continuous intrusion of cold vortex air and the relative cold advection formed by the typhoon’s movement led to the demise of the typhoon’s warm core structure. The low-level low-pressure convergence and upper-level high-pressure divergence structure disappeared. After the transformation and merging with the Northeast Cold Vortex, the cyclone became cold throughout the entire layer, with a cold center appearing at low levels. During the process of the typhoon’s transformation and merging with the Northeast Cold Vortex, cold air accumulated near the low levels of the cyclone, causing the pseudo-adiabatic potential temperature lines to tilt and resulting in the slanted development of vertical vorticity in the mid-levels of the cyclone. After the typhoon transformed and merged with the Northeast Cold Vortex, the positive vertical vorticity advection at the bottom of the upper-level cold vortex trough promoted the cyclone’s development directly from the mid-levels to the upper levels, while the jet stream at the bottom of the cold vortex trough facilitated the maintenance of the positive vertical vorticity advection. Concurrently, the thermodynamic shear vorticity parameter could describe the typical vertical structure characteristics of the dynamic and thermodynamic fields above the rain area during the typhoon transformation process. In terms of temporal evolution trends, there was a certain correspondence with the development and movement of the ground rain area, and the perturbation thermodynamic divergence parameter had a good indicative effect on the area of heavy rainfall. Full article
Show Figures

Figure 1

18 pages, 10242 KB  
Article
Comparative Analysis of Two Tornado Processes in Southern Jiangsu
by Yang Li, Shuya Cao, Xiaohua Wang and Lei Wang
Atmosphere 2024, 15(8), 1010; https://doi.org/10.3390/atmos15081010 - 21 Aug 2024
Cited by 1 | Viewed by 1842
Abstract
Jiangsu is a province in China and has the highest frequency of tornado occurrences. Studying the meteorological background and mechanisms of tornado formation is crucial for predicting tornado events and preventing the resulting disasters. This paper analyzed the meteorological background, instability mechanisms, and [...] Read more.
Jiangsu is a province in China and has the highest frequency of tornado occurrences. Studying the meteorological background and mechanisms of tornado formation is crucial for predicting tornado events and preventing the resulting disasters. This paper analyzed the meteorological background, instability mechanisms, and lifting conditions of the two Enhanced Fujita Scale level 2 (EF2) and above tornadoes that occurred in southern Jiangsu on 14 May 2021 (“5.14”) and 6 July 2020 (“7.06”) using ERA5 reanalysis data. Detailed analyses of the internal structure of tornado storms were conducted using Changzhou and Qingpu radar data. The results showed that (1) both tornadoes occurred in warm and moist areas ahead of upper-level troughs with significant dry air transport following the cold troughs. The continuous strengthening of low-level warm and moist advection was crucial in maintaining potential instability and triggering tornado vortices. The 14 May tornado formed within a low-level shear line and a warm area of a surface trough, while the 6 July tornado occurred at the end of a low-level jet stream, north of the eastern section of a quasi-stationary front. (2) The convective available potential energy (CAPE) and K indices for both tornado processes were very close (391 for “5.14” and 378 for “7.06”), with the lifting condensation level (LCL) near the ground. The “5.14” showed greater instability and more favorable thermodynamic conditions, with deep southwesterly jets at the mid-level shear line producing rotation under strong convergent action (convergence center value exceeding −1 × 104s1). In contrast, the “7.06” was driven by super-low-level jet stream pulsations and wind direction convergence under the influence of the Meiyu Front (convergence center value exceeding −1.5 × 104 s1), resulting in intense lifting and vertical vorticity triggered by a surface convergence line. (3) The “5.14” tornado process involved a supercell storm over a surface dry line experiencing tilting due to strong vertical wind shear, which led to the formation of smaller cyclonic vortices near a hook echo that developed into a tornado. The “7.06” developed on a bow echo structure within a mesoscale convective system formed over the Meiyu Front, where dry air subsidence, entrainment, and convergence of the southeast jet stream triggered a “miniature” supercell. The relevant research results provide a reference for the prediction and early warning of tornadoes. Full article
(This article belongs to the Special Issue Advances in Rainfall-Induced Hazard Research)
Show Figures

Figure 1

11 pages, 2354 KB  
Article
Influence of Abnormal Eddies on Seasonal Variations in Sonic Layer Depth in the South China Sea
by Xintong Liu, Chunhua Qiu, Tianlin Wang, Huabin Mao and Peng Xiao
Remote Sens. 2024, 16(15), 2845; https://doi.org/10.3390/rs16152845 - 2 Aug 2024
Viewed by 2030
Abstract
Sonic layer depth (SLD) is crucial in ocean acoustics research and profoundly influences sound propagation and Sonar detection. Carrying 90% of oceanic kinetic energy, mesoscale eddies significantly impact the propagation of acoustic energy in the ocean. Recent studies classified mesoscale eddies into normal [...] Read more.
Sonic layer depth (SLD) is crucial in ocean acoustics research and profoundly influences sound propagation and Sonar detection. Carrying 90% of oceanic kinetic energy, mesoscale eddies significantly impact the propagation of acoustic energy in the ocean. Recent studies classified mesoscale eddies into normal eddies (warm anticyclonic and cold cyclonic eddies) and abnormal eddies (cold anticyclonic and warm cyclonic eddies). However, the influence of mesoscale eddies, especially abnormal eddies, on SLD remains unclear. Based on satellite altimeter and reanalysis data, we explored the influence of mesoscale eddies on seasonal variations in SLD in the South China Sea. We found that the vertical structures of temperature anomalies within the eddies had a significant impact on the sound speed field. A positive correlation between sonic layer depth anomaly (SLDA) and eddy intensity (absolute value of relative vorticity) was investigated. The SLDA showed significant seasonal variations: during summer (winter), the proportion of negative (positive) SLDA increased. Normal eddies (abnormal eddies) had a more pronounced effect during summer and autumn (spring and winter). Based on mixed-layer heat budget analysis, it was found that the seasonal variation in SLD was primarily induced by air–sea heat fluxes. However, for abnormal eddies, the horizontal advection and vertical convective terms modulated the variations in the SLDA. This study provides additional theoretical support for mesoscale eddy–acoustic coupling models and advances our understanding of the impact of mesoscale eddies on sound propagation. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Ocean Observation (Third Edition))
Show Figures

Figure 1

19 pages, 11336 KB  
Article
The Reexamination of the Moisture–Vortex and Baroclinic Instabilities in the South Asian Monsoon
by Hongyu Chen, Tim Li and Jing Cui
Atmosphere 2024, 15(2), 147; https://doi.org/10.3390/atmos15020147 - 24 Jan 2024
Cited by 1 | Viewed by 1728
Abstract
Observational analyses reveal that a dominant mode in the South Asian Monsoon region in boreal summer is a westward-propagating synoptic-scale disturbance with a typical wavelength of 4000 km that is coupled with moistening and precipitation processes. The disturbances exhibit an eastward tilt during [...] Read more.
Observational analyses reveal that a dominant mode in the South Asian Monsoon region in boreal summer is a westward-propagating synoptic-scale disturbance with a typical wavelength of 4000 km that is coupled with moistening and precipitation processes. The disturbances exhibit an eastward tilt during their development before reaching their maximum activity center. A 2.5-layer model that extends a classic 2-level quasi-geostrophic model by including a prognostic lower-tropospheric moisture tendency equation and an interactive planetary boundary layer was constructed. The eigenvalue analysis of this model shows that the most unstable mode has a preferred zonal wavelength of 4000 km, a westward phase speed of 6 m s−1, an eastward tilt vertical structure, and a westward shift of maximum moisture/precipitation center relative to the lower-tropospheric vorticity center, all of which agree with the observations. Sensitivity experiments show that the moisture–vortex instability determines, to a large extent, the growth rate, while the baroclinic instability helps set up the preferred zonal scale. Ekman-pumping-induced vertical moisture advection prompts an in-phase component of perturbation moisture relative to the low-level cyclonic center, allowing the generation of available potential energy and perturbation growth, regardless of whether or not a low-level mean westerly is presented. In contrast to a previous study, the growth rate is reversely proportional to the convective adjustment time. The current work sheds light on understanding the moisture–vortex and the baroclinic instability in a monsoonal environment with a pronounced easterly vertical shear. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

8 pages, 12660 KB  
Proceeding Paper
The Incipient Cyclone Stage of Medicane Ianos
by Anastasia Souvatzoglou, Effie Kostopoulou, Dimitris Brikas and Ioannis Pytharoulis
Environ. Sci. Proc. 2023, 26(1), 204; https://doi.org/10.3390/environsciproc2023026204 - 22 Sep 2023
Viewed by 1125
Abstract
Ianos originated from a shallow low in Libya, which formed on the tip of a warm tongue of Saharan air on 12 September 2020, a couple of days before its transformation to a Medicane. The genesis of the incipient cyclone was associated with [...] Read more.
Ianos originated from a shallow low in Libya, which formed on the tip of a warm tongue of Saharan air on 12 September 2020, a couple of days before its transformation to a Medicane. The genesis of the incipient cyclone was associated with strong warm air advection, across the Saharan low-level baroclinic zone, ahead of an amplifying thermal wave. On 13 September, when the baroclinic zone weakened, the upper levels played a significant role in the maintenance of the low. The relative position of the upper-level jet favoured downward cyclonic vorticity advection towards the cyclone, which apparently acted to reinforce the cyclonic circulation until the low entered the sea on 14 September 2020. Full article
Show Figures

Figure 1

6 pages, 5438 KB  
Proceeding Paper
The Organization of Convection into Lines in Northern Greece: The Case of 18 May 2007
by Anastasia Dokopoulou, Kostantinos Laskos, Maria Olga Voudouri, Mairi Vlachou and Dimitris Brikas
Environ. Sci. Proc. 2023, 26(1), 169; https://doi.org/10.3390/environsciproc2023026169 - 4 Sep 2023
Viewed by 787
Abstract
The synoptic–meso-α scale study of a convective line shows that the latter was favored by the vertical superposition of the passage of an ULFnt onto a low-level convergence line. Full article
Show Figures

Figure 1

13 pages, 5125 KB  
Article
Analysis of Water Vapor Transport and Trigger Mechanisms for Severe Rainstorms Associated with a Northeast China Cold Vortex in 2022
by Pengyu Hu, Zuowei Xie, Tianjiao Zhou and Cholaw Bueh
Atmosphere 2023, 14(9), 1363; https://doi.org/10.3390/atmos14091363 - 29 Aug 2023
Cited by 5 | Viewed by 1728
Abstract
Rainstorms always occur in the southeast and northeast quadrants of the Northeast China Cold Vortex (NCCV), resulting in significant flooding. This study investigated water vapor and trigger mechanisms for rainstorms within these two regions of an NCCV event during 11–14 June 2022 in [...] Read more.
Rainstorms always occur in the southeast and northeast quadrants of the Northeast China Cold Vortex (NCCV), resulting in significant flooding. This study investigated water vapor and trigger mechanisms for rainstorms within these two regions of an NCCV event during 11–14 June 2022 in terms of Lagrangian backward tracking, stratification stability, and upward motion using the ERA5 reanalysis. In the mid-troposphere, a quasi-stationary “ridge-NCCV-ridge” pattern resided over northeastern China, with an “anticyclonic-cyclonic-anticyclonic” airflow in the lower troposphere. As a result, water vapor originated from the Yellow Sea and was transported in an “L” shape toward both two regions. The southeast region was influenced by southwesterly and northwesterly airflows, resulting in the convergence of moist air from the Yangtze River and Lake Baikal and significant vertical shear of positive vorticity advection. This dynamic created deep and pronounced upward currents in the southeast of the NCCV, leading to the development of intensive and extensive rainstorms in situ. In contrast, the northeast region of the NCCV was dominated by southerly airflow. The moist air converged against the lee side of the Great Khingan Mountains and generated shallow, unstable stratification. The upward motion in this area was relatively weaker and thus induced regional rainstorms. Full article
(This article belongs to the Special Issue Climate Extremes in China)
Show Figures

Figure 1

6 pages, 1551 KB  
Proceeding Paper
Characteristics of Long-Lived Coherent Vortices in a Simple Model of Quasi-Geostrophic Turbulence
by Nikolaos A. Bakas
Environ. Sci. Proc. 2023, 26(1), 87; https://doi.org/10.3390/environsciproc2023026087 - 28 Aug 2023
Viewed by 1071
Abstract
Macroscale turbulence in the atmosphere is observed to be self-organized into large-scale structures such as zonal jets and robust waves and vortices. A simple model containing the relevant dynamics of turbulence self-organization is quasi-geostrophic turbulence in a stably stratified atmosphere approximated with a [...] Read more.
Macroscale turbulence in the atmosphere is observed to be self-organized into large-scale structures such as zonal jets and robust waves and vortices. A simple model containing the relevant dynamics of turbulence self-organization is quasi-geostrophic turbulence in a stably stratified atmosphere approximated with a single-layer fluid on a beta-plane. Numerical simulations of this model have shown the dominance of Rossby waves, zonal jets and robust vortices in different regions of the parameter space. In this work, we perform numerical integrations of this model and focus on the regime in which robust large-scale vortices dominate the flow. The goal is to identify the Lagrangian coherent vortices that trap the same air masses in their core throughout their life cycle and to obtain their characteristics. The vortices are identified using an objective algorithm based on the Lagrangian-averaged vorticity deviation calculated using the advection of Lagrangian particles by the flow. Long-lived vortices with scales comparable to the deformation scale are found with a symmetry between cyclones and anti-cyclones as expected from the simplified dynamics of the model. The scale as well as the life span of the vortices are also found to increase alongside an increase in the strength of turbulence. Full article
Show Figures

Figure 1

14 pages, 5387 KB  
Article
Variations in Key Factors at Different Explosive Development Stages of an Extreme Explosive Cyclone over the Japan Sea
by Shuqin Zhang, Yuan Tang, Liwen Zhang, Qinghua Liao and Tianyu Zhang
Atmosphere 2023, 14(9), 1327; https://doi.org/10.3390/atmos14091327 - 23 Aug 2023
Viewed by 1550
Abstract
Explosive cyclones (ECs) occur frequently over the Japan Sea. The most rapidly intensifying EC over the Japan Sea during the 44-year period 1979–2022, in the cold season (October–April), was examined to reveal the variations in the key factors at different explosive development stages. [...] Read more.
Explosive cyclones (ECs) occur frequently over the Japan Sea. The most rapidly intensifying EC over the Japan Sea during the 44-year period 1979–2022, in the cold season (October–April), was examined to reveal the variations in the key factors at different explosive development stages. The EC deepened at a maximum deepening rate of 3.07 bergerons and explosive development lasted for 15 h. At the initial moment of explosive development, the EC had distinctive low-level baroclinicity, the low-level water vapor convergence was weak, and mid-level cyclonic vorticity advection was far away from the EC’s center. At the moment at which the EC reached the maximum deepening rate, the low-level water vapor convergence and mid-level cyclonic vorticity advection increased distinctly and approached the EC’s center. A diagnostic analysis using the Zwack–Okossi equation showed that the main contributor to the initial explosive development was warm-air advection. Through the evolutionary process of the explosive development, the non-key factors of the cyclonic vorticity advection and diabatic heating at the initial explosive development stage increased quickly and became key factors contributing to the maximum explosive development. The key factors contributing to the explosive development varied with the stage of explosive development. The cross-section and vertical profile of each term suggested that the cyclonic vorticity advection was enhanced in the upper troposphere and diabatic heating increased in the middle troposphere. Full article
Show Figures

Figure 1

15 pages, 14356 KB  
Article
Influence of Underlying Topography on Post-Monsoon Cyclonic Systems over the Indian Peninsula
by Jayesh Phadtare
Meteorology 2023, 2(3), 329-343; https://doi.org/10.3390/meteorology2030020 - 31 Jul 2023
Cited by 2 | Viewed by 2379
Abstract
During the post-monsoon cyclone season, the landfalls of westward-moving cyclonic systems often lead to extreme rainfall over the east coast of the Indian peninsula. A stationary cyclonic system over the coast can produce heavy rainfall for several days and cause catastrophic flooding. This [...] Read more.
During the post-monsoon cyclone season, the landfalls of westward-moving cyclonic systems often lead to extreme rainfall over the east coast of the Indian peninsula. A stationary cyclonic system over the coast can produce heavy rainfall for several days and cause catastrophic flooding. This study analyzes the dynamics of a propagating and stationary cyclonic system over the east coast, highlighting the possible cause behind the stagnation. The vorticity budgets of these two systems are presented using a reanalysis dataset. Vortex stretching and horizontal vorticity advection were the dominant terms in the budget. Vertical advection and tilting terms were significant over the orography. The horizontal advection of vorticity was positive (negative) on the western (eastern) side of the systems and, thus, favored westward propagation. Vortex stretching was confined to the upstream of orography in the stationary vortex. In the propagating vortex, the vortex stretching occurred over the orography during its passage. Data from the radiosonde soundings over a coastal station showed orographic blocking of the low-level winds in the stationary case. Conversely, the flow crossed the orographic barrier in the propagating case. Thus, the predominance of the upstream orographic convergence over the vortex circulation can be the reason for system stagnation over the coast. Full article
(This article belongs to the Special Issue Early Career Scientists' (ECS) Contributions to Meteorology (2023))
Show Figures

Figure 1

18 pages, 17572 KB  
Article
Mechanisms Governing the Formation and Long-Term Sustainment of a Northeastward Moving Southwest Vortex
by Kang-Quan Yang, Di-Xiang Xiao, Xing-Wen Jiang, Zi-Rui Li and Shen-Ming Fu
Sustainability 2023, 15(12), 9255; https://doi.org/10.3390/su15129255 - 8 Jun 2023
Cited by 5 | Viewed by 1683
Abstract
From 10 July to 12 July 2021, a long-lived (~66 h) southwest vortex (SWV), moved from Southwest China to Northeast China and caused a series of heavy rainfall events. This SWV case was rarely seen, as its lifespan was much longer than the [...] Read more.
From 10 July to 12 July 2021, a long-lived (~66 h) southwest vortex (SWV), moved from Southwest China to Northeast China and caused a series of heavy rainfall events. This SWV case was rarely seen, as its lifespan was much longer than the SWVs’ mean lifespan, and the vast majority of SWVs showed a quasi-stationary behavior. It was found that the SWV formed and sustained in favorable background environments, which were characterized by a strong upper-level divergence (related to the South Asia High), a notable middle-tropospheric warm advection (related to a shortwave trough), and a vigorous low-level jet. The SWV showed remarkable interactions with a middle-tropospheric mesoscale vortex. The strong southwesterly wind in the eastern section of a deep shortwave trough east of the Tibetan Plateau acted as the steering flow for the northeastward movement of both vortices. Vorticity budget showed that the convergence-related vertical stretching dominated the SWV’s formation and development; the convection-related upward transport of cyclonic vorticity was the most favorable factor for the SWV’s sustainment, whereas, during the decaying stage, the SWV dissipated mainly due to the tilting effects and the net export transport of cyclonic vorticity. Backward trajectory analyses showed that most of the air particles that formed the SWV (at its formation time) were sourced from the lower troposphere. These air particles mainly ascended and experienced a rapid increase in cyclonic vorticity during the SWV’s formation stage. The topography of the Yunnan–Guizhou Plateau was crucial for the SWV’s formation, as around a half of the air particles (that formed the SWV) came from this region. Most of these air particles enhanced in their cyclonic vorticity and convergence when they descended along the topography of the plateau. Full article
Show Figures

Figure 1

16 pages, 5346 KB  
Article
Interdecadal Variation in Rossby Wave Source over the Tibetan Plateau and Its Impact on the East Asia Circulation Pattern during Boreal Summer
by Yihui Ding, Xiaoting Sun, Qingquan Li and Yafang Song
Atmosphere 2023, 14(3), 541; https://doi.org/10.3390/atmos14030541 - 11 Mar 2023
Cited by 6 | Viewed by 4114
Abstract
The wave activity flux representing the energy propagation direction of planetary Rossby wave generally originates from a large wave source area. This study investigates the interdecadal variability and formation mechanism of Rossby wave source over the Tibetan Plateau (TP-RWS) and its impact on [...] Read more.
The wave activity flux representing the energy propagation direction of planetary Rossby wave generally originates from a large wave source area. This study investigates the interdecadal variability and formation mechanism of Rossby wave source over the Tibetan Plateau (TP-RWS) and its impact on the atmospheric circulation and precipitation pattern in East Asia based on the ERA-20C reanalysis dataset in summer (June–July–August) during 1900 to 2010. Results show that the region with the maximum variabilities of Rossby wave source (RWS) in the past 110 years appears over the Tibetan Plateau (TP) during boreal summer, and the TP-RWS shows prominent characteristics of interdecadal oscillation. Secondly, the TP-RWS is mainly composed of the vortex stretching term (RWS-S1) and the absolute vorticity advection term (RWS-S2). The interdecadal TP-RWS is a synergistic result of the snow cover over northwestern TP associated with the RWS-S1, and the deep convection over southeastern TP associated with the RWS-S2. Furthermore, the interdecadal TP-RWS can lead to an alternatively positive and negative pattern of geopotential height anomalies from the northwestern TP to the North Pacific, which has a great climate effect on the precipitation in Huang-huai River Basin, South Korea and Japan Island. Under the guidance of the anomalous cyclonic circulation in East Asia, the prevailing southerly and easterly winds occur over the West Pacific and the Huang-huai River Basin, which lead to the water vapor convergence and upward movement at middle and lower troposphere. Full article
Show Figures

Figure 1

Back to TopTop