Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,840)

Search Parameters:
Keywords = cycling purpose

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 1256 KiB  
Article
Bridging Interoperability Gaps Between LCA and BIM: Analysis of Limitations for the Integration of EPD Data in IFC
by Aitor Aragón, Paulius Spudys, Darius Pupeikis, Óscar Nieto and Marcos Garcia Alberti
Buildings 2025, 15(15), 2760; https://doi.org/10.3390/buildings15152760 - 5 Aug 2025
Abstract
The construction industry is a major consumer of raw materials and a significant contributor to environmental emissions. Life cycle assessment (LCA) using digital models is a valuable tool for conducting a science-based analysis to reduce these impacts. However, transferring data from environmental product [...] Read more.
The construction industry is a major consumer of raw materials and a significant contributor to environmental emissions. Life cycle assessment (LCA) using digital models is a valuable tool for conducting a science-based analysis to reduce these impacts. However, transferring data from environmental product declarations (EPDs) to BIM for the purpose of sustainability assessment requires significant resources for its interpretation and integration. This study is founded on a comprehensive review of the scientific literature and standards, an analysis of published digital EPDs, and a thorough evaluation of IFC (industry foundation classes), identifying twenty gaps for the automated incorporation of LCA data from construction products into BIM. The identified limitations were assessed using the digital model of a building pilot, applying simplifications to incorporate actual EPD data. This paper presents the identified barriers to the automated incorporation of digital EPDs into BIM, and proposes eleven concrete actions to improve IFC 4.3. While prior studies have analyzed the environmental data in IFC, this research is significant in two key areas. Firstly, it focuses on the direct machine interpretation of environmental information without human intervention. Secondly, it is intended to be directly applicable to a revision of the IFC standards. Full article
(This article belongs to the Special Issue Research on BIM—Integrated Construction Operation Simulation)
Show Figures

Figure 1

20 pages, 2981 KiB  
Article
Data-Driven Modelling and Simulation of Fuel Cell Hybrid Electric Powertrain
by Mehroze Iqbal, Amel Benmouna and Mohamed Becherif
Hydrogen 2025, 6(3), 53; https://doi.org/10.3390/hydrogen6030053 - 1 Aug 2025
Viewed by 106
Abstract
Inspired by the Toyota Mirai, this study presents a high-fidelity data-driven approach for modelling and simulation of a fuel cell hybrid electric powertrain. This study utilises technical assessment data sourced from Argonne National Laboratory’s publicly available report, faithfully modelling most of the vehicle [...] Read more.
Inspired by the Toyota Mirai, this study presents a high-fidelity data-driven approach for modelling and simulation of a fuel cell hybrid electric powertrain. This study utilises technical assessment data sourced from Argonne National Laboratory’s publicly available report, faithfully modelling most of the vehicle subsystems as data-driven entities. The simulation framework is developed in the MATLAB/Simulink environment and is based on a power dynamics approach, capturing nonlinear interactions and performance intricacies between different powertrain elements. This study investigates subsystem synergies and performance boundaries under a combined driving cycle composed of the NEDC, WLTP Class 3 and US06 profiles, representing urban, extra-urban and aggressive highway conditions. To emulate the real-world load-following strategy, a state transition power management and allocation method is synthesised. The proposed method dynamically governs the power flow between the fuel cell stack and the traction battery across three operational states, allowing the battery to stay within its allocated bounds. This simulation framework offers a near-accurate and computationally efficient digital counterpart to a commercial hybrid powertrain, serving as a valuable tool for educational and research purposes. Full article
Show Figures

Figure 1

16 pages, 1803 KiB  
Article
Degradation of Poliovirus Sabin 2 Genome After Electron Beam Irradiation
by Dmitry D. Zhdanov, Anastasia N. Shishparenok, Yury Y. Ivin, Anastasia A. Kovpak, Anastasia N. Piniaeva, Igor V. Levin, Sergei V. Budnik, Oleg A. Shilov, Roman S. Churyukin, Lubov E. Agafonova, Alina V. Berezhnova, Victoria V. Shumyantseva and Aydar A. Ishmukhametov
Vaccines 2025, 13(8), 824; https://doi.org/10.3390/vaccines13080824 (registering DOI) - 31 Jul 2025
Viewed by 245
Abstract
Objectives: Most antiviral vaccines are created by inactivating the virus using chemical methods. The inactivation and production of viral vaccine preparations after the irradiation of viruses with accelerated electrons has a number of significant advantages. Determining the integrity of the genome of the [...] Read more.
Objectives: Most antiviral vaccines are created by inactivating the virus using chemical methods. The inactivation and production of viral vaccine preparations after the irradiation of viruses with accelerated electrons has a number of significant advantages. Determining the integrity of the genome of the resulting viral particles is necessary to assess the quality and degree of inactivation after irradiation. Methods: This work was performed on the Sabin 2 model polio virus. To determine the most sensitive and most radiation-resistant part, the polio virus genome was divided into 20 segments. After irradiation at temperatures of 25 °C, 2–8 °C, −20 °C, or −70 °C, the amplification intensity of these segments was measured in real time. Results: The best correlation between the amplification cycle and the irradiation dose at all temperatures was observed for segment 3D, left. Consequently, this section of the poliovirus genome is the least resistant to the action of accelerated electrons and is the most representative for determining genome integrity. The worst dependence was observed for the VP1 right section, which, therefore, cannot be used to determine genome integrity during inactivation. The electrochemical approach was also employed for a comparative assessment of viral RNA integrity before and after irradiation. An increase in the irradiation dose was accompanied by an increase in signals indicating the electrooxidation of RNA heterocyclic bases. The increase in peak current intensity of viral RNA electrochemical signals confirmed the breaking of viral RNA strands during irradiation. The shorter the RNA fragments, the greater the peak current intensities. In turn, this made the heterocyclic bases more accessible to electrooxidation on the electrode. Conclusions: These results are necessary for characterizing the integrity of the viral genome for the purpose of creating of antiviral vaccines. Full article
(This article belongs to the Special Issue Recent Scientific Development of Poliovirus Vaccines)
Show Figures

Figure 1

15 pages, 1619 KiB  
Article
Method for Assessing Numbness and Discomfort in Cyclists’ Hands
by Flavia Marrone, Nicole Sanna, Giacomo Zanoni, Neil J. Mansfield and Marco Tarabini
Sensors 2025, 25(15), 4708; https://doi.org/10.3390/s25154708 - 30 Jul 2025
Viewed by 225
Abstract
Road irregularities generate vibrations that are transmitted to cyclists’ hands. This paper describes a purpose-designed laboratory setup and data processing method to assess vibration-induced numbness and discomfort. The rear wheel of a road bike was coupled with a smart trainer for indoor cycling, [...] Read more.
Road irregularities generate vibrations that are transmitted to cyclists’ hands. This paper describes a purpose-designed laboratory setup and data processing method to assess vibration-induced numbness and discomfort. The rear wheel of a road bike was coupled with a smart trainer for indoor cycling, while the front wheel was supported by a vibrating platform to simulate road–bike interaction. The vibrotactile perception threshold (VPT) is measured in the fingers, and a questionnaire was used to assess the discomfort in different parts of the hand using a unipolar scale. To validate the method, ten male volunteers underwent two one-hour cycling sessions, one for each of the two handlebar designs tested. VPT was measured in the index and little fingers of the right hand at 8 and 31.5 Hz before and after each session, while the discomfort questionnaire was completed at the end of each session. The discomfort scores showed a strong inter-subject variability, indicating the necessity to combine them with the objective measurements of the VPT, which is shown to be sensitive in identifying the perception shift due to vibration exposure and the differences between the fingers. This study demonstrates the effectiveness of the proposed method for assessing hand numbness and discomfort in cyclists. Full article
(This article belongs to the Special Issue Sensor Technologies in Sports and Exercise)
Show Figures

Figure 1

19 pages, 4477 KiB  
Article
Agapanthussaponin A from the Underground Parts of Agapanthus africanus Induces Apoptosis and Ferroptosis in Human Small-Cell Lung Cancer Cells
by Tomoki Iguchi, Tamami Shimazaki and Yoshihiro Mimaki
Molecules 2025, 30(15), 3189; https://doi.org/10.3390/molecules30153189 - 30 Jul 2025
Viewed by 215
Abstract
To explore the potential seed compounds from natural products as anticancer agents against small-cell lung cancer (SCLC), the underground parts of Agapanthus africanus, a plant commonly used for ornamental purposes, were investigated. Three spirostan-type steroidal glycosides (13) were [...] Read more.
To explore the potential seed compounds from natural products as anticancer agents against small-cell lung cancer (SCLC), the underground parts of Agapanthus africanus, a plant commonly used for ornamental purposes, were investigated. Three spirostan-type steroidal glycosides (13) were isolated and identified by nuclear magnetic resonance spectral analysis. Compounds 13 exhibited cytotoxicity against SBC-3 human SCLC cells, with IC50 values of 0.56, 1.4, and 7.4 µM, respectively. Compound 1, also known an agapanthussaponin A, demonstrated the most potent cytotoxicity among the isolated compounds and was evaluated for its apoptosis- and ferroptosis-inducing activities. Compound 1 arrested the cell cycle of SBC-3 cells in the G2/M phase and induced apoptosis primarily via the mitochondrial pathway, characterized by caspases-3 and -9 activation, loss of mitochondrial membrane potential, and overproduction of reactive oxygen species. Additionally, 1 triggered ferroptosis via a dual mechanism consisting of enhanced cellular iron uptake through upregulation of transferrin and transferrin receptor 1 expression and impaired glutathione synthesis via downregulation of both xCT and glutathione peroxidase 4 expression. Compound 1 induces cell death via the apoptosis and ferroptosis pathways, suggesting its promise as a seed compound for the development of anticancer therapeutics against SCLC. Full article
Show Figures

Graphical abstract

16 pages, 3383 KiB  
Article
Thermal and Electrical Design Considerations for a Flexible Energy Storage System Utilizing Second-Life Electric Vehicle Batteries
by Rouven Christen, Simon Nigsch, Clemens Mathis and Martin Stöck
Batteries 2025, 11(8), 287; https://doi.org/10.3390/batteries11080287 - 26 Jul 2025
Viewed by 305
Abstract
The transition to electric mobility has significantly increased the demand for lithium-ion batteries, raising concerns about their end-of-life management. Therefore, this study presents the design, development and first implementation steps of a stationary energy storage system utilizing second-life electric vehicle (EV) batteries. These [...] Read more.
The transition to electric mobility has significantly increased the demand for lithium-ion batteries, raising concerns about their end-of-life management. Therefore, this study presents the design, development and first implementation steps of a stationary energy storage system utilizing second-life electric vehicle (EV) batteries. These batteries, no longer suitable for traction applications due to a reduced state of health (SoH) below 80%, retain sufficient capacity for less demanding stationary applications. The proposed system is designed to be flexible and scalable, serving both research and commercial purposes. Key challenges include heterogeneous battery characteristics, safety considerations due to increased internal resistance and battery aging, and the need for flexible power electronics. An optimized dual active bridge (DAB) converter topology is introduced to connect several batteries in parallel and to ensure efficient bidirectional power flow over a wide voltage range. A first prototype, rated at 50 kW, has been built and tested in the laboratory. This study contributes to sustainable energy storage solutions by extending battery life cycles, reducing waste, and promoting economic viability for industrial partners. Full article
Show Figures

Figure 1

21 pages, 597 KiB  
Article
Competency Learning by Machine Learning-Based Data Analysis with Electroencephalography Signals
by Javier M. Antelis, Myriam Alanis-Espinosa, Omar Mendoza-Montoya, Pedro Cervantes-Lozano and Luis G. Hernandez-Rojas
Educ. Sci. 2025, 15(8), 957; https://doi.org/10.3390/educsci15080957 - 25 Jul 2025
Viewed by 279
Abstract
Data analysis and machine learning have become essential cross-disciplinary skills for engineering students and professionals. Traditionally, these topics are taught through lectures or online courses using pre-existing datasets, which limits the opportunity to engage with the full cycle of data analysis and machine [...] Read more.
Data analysis and machine learning have become essential cross-disciplinary skills for engineering students and professionals. Traditionally, these topics are taught through lectures or online courses using pre-existing datasets, which limits the opportunity to engage with the full cycle of data analysis and machine learning, including data collection, preparation, and contextualization of the application field. To address this, we designed and implemented a learning activity that involves students in every step of the learning process. This activity includes multiple stages where students conduct experiments to record their own electroencephalographic (EEG) signals and use these signals to learn data analysis and machine learning techniques. The purpose is to actively involve students, making them active participants in their learning process. This activity was implemented in six courses across four engineering careers during the 2023 and 2024 academic years. To validate its effectiveness, we measured improvements in grades and self-reported motivation using the MUSIC model inventory. The results indicate a positive development of competencies and high levels of motivation and appreciation among students for the concepts of data analysis and machine learning. Full article
(This article belongs to the Section Higher Education)
Show Figures

Figure 1

34 pages, 2842 KiB  
Review
Systematic Analysis of the Hydrogen Value Chain from Production to Utilization
by Miguel Simão Coelho, Guilherme Gaspar, Elena Surra, Pedro Jorge Coelho and Ana Filipa Ferreira
Appl. Sci. 2025, 15(15), 8242; https://doi.org/10.3390/app15158242 - 24 Jul 2025
Viewed by 443
Abstract
Hydrogen produced from renewable sources has the potential to tackle various energy challenges, from allowing cost-effective transportation of renewable energy from production to consumption regions to decarbonizing intensive energy consumption industries. Due to its application versatility and non-greenhouse gaseous emissions characteristics, it is [...] Read more.
Hydrogen produced from renewable sources has the potential to tackle various energy challenges, from allowing cost-effective transportation of renewable energy from production to consumption regions to decarbonizing intensive energy consumption industries. Due to its application versatility and non-greenhouse gaseous emissions characteristics, it is expected that hydrogen will play an important role in the decarbonization strategies set out for 2050. Currently, there are some barriers and challenges that need to be addressed to fully take advantage of the opportunities associated with hydrogen. The present work aims to characterize the state of the art of different hydrogen production, storage, transport, and distribution technologies, which compose the hydrogen value chain. Based on the information collected it was possible to conclude the following: (i) Electrolysis is the frontrunner to produce green hydrogen at a large scale (efficiency up to 80%) since some of the production technologies under this category have already achieved a commercially available state; (ii) in the storage phase, various technologies may be suitable based on specific conditions and purposes. Technologies of the physical-based type are the ones mostly used in real applications; (iii) transportation and distribution options should be viewed as complementary rather than competitive, as the most suitable option varies based on transportation distance and hydrogen quantity; and (iv) a single value chain configuration cannot be universally applied. Therefore, each case requires a comprehensive analysis of the entire value chain. Methodologies, like life cycle assessment, should be utilized to support the decision-making process. Full article
(This article belongs to the Special Issue The Present and the Future of Hydrogen Energy)
Show Figures

Figure 1

19 pages, 1553 KiB  
Review
Perennial Grains in Russia: History, Status, and Perspectives
by Alexey Morgounov, Olga Shchuklina, Inna Pototskaya, Amanjol Aydarov and Vladimir Shamanin
Crops 2025, 5(4), 46; https://doi.org/10.3390/crops5040046 - 23 Jul 2025
Viewed by 290
Abstract
The review summarizes the historical and current research on perennial grain breeding in Russia within the context of growing global interest in perennial crops. N.V. Tsitsin’s pioneering work in the 1930s produced the first wheat–wheatgrass amphiploids, which demonstrated the capacity to regrow after [...] Read more.
The review summarizes the historical and current research on perennial grain breeding in Russia within the context of growing global interest in perennial crops. N.V. Tsitsin’s pioneering work in the 1930s produced the first wheat–wheatgrass amphiploids, which demonstrated the capacity to regrow after harvest and survive for 2–3 years. Subsequent research at the Main Botanical Garden in Moscow focused on characterizing Tsitsin’s material, selecting superior germplasm, and expanding genetic diversity through new cycles of hybridization and selection. This work led to the development of a new crop species, Trititrigia, and the release of cultivar ‘Pamyati Lyubimovoy’ in 2020, designed for dual-purpose production of high-quality grain and green biomass. Intermediate wheatgrass (Thinopyrum intermedium) is native to Russia, where several forage cultivars have been released and cultivated. Two large-grain cultivars (Sova and Filin) were developed from populations provided by the Land Institute and are now grown by farmers. Perennial rye was developed through interspecific crosses between Secale cereale and S. montanum, demonstrating persistence for 2–3 years with high biomass production and grain yields of 1.5–2.0 t/ha. Hybridization between Sorghum bicolor and S. halepense resulted in two released cultivars of perennial sorghum used primarily for forage production under arid conditions. Russia’s agroclimatic diversity in agricultural production systems provides significant opportunities for perennial crop development. The broader scientific and practical implications of perennial crops in Russia extend to climate-resilient, sustainable agriculture and international cooperation in this emerging field. Full article
Show Figures

Figure 1

38 pages, 6851 KiB  
Article
FGFNet: Fourier Gated Feature-Fusion Network with Fractal Dimension Estimation for Robust Palm-Vein Spoof Detection
by Seung Gu Kim, Jung Soo Kim and Kang Ryoung Park
Fractal Fract. 2025, 9(8), 478; https://doi.org/10.3390/fractalfract9080478 - 22 Jul 2025
Viewed by 259
Abstract
The palm-vein recognition system has garnered attention as a biometric technology due to its resilience to external environmental factors, protection of personal privacy, and low risk of external exposure. However, with recent advancements in deep learning-based generative models for image synthesis, the quality [...] Read more.
The palm-vein recognition system has garnered attention as a biometric technology due to its resilience to external environmental factors, protection of personal privacy, and low risk of external exposure. However, with recent advancements in deep learning-based generative models for image synthesis, the quality and sophistication of fake images have improved, leading to an increased security threat from counterfeit images. In particular, palm-vein images acquired through near-infrared illumination exhibit low resolution and blurred characteristics, making it even more challenging to detect fake images. Furthermore, spoof detection specifically targeting palm-vein images has not been studied in detail. To address these challenges, this study proposes the Fourier-gated feature-fusion network (FGFNet) as a novel spoof detector for palm-vein recognition systems. The proposed network integrates masked fast Fourier transform, a map-based gated feature fusion block, and a fast Fourier convolution (FFC) attention block with global contrastive loss to effectively detect distortion patterns caused by generative models. These components enable the efficient extraction of critical information required to determine the authenticity of palm-vein images. In addition, fractal dimension estimation (FDE) was employed for two purposes in this study. In the spoof attack procedure, FDE was used to evaluate how closely the generated fake images approximate the structural complexity of real palm-vein images, confirming that the generative model produced highly realistic spoof samples. In the spoof detection procedure, the FDE results further demonstrated that the proposed FGFNet effectively distinguishes between real and fake images, validating its capability to capture subtle structural differences induced by generative manipulation. To evaluate the spoof detection performance of FGFNet, experiments were conducted using real palm-vein images from two publicly available palm-vein datasets—VERA Spoofing PalmVein (VERA dataset) and PLUSVein-contactless (PLUS dataset)—as well as fake palm-vein images generated based on these datasets using a cycle-consistent generative adversarial network. The results showed that, based on the average classification error rate, FGFNet achieved 0.3% and 0.3% on the VERA and PLUS datasets, respectively, demonstrating superior performance compared to existing state-of-the-art spoof detection methods. Full article
Show Figures

Figure 1

27 pages, 2034 KiB  
Article
LCFC-Laptop: A Benchmark Dataset for Detecting Surface Defects in Consumer Electronics
by Hua-Feng Dai, Jyun-Rong Wang, Quan Zhong, Dong Qin, Hao Liu and Fei Guo
Sensors 2025, 25(15), 4535; https://doi.org/10.3390/s25154535 - 22 Jul 2025
Viewed by 321
Abstract
As a high-market-value sector, the consumer electronics industry is particularly vulnerable to reputational damage from surface defects in shipped products. However, the high level of automation and the short product life cycles in this industry make defect sample collection both difficult and inefficient. [...] Read more.
As a high-market-value sector, the consumer electronics industry is particularly vulnerable to reputational damage from surface defects in shipped products. However, the high level of automation and the short product life cycles in this industry make defect sample collection both difficult and inefficient. This challenge has led to a severe shortage of publicly available, comprehensive datasets dedicated to surface defect detection, limiting the development of targeted methodologies in the academic community. Most existing datasets focus on general-purpose object categories, such as those in the COCO and PASCAL VOC datasets, or on industrial surfaces, such as those in the MvTec AD and ZJU-Leaper datasets. However, these datasets differ significantly in structure, defect types, and imaging conditions from those specific to consumer electronics. As a result, models trained on them often perform poorly when applied to surface defect detection tasks in this domain. To address this issue, the present study introduces a specialized optical sampling system with six distinct lighting configurations, each designed to highlight different surface defect types. These lighting conditions were calibrated by experienced optical engineers to maximize defect visibility and detectability. Using this system, 14,478 high-resolution defect images were collected from actual production environments. These images cover more than six defect types, such as scratches, plain particles, edge particles, dirt, collisions, and unknown defects. After data acquisition, senior quality control inspectors and manufacturing engineers established standardized annotation criteria based on real-world industrial acceptance standards. Annotations were then applied using bounding boxes for object detection and pixelwise masks for semantic segmentation. In addition to the dataset construction scheme, commonly used semantic segmentation methods were benchmarked using the provided mask annotations. The resulting dataset has been made publicly available to support the research community in developing, testing, and refining advanced surface defect detection algorithms under realistic conditions. To the best of our knowledge, this is the first comprehensive, multiclass, multi-defect dataset for surface defect detection in the consumer electronics domain that provides pixel-level ground-truth annotations and is explicitly designed for real-world applications. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

19 pages, 2498 KiB  
Article
Examining the Cultivation of a Conservation Culture Across Zoos and Aquariums
by Joy Kubarek, Amanda Lindell, Shelly Grow and Jackie Ogden
J. Zool. Bot. Gard. 2025, 6(3), 36; https://doi.org/10.3390/jzbg6030036 - 22 Jul 2025
Viewed by 438
Abstract
This contributed paper presents results from efforts by the Association of Zoos and Aquariums (AZA) to investigate the impact of integrating conservation into AZA members’ organizational cultures. Part of this work included AZA setting goals related to organizational and professional culture, strategic communication, [...] Read more.
This contributed paper presents results from efforts by the Association of Zoos and Aquariums (AZA) to investigate the impact of integrating conservation into AZA members’ organizational cultures. Part of this work included AZA setting goals related to organizational and professional culture, strategic communication, developing communities of practice, and promoting tools and resource-sharing. Prior to implementing the majority of these steps, a baseline assessment was administered to directors plus a random sample of AZA organizations in 2020—assessing how well conservation is integrated into the institutional culture and measures of perceived conservation impact. The same sample of organizations was re-surveyed in 2023 with the intent of a three-year cycle of surveying to monitor change and identify additional ways that AZA could support and strengthen a culture of conservation within the profession. These findings will help the zoological and broader conservation community assess opportunities to integrate conservation into organizational cultures across a broad association for the purpose of achieving the mission and impact. Full article
Show Figures

Figure 1

36 pages, 6346 KiB  
Article
Thermoresponsive Effects in Droplet Size Distribution, Chemical Composition, and Antibacterial Effectivity in a Palmarosa (Cymbopogon martini) O/W Nanoemulsion
by Erick Sánchez-Gaitán, Ramón Rivero-Aranda, Vianney González-López and Francisco Delgado
Colloids Interfaces 2025, 9(4), 47; https://doi.org/10.3390/colloids9040047 - 19 Jul 2025
Viewed by 173
Abstract
The design of emulsions at the nanoscale is a significant application of nanotechnology. For spherical droplets and a given volume of dispersed phase, the nanometre size of droplets inversely increases the total area, A=3Vr, allowing greater contact with [...] Read more.
The design of emulsions at the nanoscale is a significant application of nanotechnology. For spherical droplets and a given volume of dispersed phase, the nanometre size of droplets inversely increases the total area, A=3Vr, allowing greater contact with organic and inorganic materials during application. In topical applications, not only is cell contact increased, but also permeability in the cell membrane. Nanoemulsions typically achieve kinetic stability rather than thermodynamic stability, so their commercial application requires reasonable resistance to flocculation and coalescence, which can be affected by temperature changes. Therefore, their thermoresponsive characterisation becomes relevant. In this work, we analyse this response in an O/W nanoemulsion of Palmarosa for antibacterial purposes that has already shown stability for one year at controlled room temperature. We now study hysteresis processes and the behaviour of the statistical distribution in droplet size by Dynamic Light Scattering, obtaining remarkable stability under temperature changes up to 50 °C. This includes a maintained chemical composition observed using Fourier Transform Infrared Spectroscopy and the preservation of antibacterial properties analysed through optical density tests on cultures and the Spread-Plate technique for bacteria colony counting. We obtain practically closed hysteresis curves for some tracers of droplet size distributions through controlled thermal cycles between 10 °C and 50 °C, exhibiting a non-linear behaviour in their distribution. In general, the results show notable physical, chemical, and antibacterial stability, suitable for commercial applications. Full article
(This article belongs to the Special Issue Recent Advances on Emulsions and Applications: 3rd Edition)
Show Figures

Graphical abstract

11 pages, 2073 KiB  
Article
Comparison of Lower Limb Kinematics Between Increased Hip Flexion Gait and Cycling: Implications for Exercise Prescription in Clinical Populations
by Nuno Oliveira and Tanner Thorsen
Appl. Sci. 2025, 15(14), 8045; https://doi.org/10.3390/app15148045 - 19 Jul 2025
Viewed by 319
Abstract
Exercise is an important component in the treatment and improvement of function in populations with or at risk of lower limb injury. Cycling is the most common exercise modality used by these populations. However, reduced lower limb joint excursion and/or range of motion [...] Read more.
Exercise is an important component in the treatment and improvement of function in populations with or at risk of lower limb injury. Cycling is the most common exercise modality used by these populations. However, reduced lower limb joint excursion and/or range of motion (ROM) during cycling might limit the optimization of functional improvements. Increased hip flexion gait (HFgait) is a new exercise modality that might result in larger lower limb joint excursions compared to cycling. The purpose of this study was to compare lower limb kinematics between HFgait and cycling. Twelve healthy individuals participated in the study. Each participant performed cycling and HFgait. Hip, knee, and ankle kinematics in the sagittal, frontal, and transverse planes were analyzed with and without phase offset reduction (POR). Discrete and continuous analyses were performed. Discrete analysis indicated differences for at least one of the variables analyzed (maximum, minimum, and ROM) for the hip (p ≤ 0.041), knee (p ≤ 0.008), and ankle (p ≤ 0.040) across all planes. For the continuous analysis, differences between HFgait and cycling kinematics were observed during the cycles for the hip, knee, and ankle sagittal (hip: original: 85%; with POR: 77%; knee: original: 93%; with POR: 76%; ankle: original: 14%; with POR: 14%), frontal (hip: original: 93%; with POR: 98%; knee: original: 41%; with POR: 12%; ankle: original: 4%; with POR: 5%), and transverse (hip: original: 66%; with POR: 0%; knee: original: 14%; with POR: 0%; ankle: original: 3%; with POR: 0%) planes. HFgait resulted in larger hip (+60.2°) and knee (+38.2°) sagittal plane ROM while maintaining the hip in a more neutral position in the frontal plane compared with cycling. These findings can support the development of rehabilitation strategies with the goal of improving function and joint range of motion while also receiving the health benefits of exercise. Full article
(This article belongs to the Special Issue Advances in Biomechanics and Sports Medicine)
Show Figures

Figure 1

13 pages, 1990 KiB  
Article
Agreement Between a Pre-Markered T-Shirt and Manual Marker Placement for Opto-Electronic Plethysmography (OEP) Measures
by Nayani G. Adhikari, Eugénie Hunsicker, Matthew T. G. Pain, John W. Dickinson and Samantha L. Winter
Sensors 2025, 25(14), 4464; https://doi.org/10.3390/s25144464 - 17 Jul 2025
Viewed by 305
Abstract
Opto-electronic plethysmography (OEP) is used to measure chest wall compartment volumes and their synchronisation. Breathing pattern disorder (BPD) can be distinguished using the phase angles between these chest wall compartments during exercise. However, the time taken to manually place the standard OEP model [...] Read more.
Opto-electronic plethysmography (OEP) is used to measure chest wall compartment volumes and their synchronisation. Breathing pattern disorder (BPD) can be distinguished using the phase angles between these chest wall compartments during exercise. However, the time taken to manually place the standard OEP model involving 89 reflective markers is high during clinical application. The purpose of this study was to investigate the use of a pre-markered T-shirt instead of markers applied directly to the skin at rest, during different exercise intensities and recovery. Thirty-nine healthy participants (24 male, 15 female) aged 18–40 years performed an incremental cycling test with the skin-mounted OEP marker set. Participants then repeated the same cycling test with a pre-markered T-shirt. Across all test conditions, the T-shirt showed a strong level of agreement (Intraclass correlation coefficient (ICC) ≥ 0.9) with the standard breath-by-breath (BbB) gas analyser. Moreover, ICC values exceeded 0.8 for compartment contributions across all test conditions, indicating excellent agreement with the skin-mounted markers. The phase angles between compartments showed the best agreement during the moderate exercise level (0.6 < ICC < 0.8). In conclusion, the pre-markered T-shirt presents a viable solution for the quick monitoring of breathing patterns, as well as an effective tool in diagnosing BPD during exercise. Full article
(This article belongs to the Special Issue Smart Sensing for Healthcare Transformation)
Show Figures

Figure 1

Back to TopTop