Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (177)

Search Parameters:
Keywords = cyclic mobility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5336 KiB  
Article
The Effects of the Choice of Liquefaction Criteria on Liquefaction in Soils with Plastic Fines
by Carmine Polito
J 2025, 8(3), 27; https://doi.org/10.3390/j8030027 (registering DOI) - 1 Aug 2025
Abstract
Cyclic triaxial tests are widely used in laboratory studies to assess the liquefaction susceptibility of soils. Although standardized procedures exist for conducting these tests, there is no universally accepted criterion for defining liquefaction. The choice of a liquefaction criterion significantly influences the interpretation [...] Read more.
Cyclic triaxial tests are widely used in laboratory studies to assess the liquefaction susceptibility of soils. Although standardized procedures exist for conducting these tests, there is no universally accepted criterion for defining liquefaction. The choice of a liquefaction criterion significantly influences the interpretation of test results and subsequent engineering analyses. This study evaluates the impact of different liquefaction criteria by analyzing 42 cyclic triaxial tests performed on soil mixtures containing plastic fines. Both stress-based and strain-based liquefaction criteria were applied to assess their influence on test outcomes. The analyses focused on two key parameters: the number of loading cycles required to initiate liquefaction and the normalized dissipated energy per unit volume needed for liquefaction to occur. Results indicate that for soils susceptible to liquefaction failures, these parameters remain relatively consistent across different failure criteria. However, for soils prone to cyclic mobility failures, the number of loading cycles and the dissipated energy required for liquefaction vary significantly depending on the selected failure criterion. These findings highlight the importance of carefully selecting a liquefaction criterion, as it directly affects the assessment of soil behavior under cyclic loading. A better understanding of these variations can improve the accuracy of liquefaction susceptibility evaluations and inform geotechnical design and hazard mitigation strategies. Full article
(This article belongs to the Section Engineering)
21 pages, 2139 KiB  
Article
Blue Light Effect on Metabolic Changes in Induced Precocious Puberty in Rats
by Luciana-Mădălina Gherman, Elena-Mihaela Jianu, Ștefan Horia Roșian, Mădălin Mihai Onofrei, Lavinia Patricia Mocan, Veronica Sanda Chedea, Ioana Corina Bocsan, Dragoş Apostu, Andreea Roxana Todea, Eva Henrietta Dulf, Emilia Laura Mogoșan, Carmen Mihaela Mihu, Cătălina Angela Crişan, Ștefan Cristian Vesa, Anca Dana Buzoianu and Raluca Maria Pop
Biology 2025, 14(8), 951; https://doi.org/10.3390/biology14080951 (registering DOI) - 28 Jul 2025
Viewed by 236
Abstract
Modern life, characterized by constant exposure to artificial light from electronic devices, such as light-emitting diodes (LEDs), disrupts the natural circadian rhythm and induces important metabolic changes. The impact of blue light exposure on male and female rat’s onset of puberty, hormonal and [...] Read more.
Modern life, characterized by constant exposure to artificial light from electronic devices, such as light-emitting diodes (LEDs), disrupts the natural circadian rhythm and induces important metabolic changes. The impact of blue light exposure on male and female rat’s onset of puberty, hormonal and biochemical parameters was assessed by comparison between the four study groups: the control group (CTRL) maintained under normal light conditions, the group exposed to blue light from a mobile phone (MP), the group subjected to blue light from a computer screen (PC), and the group exposed to blue light from an LED lamp (LED). Both female and male rats exposed to PC and LED failed to thrive, with a significantly lower body weight intake than the CTRL group. All three distinct sources of blue light interfered with the cyclicity of the estrous cycle in female rats. A marked decrease in the number of complete estrous cycles and the highest incidence of incomplete cycles were noticed in the LED group. Elevated ALT, AST, glucose, and insulin levels were influenced in a gender-specific manner, and depending on the source of emitted light. Prolonged blue light exposure induces significant metabolic disruptions and possesses important future research potential in identifying explicit pathways regarding this environmental stressor. Full article
Show Figures

Graphical abstract

24 pages, 1517 KiB  
Article
Developing a Competency-Based Transition Education Framework for Marine Superintendents: A DACUM-Integrated Approach in the Context of Eco-Digital Maritime Transformation
by Yung-Ung Yu, Chang-Hee Lee and Young-Joong Ahn
Sustainability 2025, 17(14), 6455; https://doi.org/10.3390/su17146455 - 15 Jul 2025
Viewed by 368
Abstract
Amid structural changes driven by the greening and digital transformation of the maritime industry, the demand for career transitions of seafarers with onboard experience to shore-based positions—particularly ship superintendents—is steadily increasing. However, the current lack of a systematic education and career development framework [...] Read more.
Amid structural changes driven by the greening and digital transformation of the maritime industry, the demand for career transitions of seafarers with onboard experience to shore-based positions—particularly ship superintendents—is steadily increasing. However, the current lack of a systematic education and career development framework to support such transitions poses a critical challenge for shipping companies seeking to secure sustainable human resources. The aim of this study was to develop a competency-based training program that facilitates the effective transition of seafarers to shore-based ship superintendent roles. We integrated a developing a curriculum (DACUM) analysis with competency-based job analysis to achieve this aim. The core competencies required for ship superintendent duties were identified through three expert consultations. In addition, social network analysis (SNA) was used to quantitatively assess the structure and priority of the training content. The analysis revealed that convergent competencies, such as digital technology literacy, responsiveness to environmental regulations, multicultural organizational management, and interpretation of global maritime regulations, are essential for a successful career shift. Based on these findings, a modular training curriculum comprising both common foundational courses and specialized advanced modules tailored to job categories was designed. The proposed curriculum integrated theoretical instruction, practical training, and reflective learning to enhance both applied understanding and onsite implementation capabilities. Furthermore, the concept of a Seafarer Success Support Platform was proposed to support a lifecycle-based career development pathway that enables rotational mobility between sea and shore positions. This digital learning platform was designed to offer personalized success pathways aligned with the career stages and competency needs of maritime personnel. Its cyclical structure, comprising career transition, competency development, field application, and performance evaluation, enables seamless career integration between shipboard- and shore-based roles. Therefore, the platform has the potential to evolve into a practical educational model that integrates training, career development, and policies. This study contributes to maritime human resource development by integrating the DACUM method with a competency-based framework and applying social network analysis (SNA) to quantitatively prioritize training content. It further proposes the Seafarer Success Support Platform as an innovative model to support structured career transitions from shipboard roles to shore-based supervisory positions. Full article
Show Figures

Figure 1

18 pages, 7559 KiB  
Article
An Electrochemical Sensor for the Simultaneous Detection of Pb2+ and Cd2+ in Contaminated Seawater Based on Intelligent Mobile Detection Devices
by Zizi Zhao, Wei Qu, Chengjun Qiu, Yuan Zhuang, Kaixuan Chen, Yi Qu, Huili Hao, Wenhao Wang, Haozheng Liu and Jiahua Su
Chemosensors 2025, 13(7), 251; https://doi.org/10.3390/chemosensors13070251 - 11 Jul 2025
Viewed by 388
Abstract
Excessive levels of Pb2+ and Cd2+ in seawater pose significant combined toxicity to marine organisms, resulting in harmful effects and further threatening human health through biomagnification in the food chain. Traditional methods for detecting marine Pb2+ and Cd2+ rely [...] Read more.
Excessive levels of Pb2+ and Cd2+ in seawater pose significant combined toxicity to marine organisms, resulting in harmful effects and further threatening human health through biomagnification in the food chain. Traditional methods for detecting marine Pb2+ and Cd2+ rely on laboratory analyses, which are hindered by limitations such as sample degradation during transport and complex operational procedures. In this study, we present an electrochemical sensor based on intelligent mobile detection devices. By combining G-COOH-MWCNTs/ZnO with differential pulse voltammetry, the sensor enables the efficient, simultaneous detection of Pb2+ and Cd2+ in seawater. The G-COOH-MWCNTs/ZnO composite film is prepared via drop-coating and is applied to a glassy carbon electrode. The film is characterized using cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy, while Pb2+ and Cd2+ are quantified using differential pulse voltammetry. Using a 0.1 mol/L sodium acetate buffer (pH 5.5), a deposition potential of −1.1 V, and an accumulation time of 300 s, a strong linear correlation was observed between the peak response currents of Pb2+ and Cd2+ and their concentrations in the range of 25–450 µg/L. The detection limits were 0.535 µg/L for Pb2+ and 0.354 µg/L for Cd2+. The sensor was applied for the analysis of seawater samples from Maowei Sea, achieving recovery rates for Pb2+ ranging from 97.7% to 103%, and for Cd2+ from 97% to 106.1%. These results demonstrate that the sensor exhibits high sensitivity and stability, offering a reliable solution for the on-site monitoring of heavy metal contamination in marine environments. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

31 pages, 5844 KiB  
Article
Cyclic Triaxial Testing: A Primer
by Carmine Polito
J 2025, 8(3), 25; https://doi.org/10.3390/j8030025 - 7 Jul 2025
Viewed by 337
Abstract
Cyclic triaxial tests are frequently used in the laboratory to assess the liquefaction susceptibility of soils. This paper will serve a two-fold purpose: First, it will serve to explain how the mechanics of the tests represent the stresses that occur in the field. [...] Read more.
Cyclic triaxial tests are frequently used in the laboratory to assess the liquefaction susceptibility of soils. This paper will serve a two-fold purpose: First, it will serve to explain how the mechanics of the tests represent the stresses that occur in the field. Topics covered include the differences in the stress paths for the soil in the field and in the lab, the differences in the actual stresses applied in the lab and the field, the differences between stress-controlled and strain-controlled tests, and the effects of other aspects of the testing methodology. The development of adjustment factors for converting the laboratory test results to the field is also briefly discussed. The second purpose of the paper is to serve as a guide to interpreting cyclic triaxial test results. The topics covered will include an examination of the two main liquefaction modes and the impact that the failure criteria selected have on the analysis, the differences between stress-controlled and strain-controlled test results, energy dissipation, and pore pressure generation. The author has run more than 1500 cyclic triaxial tests over the course of his career. He has found that, while the test is fairly straightforward to perform, it requires a much deeper understanding of the test mechanics and data interpretation in order to maximize the information gained from performing the test. This paper is intended as a guide, helping engineers to gain further insights into the test and its results. It has a target audience encompassing both those who are running their first tests and those who are looking to increase their understanding of the tests they have performed. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

21 pages, 9720 KiB  
Article
Rolling vs. Swing: A Strategy for Enhancing Locomotion Speed and Stability in Legged Robots
by Yongjiang Xue, Wei Wang, Mingyu Duan, Nanqing Jiang, Shaoshi Zhang and Xuan Xiao
Biomimetics 2025, 10(7), 435; https://doi.org/10.3390/biomimetics10070435 - 2 Jul 2025
Viewed by 454
Abstract
Legged robots face inherent challenges in energy efficiency and stability at high speeds due to the repetitive acceleration–deceleration cycles of swing-based locomotion. To address these limitations, this paper presents a motion strategy that uses rolling gait instead of swing gait to improve the [...] Read more.
Legged robots face inherent challenges in energy efficiency and stability at high speeds due to the repetitive acceleration–deceleration cycles of swing-based locomotion. To address these limitations, this paper presents a motion strategy that uses rolling gait instead of swing gait to improve the energy efficiency and stability. First, a wheel-legged quadruped robot, R-Taichi, is developed, which is capable of switching to legged, wheeled, and RHex mobile modes. Second, the mechanical structure of the transformable two-degree-of-freedom leg is introduced, and the kinematics is analyzed. Finally, experiments are conducted to generate wheeled, legged, and RHex motion in both swing and rolling gaits, and the energy efficiency is further compared. The experimental results show that the rolling motion can ensure stable ground contact and mitigate cyclic collisions, reducing specific resistance by up to 30% compared with conventional swing gaits, achieving a top speed of 0.7 m/s with enhanced stability (root mean square error (RMSE) reduction of 22% over RHex mode). Furthermore, R-Taichi exhibits robust multi-terrain adaptability, successfully traversing gravel, grass, and obstacles up to 150 mm in height. Full article
(This article belongs to the Special Issue Biomimetic Robot Motion Control)
Show Figures

Figure 1

25 pages, 3047 KiB  
Article
Fate of Pyrrolizidine Alkaloids in Soil: Insights from Myosotis arvensis L. and Senecio vulgaris L.
by Ilva Nakurte, Gundars Skudriņš and Ieva Mežaka
Toxins 2025, 17(7), 335; https://doi.org/10.3390/toxins17070335 - 2 Jul 2025
Viewed by 393
Abstract
Pyrrolizidine alkaloids are plant-derived toxins with environmental persistence and the potential to contaminate soil, water, and adjacent crops. This study investigated the leaching behavior and environmental fate of PAs from two PA-producing weeds—Myosotis arvensis L. (Boraginaceae) and Senecio vulgaris L. (Asteraceae)—in two [...] Read more.
Pyrrolizidine alkaloids are plant-derived toxins with environmental persistence and the potential to contaminate soil, water, and adjacent crops. This study investigated the leaching behavior and environmental fate of PAs from two PA-producing weeds—Myosotis arvensis L. (Boraginaceae) and Senecio vulgaris L. (Asteraceae)—in two Latvian agricultural soils: sandy loam and loam. Hot- and cold-water plant extracts were applied to soil columns (10 cm and 20 cm), and leachates were analyzed over a 14-day period using QuEChERS purification and LC-HRMS detection. Leaching varied by plant species, extract type, and soil. M. arvensis showed significantly higher cumulative leaching (77–84% for cold, 65–71% for hot extracts), attributed to the higher solubility of N-oxides. In contrast, S. vulgaris extracts leached minimally (<0.84% from sandy loam) and were undetectable in loam. The presence of cyclic diester PAs in S. vulgaris and the higher cation exchange capacity of loam favored retention or degradation. PANO-to-PA conversion occurred in both soils, indicating redox activity. The fate of PAs was influenced by structural type (diesters showing higher persistence), extraction method (hot extraction releasing more pyrrolizidine alkaloids), and soil properties such as pH, organic matter, and cation exchange capacity, which affected sorption and mobility. These findings underscore the significance of soil composition in controlling PA mobility and associated environmental risks. Future research should focus on long-term PA persistence across diverse soil types and investigate crop uptake potential and microbial degradation pathways under field conditions. Full article
(This article belongs to the Special Issue Toxic Plant-Derived Metabolites)
Show Figures

Figure 1

9 pages, 238 KiB  
Article
Circulant Digraphs with Larger Linear Guessing Number and Smaller Degree
by Aixian Zhang and Keqin Feng
Mathematics 2025, 13(13), 2129; https://doi.org/10.3390/math13132129 - 29 Jun 2025
Viewed by 182
Abstract
The guessing number of a digraph is a new invariant in graph theory raised by S. Riis in 2006 and based on its applications in network coding and boolean circuit complexity theory. In this paper, we present the lower and upper bounds on [...] Read more.
The guessing number of a digraph is a new invariant in graph theory raised by S. Riis in 2006 and based on its applications in network coding and boolean circuit complexity theory. In this paper, we present the lower and upper bounds on a guessing number and linear guessing number of circulant digraphs by using cyclic codes. As an application of the lower bound, we construct a series of circulant digraphs with a larger linear guessing number and smaller degree. All of these circulant digraphs provide negative answers to S. Riis’ two open problems on the guessing number proposed in [Proceedings of the 2006 4th International Symposium on Modeling and Optimization in Mobile]. We also give a method to construct circulant digraphs with good estimation on their (linear) guessing number from cyclic codes. Full article
12 pages, 2315 KiB  
Article
Programmable Control of Droplets on Phase-Change Lubricant-Infused Surfaces Under Low Voltage
by Lingjie Sun, Chunlei Gao and Wei Li
Lubricants 2025, 13(6), 272; https://doi.org/10.3390/lubricants13060272 - 18 Jun 2025
Viewed by 705
Abstract
This study presents a bioinspired phase-change transparent flexible heater (PTFH) for programmable droplet manipulation under ultralow voltage. By embedding a self-junctioned copper nanowire network into paraffin-infused, porous PVDF-HFP gel matrices, the PTFH achieves rapid, non-contact, and reversible control of microdroplet mobility. The PTFH [...] Read more.
This study presents a bioinspired phase-change transparent flexible heater (PTFH) for programmable droplet manipulation under ultralow voltage. By embedding a self-junctioned copper nanowire network into paraffin-infused, porous PVDF-HFP gel matrices, the PTFH achieves rapid, non-contact, and reversible control of microdroplet mobility. The PTFH can be bent or tailored into diverse shapes (e.g., V/X configurations), enabling multidirectional droplet transport. Under ultralow voltage actuation (<1 V), the surface of PTFH melts the phase-change lubricant within 2 s, switching surface wettability from high adhesion (Wenzel state) to low adhesion (SLIPS state). By combining Laplace pressure and temperature gradients (up to 22 °C/mm), drive droplets at ~2.0 mm/s over distances of ~13.9 mm. Programmable droplet coalescence, curved-surface transport, and a microreactor design for batch reactions were also demonstrated. The PTFH exhibits excellent transparency (89% when activated), mechanical flexibility, and cyclic stability, offering a versatile platform for microreactors, microengines, and smart windows. Full article
Show Figures

Graphical abstract

20 pages, 2594 KiB  
Article
Plasticity, Flow Liquefaction, and Cyclic Mobility in Liquefiable Soils with Low to Moderate Plasticity
by Carmine P. Polito and James R. Martin
CivilEng 2025, 6(2), 31; https://doi.org/10.3390/civileng6020031 - 12 Jun 2025
Viewed by 1018
Abstract
Over the past several decades, extensive research has advanced the understanding of liquefaction in clean sands and sand–silt mixtures under seismic loading. However, the influence of plastic (i.e., clayey) fines on the liquefaction behavior of sandy soils remains less well understood. This study [...] Read more.
Over the past several decades, extensive research has advanced the understanding of liquefaction in clean sands and sand–silt mixtures under seismic loading. However, the influence of plastic (i.e., clayey) fines on the liquefaction behavior of sandy soils remains less well understood. This study investigates how the quantity and plasticity of fines affect both the susceptibility to liquefaction and the resulting failure mode. A series of stress-controlled cyclic triaxial tests were conducted on sand specimens containing varying proportions of non-plastic silt, kaolinite, and bentonite. Specimens were prepared at a constant relative density with fines content ranging from 0% to 37%. Two liquefaction modes were examined: flow liquefaction, characterized by sudden and large strains under undrained conditions, and cyclic mobility, which involves gradual strain accumulation without complete strength loss. The results revealed a clear relationship between soil plasticity and liquefaction mode. Specimens containing non-plastic fines or fines with a liquid limit (LL) below 20% and a plasticity index (PI) of 0 exhibited flow liquefaction. In contrast, specimens with LL > 20% and PI ≥ 7% consistently displayed cyclic mobility behavior. These findings help reconcile the apparent contradiction between laboratory studies, which often show increased liquefaction susceptibility with plastic fines, and field observations, where clayey soils frequently appear non-liquefiable. The study emphasizes the critical role of plasticity in determining liquefaction type, providing essential insight for seismic risk assessments and design practices involving fine-containing sandy soils. Full article
Show Figures

Graphical abstract

11 pages, 1901 KiB  
Article
The Fabrication and Characterization of Self-Powered P-I-N Perovskite Photodetectors Using Yttrium-Doped Cuprous Thiocyanate
by Jai-Hao Wang, Bo-Chun Chen and Sheng-Yuan Chu
Micromachines 2025, 16(6), 666; https://doi.org/10.3390/mi16060666 - 31 May 2025
Cited by 1 | Viewed by 625
Abstract
In the first part of this study, Y2O3-doped copper thiocyanate (CuSCN) with different x wt% (named CuSCN-xY, x = 0, 1, 2, and 3) films were synthesized onto ITO substrates using the spin coating method. UV-vis, SEM, AFM, EDS, [...] Read more.
In the first part of this study, Y2O3-doped copper thiocyanate (CuSCN) with different x wt% (named CuSCN-xY, x = 0, 1, 2, and 3) films were synthesized onto ITO substrates using the spin coating method. UV-vis, SEM, AFM, EDS, and cyclic voltammetry were used to investigate the material properties of the proposed films. The conductivity and carrier mobility of the films increased with additional yttrium doping. It was found that the films with 2% Y2O3 (CuSCN-2Y) have the smallest valence band edges (5.28 eV). Meanwhile, CuSCN-2Y films demonstrated the densest surface morphology and the smallest surface roughness (22.8 nm), along with the highest conductivity value of 764 S cm−1. Then, P-I-N self-powered UV photodetectors (PDs) were fabricated using the ITO substrate/ZnO seed layer/ZnO nanorod/CsPbBr3/CuSCN-xY/Ag structure, and the characteristics of the devices were measured. In terms of response time, the rise time and fall time were reduced from 26 ms/22 ms to 9 ms/5 ms; the responsivity was increased from 243 mA/W to 534 mA/W, and the on/off ratio was increased to 2.47 × 106. The results showed that Y2O3 doping also helped improve the P-I-N photodetector’s device performance, and the mechanisms were investigated. Compared with other published P-I-N self-powered photodetectors, our proposed devices show a fairly high on/off ratio, quick response times, and high responsivity and detectivity. Full article
Show Figures

Figure 1

26 pages, 11288 KiB  
Article
Application of Composite Drainage and Gas Production Synergy Technology in Deep Coalbed Methane Wells: A Case Study of the Jishen 15A Platform
by Longfei Sun, Donghai Li, Wei Qi, Li Hao, Anda Tang, Lin Yang, Kang Zhang and Yun Zhang
Processes 2025, 13(5), 1457; https://doi.org/10.3390/pr13051457 - 9 May 2025
Viewed by 472
Abstract
The development of deep coalbed methane (CBM) wells faces challenges such as significant reservoir depth, low permeability, and severe liquid loading in the wellbore. Traditional drainage and gas recovery techniques struggle to meet the dynamic production demands. This study, using the deep CBM [...] Read more.
The development of deep coalbed methane (CBM) wells faces challenges such as significant reservoir depth, low permeability, and severe liquid loading in the wellbore. Traditional drainage and gas recovery techniques struggle to meet the dynamic production demands. This study, using the deep CBM wells at the Jishen 15A platform as an example, proposes a “cyclic gas lift–wellhead compression-vent gas recovery” composite synergy technology. By selecting a critical liquid-carrying model, innovating equipment design, and dynamically regulating pressure, this approach enables efficient production from low-pressure, low-permeability gas wells. This research conducts a comparative analysis of different critical liquid-carrying velocity models and selects the Belfroid model, modified for well inclination angle effects, as the primary model to guide the matching of tubing production and annular gas injection parameters. A mobile vent gas rapid recovery unit was developed, utilizing a three-stage/two stage pressurization dual-process switching technology to achieve sealed vent gas recovery while optimizing pipeline frictional losses. By combining cyclic gas lift with wellhead compression, a dynamic wellbore pressure equilibrium system was established. Field tests show that after 140 days of implementation, the platform’s daily gas production increased to 11.32 × 104 m3, representing a 35.8% rise. The average bottom-hole flow pressure decreased by 38%, liquid accumulation was reduced by 72%, and cumulative gas production increased by 370 × 104 m3. This technology effectively addresses gas–liquid imbalance and liquid loading issues in the middle and late stages of deep CBM well production, providing a technical solution for the efficient development of low-permeability CBM reservoirs. Full article
Show Figures

Figure 1

17 pages, 2733 KiB  
Article
HMGB1 Regulates Adipocyte Lipolysis via Caveolin-1 Signaling: Implications for Metabolic and Cardiovascular Diseases
by Julia Chu-Ning Hsu, Kuan-Ting Chiu, Chia-Hui Chen, Chih-Hsien Wang, Song-Kun Shyue and Tzong-Shyuan Lee
Int. J. Mol. Sci. 2025, 26(9), 4222; https://doi.org/10.3390/ijms26094222 - 29 Apr 2025
Viewed by 775
Abstract
High-mobility group box 1 (HMGB1) is a nuclear protein that can be secreted or released into the extracellular environment during cellular stress, functioning as a damage-associated molecular pattern molecule. This study investigates the role of HMGB1 in adipocyte development and metabolism, explicitly examining [...] Read more.
High-mobility group box 1 (HMGB1) is a nuclear protein that can be secreted or released into the extracellular environment during cellular stress, functioning as a damage-associated molecular pattern molecule. This study investigates the role of HMGB1 in adipocyte development and metabolism, explicitly examining its interaction with β3-adrenergic receptor-mediated lipolysis and caveolin-1 (CAV1) regulation, which may influence cardiovascular risk factors. Using 3T3-L1 preadipocytes and mouse embryonic fibroblasts, we demonstrated that HMGB1 expression increases progressively during adipogenesis, reaching peak levels in mature adipocytes. While exogenous HMGB1 treatment did not affect preadipocyte proliferation or differentiation, it inhibited lipolysis in mature adipocytes. Mechanistically, HMGB1 suppressed β3-adrenergic receptor agonist CL-316,243-induced hormone-sensitive lipase activation by reducing protein kinase A-mediated phosphorylation and attenuating extracellular signal-regulated kinase signaling without affecting upstream cyclic AMP levels. We discovered a novel regulatory mechanism wherein CAV1 physically interacts with HMGB1 in mature adipocytes, with c-Src-dependent CAV1 phosphorylation functioning as a negative regulator of HMGB1 secretion. This finding was confirmed in CAV1-deficient models, which displayed increased HMGB1 secretion and diminished lipolytic activity both in vitro and in vivo. Furthermore, administering HMGB1-neutralizing antibodies to wild-type mice enhanced fasting-induced lipolysis, establishing circulating HMGB1 as a crucial antilipolytic factor. These findings reveal HMGB1’s previously uncharacterized role in adipose tissue metabolism as a negative regulator of lipolysis through CAV1-dependent mechanisms. This work provides new insights into adipose tissue metabolism regulation and identifies potential therapeutic targets for obesity-related metabolic disorders and cardiovascular diseases. Full article
Show Figures

Figure 1

17 pages, 9153 KiB  
Article
The Effect of Failure Criteria on Liquefaction and Pore Pressure Prediction in Non-Plastic Soils
by Carmine P. Polito
Geotechnics 2025, 5(2), 27; https://doi.org/10.3390/geotechnics5020027 - 23 Apr 2025
Cited by 1 | Viewed by 577
Abstract
Since the 1960s, cyclic triaxial tests have been utilized to assess the liquefaction susceptibility of cohesionless soils. While standardized procedures exist for conducting cyclic triaxial tests, there remains no universally accepted criterion for defining liquefaction in a laboratory test. The selection of a [...] Read more.
Since the 1960s, cyclic triaxial tests have been utilized to assess the liquefaction susceptibility of cohesionless soils. While standardized procedures exist for conducting cyclic triaxial tests, there remains no universally accepted criterion for defining liquefaction in a laboratory test. The selection of a liquefaction criterion significantly impacts the interpretation of the test results and subsequent analyses. To quantify these effects, more than 250 cyclic triaxial tests were evaluated using both stress-based and strain-based liquefaction criteria. The analyses performed focused on two aspects of the liquefaction behavior: the number of cycles of loading required to initiate liquefaction and the amount of normalized dissipated energy per unit volume that must be absorbed into the specimen in order for it to liquefy. The findings indicate that for soils susceptible to flow liquefaction failures, the number of loading cycles required to induce liquefaction decreases. They also show that the amount of energy dissipation required to trigger liquefaction remains largely consistent across different failure criteria. However, for soils prone to cyclic mobility failures, both the number of loading cycles and the amount of dissipated energy required to cause liquefaction were found to vary significantly depending on the failure criterion applied. Full article
(This article belongs to the Special Issue Recent Advances in Geotechnical Engineering (2nd Edition))
Show Figures

Figure 1

14 pages, 2420 KiB  
Article
High-Performance Anion Exchange Chromatography Electrochemical Determination of Uric Acid as a Contamination Marker
by Kevin C. Honeychurch
Sci 2025, 7(2), 40; https://doi.org/10.3390/sci7020040 - 1 Apr 2025
Viewed by 595
Abstract
This study presents the first instance of determining environmental uric acid in urban dust using high-performance anion exchange chromatography coupled with electrochemical detection. The optimum chromatographic conditions were identified as a 10 mm × 4.6 mm, 10 µm anion exchange column with a [...] Read more.
This study presents the first instance of determining environmental uric acid in urban dust using high-performance anion exchange chromatography coupled with electrochemical detection. The optimum chromatographic conditions were identified as a 10 mm × 4.6 mm, 10 µm anion exchange column with a mobile phase of pH 8 50 mM phosphate buffer. Cyclic voltametric investigations over a pH range of 2 to 12 showed that uric acid gave a single diffusion-controlled peak. Hydrodynamic voltametric studies of uric acid using a mobile phase of 50 mM pH 8.0 phosphate buffer over the range 0.0 V to +1.4 V (vs. stainless steel) showed a similar single oxidation wave, which plateaued at potentials more positive than +0.7 V (vs. stainless steel). An applied potential of +0.90 V (vs. stainless steel) was chosen for further investigations, and a linear range of 0.10 to 100 mg/L was obtained, with a detection limit of 0.866 mg/L based on a signal-to-noise ratio of 3. Dust wipe samples were extracted in pH 8, 50 mM phosphate buffer with the aid of sonication. Recoveries of 99.6% (% CV = 4.52%) were achieved for the dust wipe fortified with 16.8 µg of uric acid. Nitrate, nitrite, chloride, acetate, and sulfate ions were found not to interfere. The dust wipe samples were found to have uric acid levels of between 32.6 µg/m2 and 3.98 mg/m2. Full article
Show Figures

Graphical abstract

Back to TopTop