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Abstract: Macroscale turbulence in the atmosphere is observed to be self-organized into large-
scale structures such as zonal jets and robust waves and vortices. A simple model containing the
relevant dynamics of turbulence self-organization is quasi-geostrophic turbulence in a stably stratified
atmosphere approximated with a single-layer fluid on a beta-plane. Numerical simulations of this
model have shown the dominance of Rossby waves, zonal jets and robust vortices in different regions
of the parameter space. In this work, we perform numerical integrations of this model and focus
on the regime in which robust large-scale vortices dominate the flow. The goal is to identify the
Lagrangian coherent vortices that trap the same air masses in their core throughout their life cycle
and to obtain their characteristics. The vortices are identified using an objective algorithm based on
the Lagrangian-averaged vorticity deviation calculated using the advection of Lagrangian particles
by the flow. Long-lived vortices with scales comparable to the deformation scale are found with a
symmetry between cyclones and anti-cyclones as expected from the simplified dynamics of the model.
The scale as well as the life span of the vortices are also found to increase alongside an increase in the
strength of turbulence.

Keywords: quasi-geostrophic turbulence; Lagrangian coherent vortices; vortex identification
algorithm; vortex statistics

1. Introduction

Robust, large-scale vortices contribute significantly to the mixing and transport of
momentum, heat and constituents in the atmosphere. These vortices also contribute
significantly to the observed spatio-temporal variability in the atmospheric circulation,
with the stratospheric polar vortex being a prime example [1]. The vortices are supported
by atmospheric macro-turbulence through intrinsic processes that are contained even in
simplified models of the atmospheric dynamics [2]. One such model utilized to understand
the self-organization of turbulence into large-scale structures is the quasi-geostrophic,
shallow-water dynamics of a single-layer fluid on a beta-plane with turbulence sustained
by random stirring. Numerical simulations of this model have shown that depending
on the parameters, the flow is dominated either by zonal jets or by large-scale, isotropic
vortices [3]. Previous studies focusing on the vortex regime have provided estimates for
the amplitude and the scale of the vortices based on scaling arguments from turbulence
cascade theories [4]. However, a thorough study regarding the characteristics of these
vortices such as their life span and their propagation properties is lacking, mainly due to
difficulties in identifying these structures and following them within the turbulent flow.

In this work, we undertake this task by utilizing a novel technique that objectively
identifies Lagrangian coherent vortices, that is, vortices that trap the same air masses in
their core throughout their life cycle without any exchanges with their environment [5].
The technique is based on the calculation of the deviation of vorticity along the Lagrangian
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trajectories of the air masses. We apply this technique to the turbulent flow produced by
the single-layer quasi-geostrophic dynamics in the vortex regime and identify the vortices.
We then follow them throughout their life cycle, record their characteristics such as the
vorticity at their cores, their scale and their life span, and calculate their statistics.

2. Quasi-Geostrophic Turbulence in a Shallow-Water, Single-Layer Fluid

Consider a quasi-geostrophic, single-layer fluid on a β-plane. The dynamics can be
reduced, in this case, to a single equation for the evolution of potential vorticity [1]:

∂tq + J (ψ, q) + β∂xψ = −rq +
√

εξ, (1)

where ψ is the stream function, q =
(
∇2 − λ2)ψ is the potential vorticity,∇2 = ∂2

x+∂2
y is the

horizontal Laplacian, 1/λ is the Rossby radius of deformation,J (A, B) = ∂x A∂yB−∂yB∂x A
is the Jacobian and β is the gradient of planetary vorticity. Turbulence is sustained by
random stirring ξ, representing potential vorticity sources such as convection or processes
such as baroclinic instability that are absent from this simplified model. The excitation is
assumed to be uncorrelated in time and homogeneous and isotropic in space, injecting
energy at a rate ε in a delta ring of radius Kf in wavenumber space. To achieve a statistical
steady state, there is linear dissipation of the potential vorticity at a rate r.

We integrate (1) in a doubly periodic 2π × 2π channel with a grid of N = 128 points
in each direction. The turbulent flow reaches a statistical equilibrium at times 1/r and
the integration is carried out until 10/r to ensure stationary statistics. Previous studies
showed three different regimes of the turbulent flow that depend on the values of the

non-dimensional stratification
∼
λ = λ/K f , the non-dimensional planetary vorticity gradient

∼
β = β/K f r and the non-dimensional strength of the forcing

∼
ε = εK2

f /r3. In the first regime,

which is typically found for values of
∼
β ≤ 10, the flow is dominated by large-scale, robust,

isotropic vortices [3]. In the other two regimes that are typically found for large values of
∼
β and weak stratification

∼
λ, the flow is dominated by phase-coherent large-scale Rossby

waves for intermediate values of the excitation strength
∼
ε [6] and large-scale zonal jets for

large values of
∼
ε [7]. Our focus is on the vortex regime. We therefore choose

∼
β = 10 and

∼
λ = 4 with Kf = 20 and r = 0.1 and integrate the equations for various values of the energy

input rate
∼
ε . A typical example of the flow at statistical equilibrium is shown in Figure 1,

where we observe that the flow is populated by an array of vortices. The goal is to identify
these vortices using an objective algorithm and to calculate the statistics of their various
characteristics such as their vorticity, scale and life span.

Environ. Sci. Proc. 2023, 26, x 2 of 7 
 

 

The technique is based on the calculation of the deviation of vorticity along the Lagran-
gian trajectories of the air masses. We apply this technique to the turbulent flow produced 
by the single-layer quasi-geostrophic dynamics in the vortex regime and identify the vor-
tices. We then follow them throughout their life cycle, record their characteristics such as 
the vorticity at their cores, their scale and their life span, and calculate their statistics. 

2. Quasi-Geostrophic Turbulence in a Shallow-Water, Single-Layer Fluid 
Consider a quasi-geostrophic, single-layer fluid on a β-plane. The dynamics can be 

reduced, in this case, to a single equation for the evolution of potential vorticity [1]: 𝜕௧𝑞 ൅ 𝒥(𝜓, 𝑞) ൅ 𝛽𝜕௫𝜓 = −𝑟𝑞 ൅ √𝜀𝜉, (1) 

where 𝜓 is the stream function, 𝑞 = (∇ଶ − 𝜆ଶ)𝜓 is the potential vorticity, ∇ଶ= 𝜕௫ଶ൅𝜕௬ଶ is 
the horizontal Laplacian, 1/𝜆  is the Rossby radius of deformation,  𝒥(𝐴, 𝐵) =𝜕௫𝐴𝜕௬𝐵−𝜕௬𝐵𝜕௫𝐴 is the Jacobian and 𝛽 is the gradient of planetary vorticity. Turbulence 
is sustained by random stirring 𝜉, representing potential vorticity sources such as convec-
tion or processes such as baroclinic instability that are absent from this simplified model. 
The excitation is assumed to be uncorrelated in time and homogeneous and isotropic in 
space, injecting energy at a rate 𝜀 in a delta ring of radius 𝐾௙ in wavenumber space. To 
achieve a statistical steady state, there is linear dissipation of the potential vorticity at a 
rate 𝑟. 

We integrate (1) in a doubly periodic 2𝜋 ൈ 2𝜋 channel with a grid of 𝑁 = 128 points 
in each direction. The turbulent flow reaches a statistical equilibrium at times 1/𝑟 and the 
integration is carried out until 10/𝑟  to ensure stationary statistics. Previous studies 
showed three different regimes of the turbulent flow that depend on the values of the non-
dimensional stratification 𝜆ሚ = 𝜆/𝐾௙ , the non-dimensional planetary vorticity gradient 𝛽෨ = 𝛽/𝐾௙𝑟 and the non-dimensional strength of the forcing 𝜀̃ = 𝜀𝐾௙ଶ/𝑟ଷ. In the first re-
gime, which is typically found for values of 𝛽෨ ൑ 10, the flow is dominated by large-scale, 
robust, isotropic vortices [3]. In the other two regimes that are typically found for large 
values of 𝛽෨  and weak stratification 𝜆ሚ , the flow is dominated by phase-coherent large-
scale Rossby waves for intermediate values of the excitation strength 𝜀̃ [6] and large-scale 
zonal jets for large values of 𝜀̃ [7]. Our focus is on the vortex regime. We therefore choose 𝛽෨ = 10 and 𝜆ሚ = 4 with 𝐾௙ = 20 and 𝑟 = 0.1 and integrate the equations for various val-
ues of the energy input rate 𝜀̃. A typical example of the flow at statistical equilibrium is 
shown in Figure 1, where we observe that the flow is populated by an array of vortices. 
The goal is to identify these vortices using an objective algorithm and to calculate the sta-
tistics of their various characteristics such as their vorticity, scale and life span. 

 

Figure 1. Snapshot of (a) vorticity and (b) stream function when the quasi-geostrophic dynamics
have reached statistical equilibrium. The energy input rate is

∼
ε = 500 and the rest of the parameters

are as defined in the text.



Environ. Sci. Proc. 2023, 26, 87 3 of 6

3. Vortex Identification Algorithm

To identify the coherent vortices in the flow, we employ the Lagrangian Averaged
Vorticity Deviation (LAVD) method developed by Haller et al. [5]. The technique is based
on calculating the material contour that nests the same air masses over a specified time
interval. This can be achieved by first calculating the Lagrangian paths of air masses that
are advected by the flow velocity

dx(xo, t)
dt

= u(x(xo, t), t), (2)

where x(x0, t) is the path of the fluid particle representing an air mass that is initially at
position x0 and u is the flow velocity. We then calculate the LAVD over the specified time
interval t1 – t0.

L =
1

t1 − t0

∫ t1

t0

|ζ(x, t)| dt, (3)

where ζ(x, t) is the vorticity of the fluid particle defined above. LAVD is the vorticity
deviation from the domain mean (that is zero for the flow considered) averaged along
the particle trajectories and over the specified time interval. The core of the vortices will
correspond to the maxima of LAVD, while contours of LAVD surrounding the maxima
represent chains of fluid particles around the vortex core that rotate locally at the same rate.
An example of such contours normalized by the square root of spatial mean enstrophy
Zm in the flow is shown in Figure 2, along with the fluid particles. The boundary of the
vortex is then defined as the outermost convex contour of LAVD. This can be identified
by calculating a measure for the dispersion of the particles within a certain closed contour
of LAVD. We use a measure that is based on the variance of the positions of the particles
within the contour of LAVD and is given by

δ2(t) =
〈
|x(x0, t)− 〈x(x0, t)〉|2

〉
, (4)

where the bracket denotes the average over all the particles inside the contour. The
maximum of this variance within the time interval [t0, t1] is then compared to the variance
of the same number of particles within a disc of radius R as this is the most compact group
of particles. This variance is R2/2; therefore, we can define the index measuring their ratio:

C = 1− 2
R2 maxt0≤t≤t1 δ2(t), (5)

which is termed the Coherency Index (CI). When the cloud of particles within the LAVD
contour is filamented or ejected away from the vortex core, C becomes negative. We
therefore set a threshold for the maximum allowed deviation from the dispersion of the
particles within the disc. We follow Zhang et al. [8] and set the threshold for C = −3/4, that
is, the maximum allowed deviation is set to 75%. The sensitivity tests that were performed
showed that the results do not sensitively depend on the exact value for the CI threshold.
The coherency index for three contours of LAVD including the identified vortex boundary
is also shown in Figure 2. As can be seen, the CI index is almost constant within the vortex
core and falls off rapidly outside the vortex boundary.
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4. Vortex Statistics

This objective algorithm is implemented in the following way. Starting from the flow
that has reached a statistical equilibrium, we calculate the trajectories of 2562 particles for
an interval τ. When the turbulence intensity is large, as in the cases considered in this study,
the relevant time scale for the flow evolution is not the dissipation time scale 1/r but the
eddy turn-over time scale, which is calculated as τe = 2π/

√
Zm. As a result, we normalize

the time scale by τe. From these trajectories, the LAVD for the same interval is calculated and
its outermost contour, which is the boundary of the vortices, is identified according to the
CI threshold. For the array of vortices identified, we calculate their number N, the vorticity
at their core Z and their size measured by their diameter D. Since some of the vortices are
elliptical, an equivalent diameter is calculated for all vortices as D = 2

√
A/π, where A is

their surface area. The statistics for the vortices are obtained by slightly perturbing the
initial conditions to produce different ensemble members of the flow and repeating the
calculations for each member. The number of ensemble members chosen was Nens = 50, as
sensitivity studies with more members showed that the results do not change significantly.
The calculations are then repeated for larger times τ.

Figure 3 shows the vortex statistics for various time intervals τ in the case of
∼
ε = 500.

Shown are the 25th and 75th percentiles as well as the median of the distribution of the
number of the vortices identified to remain coherent until time τ. Also plotted is the
distribution of the vorticity at their cores, which is shown separately for cyclones and
anti-cyclones and the distribution of their diameter. We observe that the number of vortices
rapidly decreases as a function of τ. This means that few of the 17 vortices observed at
τ = 5τe remain coherent over much longer time scales. Only about half of them remain
coherent at τ = 20τe, only two of them remain coherent at 60τe and no vortices can be
found for longer time scales. The vorticity at their cores is a few times larger than the
average vorticity in the flow and is larger for the few eddies that remain coherent over long
times. That is, the long-lived eddies are stronger than their short-lived counterparts. We
also observe symmetry between cyclones and anti-cyclones, both in their numbers (not
shown) and in their vorticity. The scale of the vortices roughly coincides with the radius of
deformation regardless of the life span of the eddies.
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Figure 3. (a) The number of vortices as a function of time normalized by the eddy turn-over time
scale τe. (b) The vorticity at the core of the cyclones and the anti-cyclones normalized by the square
root of the mean enstrophy in the flow as a function of normalized time. (c) The radius of the vortices
normalized by the Rossby radius of deformation as a function of normalized time. The box plots
show the 25th and 75th percentile values, and the circles show the median of the distributions. The
energy input rate is

∼
ε = 500.

Figure 4 shows the vortex statistics for stronger excitation
∼
ε = 5000. While the number

of vortices again decreases with τ, the drop is less rapid than in the case of weaker excitation,
and there are a few vortices with longer lifetimes. The size of the eddies remains unchanged
and equal to the deformation scale, but the vorticity at their cores is slightly larger in the
case of stronger excitation, especially for the long-lived vortices. In summary, we have
longer-lived and slightly stronger vortices for a larger turbulence intensity, a result that
holds for larger

∼
ε as well (not shown).
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5. Conclusions

In this work, a simple model of quasi-geostrophic turbulence was analyzed with
the goal of obtaining the statistics of robust, large-scale, coherent vortices that dominate
the flow in a certain parameter regime. The Lagrangian coherent vortices, that is, the
vortices keeping the same air masses trapped within their cores, were objectively identified
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using the Lagrangian Averaged Vorticity Deviation method. Using this technique, a vortex
is identified in terms of the vorticity deviation of Lagrangian particles advected by the
flow over a specified time interval. The maximum of the vorticity deviation represents
the vortex core and the boundary of the vortex is calculated as the outermost convex
contour surrounding the maximum. This contour is identified using a threshold related to
the maximum allowed dispersion of particles inside the vortex boundary relative to the
dispersion of the most compact cloud of particles. Using an algorithm that applies this
technique and integrating the equations with slightly different initial conditions to obtain
several independent ensemble members, we calculated the average number of vortices,
their average size and their average vorticity at their cores for various levels of turbulence
intensity. The flow was found to be populated by a number of vortices. Only a few of
them have long life spans, and these long-lived vortices appear to be stronger than their
counterparts with shorter life spans. Symmetry in the number of cyclones and anti-cyclones
was found to hold (at least in this simple model of geostrophic turbulence) with the two
species also having the same characteristics. The average size of the vortices was found
to be comparable to the Rossby radius of deformation. In addition, the vortices became
longer-lived and slightly stronger when the turbulence intensity was larger.

While the simple model used in this work does not target a realistic simulation of
atmospheric circulation, the turbulent dynamics maintaining the coherent vortices are
universal and inherent even in realistic flows. Therefore, the results of this study can shed
light on the inner workings of the stratospheric polar vortex, which exerts great influence
on atmospheric circulation [9] but also traps atmospheric constituents, affecting the local
chemistry and the radiation budget in the stratosphere [10].
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