Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,899)

Search Parameters:
Keywords = cycle design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5599 KiB  
Article
Full-Scale Experimental Study on the Combustion Characteristics of a Fuel Island in a High-Speed Railway Station
by Wenbin Wei, Jiaming Zhao, Cheng Zhang, Yanlong Li and Saiya Feng
Fire 2025, 8(8), 291; https://doi.org/10.3390/fire8080291 (registering DOI) - 24 Jul 2025
Abstract
This study aims to provide a reference for the fire protection design and fire emergency response strategies for fuel islands in high-speed railway stations and other transportation buildings. By using an industrial calorimeter, this paper analyzes the combustion characteristics of a fuel island. [...] Read more.
This study aims to provide a reference for the fire protection design and fire emergency response strategies for fuel islands in high-speed railway stations and other transportation buildings. By using an industrial calorimeter, this paper analyzes the combustion characteristics of a fuel island. For the fuel island setup in this test, the fuel island fire development cycle was relatively long, and the maximum fire source heat release rate reached 4615 kW. Before the fire source heat release rate reaches the maximum peak, the HRR curve slowly fluctuates and grows within the first 260 s after ignition. Within the time range of 260 s to 440 s, the fire growth rate resembled that of a t2 medium-speed fire, and within the time range of 400 s to 619 s, it more closely aligned with a t2 fast fire. It is generally suggested that the growth curve of t2 fast fire could be used for the numerical simulation of fuel island fires. The 1 h fire separation method adopted in this paper demonstrated a good fire barrier effect throughout the combustion process. Full article
(This article belongs to the Special Issue Advances in Fire Science and Fire Protection Engineering)
Show Figures

Figure 1

12 pages, 10100 KiB  
Article
Surface Microstructure Engineering for Enhancing Li-Ion Diffusion and Structure Stability of Ni-Rich Cathode Materials
by Huanming Zhuo, Shuangshuang Zhao, Ruijie Xu, Lu Zhou, Ye Li, Yuehuan Peng, Xuelong Rao, Yuqiang Tao and Xing Ou
Nanomaterials 2025, 15(15), 1144; https://doi.org/10.3390/nano15151144 - 24 Jul 2025
Abstract
Surface microstructure of grains vastly decides the electrochemical performance of nickel-rich oxide cathodes, which can improve their interfacial kinetics and structural stability to realize their further popularization. Herein, taking the representative LiNi0.8Co0.15Al0.05O2 (NCA) materials as an [...] Read more.
Surface microstructure of grains vastly decides the electrochemical performance of nickel-rich oxide cathodes, which can improve their interfacial kinetics and structural stability to realize their further popularization. Herein, taking the representative LiNi0.8Co0.15Al0.05O2 (NCA) materials as an example, a surface heterojunction structure construction strategy to enhance the interface characteristics of high-nickel materials by introducing interfacial ZnO sites has been designed (NCA@ZnO). Impressively, this heterointerface creates a strong built-in electric field, which significantly improves electron/Li-ion diffusion kinetics. Concurrently, the ZnO layer acts as an effective physical barrier against electrolyte corrosion, notably suppressing interfacial parasitic reactions and ultimately optimizing the structure stability of NCA@ZnO. Benefiting from synchronous optimization of interface stability and kinetics, NCA@ZnO exhibits advanced cycling performance with the capacity retention of 83.7% after 160 cycles at a superhigh rate of 3 C during 3.0–4.5 V. The prominent electrochemical performance effectively confirms that the surface structure design provides a critical approach toward obtaining high-performance cathode materials with enhanced long-cycling stability. Full article
Show Figures

Graphical abstract

23 pages, 7106 KiB  
Article
A Simulation-Based Comparative Study of Advanced Control Strategies for Residential Air Conditioning Systems
by Jonadri Bundo, Donald Selmanaj, Genci Sharko, Stefan Svensson and Orion Zavalani
Eng 2025, 6(8), 170; https://doi.org/10.3390/eng6080170 - 24 Jul 2025
Abstract
This study presents a simulation-based evaluation of advanced control strategies for residential air conditioning systems, including On–Off, PI, and Model Predictive Control (MPC) approaches. A black-box system model was identified using an ARX(2,2,0) structure, achieving over 90% prediction accuracy (FIT) for indoor temperature [...] Read more.
This study presents a simulation-based evaluation of advanced control strategies for residential air conditioning systems, including On–Off, PI, and Model Predictive Control (MPC) approaches. A black-box system model was identified using an ARX(2,2,0) structure, achieving over 90% prediction accuracy (FIT) for indoor temperature and power consumption. Six controllers were implemented and benchmarked in a high-fidelity Simscape environment under a realistic 48-h summer temperature profile. The proposed MPC scheme, particularly when incorporating outdoor temperature gradient logic, reduced energy consumption by up to 30% compared to conventional PI control while maintaining indoor thermal comfort within the acceptable range. This virtual design workflow shortens the development cycle by deferring climatic chamber testing to the final validation phase. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

17 pages, 7086 KiB  
Article
Study on Evolution of Stress Field and Fracture Propagation Laws for Re-Fracturing of Volcanic Rock
by Honglei Liu, Jiangling Hong, Wei Shu, Xiaolei Wang, Xinfang Ma, Haoqi Li and Yipeng Wang
Processes 2025, 13(8), 2346; https://doi.org/10.3390/pr13082346 - 23 Jul 2025
Abstract
In the Kelameili volcanic gas reservoir, primary hydraulic fracturing treatments in some wells take place on a limited scale, resulting in a rapid decline in production post stimulation and necessitating re-fracturing operations. However, prolonged production has led to a significant evolution in the [...] Read more.
In the Kelameili volcanic gas reservoir, primary hydraulic fracturing treatments in some wells take place on a limited scale, resulting in a rapid decline in production post stimulation and necessitating re-fracturing operations. However, prolonged production has led to a significant evolution in the in situ stress field, which complicates the design of re-fracturing parameters. To address this, this study adopts an integrated geology–engineering approach to develop a formation-specific geomechanical model, using rock mechanical test results and well-log inversion to reconstruct the reservoir’s initial stress field. The dynamic stress field simulations and re-fracturing parameter optimization were performed for Block Dixi-14. The results show that stress superposition effects induced by multiple fracturing stages and injection–production cycles have significantly altered the current in situ stress distribution. For Well K6, the optimized re-fracturing parameters comprised a pump rate of 12 m3/min, total fluid volume of 1200 m3, prepad fluid ratio of 50–60%, and proppant volume of 75 m3, and the daily gas production increased by 56% correspondingly, demonstrating the effectiveness of the optimized re-fracturing design. This study not only provides a more realistic simulation framework for fracturing volcanic rock gas reservoirs but also offers a scientific basis for fracture design optimization and enhanced gas recovery. The geology–engineering integrated methodology enables the accurate prediction and assessment of dynamic stress field evolution during fracturing, thereby guiding field operations. Full article
(This article belongs to the Special Issue Recent Advances in Hydrocarbon Production Processes from Geoenergy)
Show Figures

Figure 1

26 pages, 312 KiB  
Article
REN+HOMES Positive Carbon Building Methodology in Co-Design with Residents
by Dorin Beu, Alessio Pacchiana, Elena Rastei, Horaţiu Albu and Theodor Contolencu
Architecture 2025, 5(3), 51; https://doi.org/10.3390/architecture5030051 - 23 Jul 2025
Abstract
This article demonstrates how positioning residents as active co-designers fundamentally transforms both the process and outcomes of carbon-positive building development. Through structured collaborative workshops, shared decision-making protocols, and continuous partnership throughout the building lifecycle, the REN+HOMES Positive Carbon Building methodology challenges the conventional [...] Read more.
This article demonstrates how positioning residents as active co-designers fundamentally transforms both the process and outcomes of carbon-positive building development. Through structured collaborative workshops, shared decision-making protocols, and continuous partnership throughout the building lifecycle, the REN+HOMES Positive Carbon Building methodology challenges the conventional expert-driven approach to sustainable construction. Developed and validated through the H2020 REN+HOMES project, this resident-centered approach achieved remarkable technical performance—65.9% reduction in final energy demand—while simultaneously enhancing community ownership and long-term sustainability practices. By integrating participatory design with Zero Emissions Building (ZEB) criteria, renewable energy systems, and national carbon offset programs, the methodology proves that resident collaboration is not merely beneficial but essential for creating buildings that truly serve both environmental and human needs. This research establishes a new paradigm where technical excellence emerges from authentic partnership between residents and sustainability experts, offering a replicable framework for community-driven environmental regeneration. Full article
19 pages, 1553 KiB  
Review
Perennial Grains in Russia: History, Status, and Perspectives
by Alexey Morgounov, Olga Shchuklina, Inna Pototskaya, Amanjol Aydarov and Vladimir Shamanin
Crops 2025, 5(4), 46; https://doi.org/10.3390/crops5040046 - 23 Jul 2025
Abstract
The review summarizes the historical and current research on perennial grain breeding in Russia within the context of growing global interest in perennial crops. N.V. Tsitsin’s pioneering work in the 1930s produced the first wheat–wheatgrass amphiploids, which demonstrated the capacity to regrow after [...] Read more.
The review summarizes the historical and current research on perennial grain breeding in Russia within the context of growing global interest in perennial crops. N.V. Tsitsin’s pioneering work in the 1930s produced the first wheat–wheatgrass amphiploids, which demonstrated the capacity to regrow after harvest and survive for 2–3 years. Subsequent research at the Main Botanical Garden in Moscow focused on characterizing Tsitsin’s material, selecting superior germplasm, and expanding genetic diversity through new cycles of hybridization and selection. This work led to the development of a new crop species, Trititrigia, and the release of cultivar ‘Pamyati Lyubimovoy’ in 2020, designed for dual-purpose production of high-quality grain and green biomass. Intermediate wheatgrass (Thinopyrum intermedium) is native to Russia, where several forage cultivars have been released and cultivated. Two large-grain cultivars (Sova and Filin) were developed from populations provided by the Land Institute and are now grown by farmers. Perennial rye was developed through interspecific crosses between Secale cereale and S. montanum, demonstrating persistence for 2–3 years with high biomass production and grain yields of 1.5–2.0 t/ha. Hybridization between Sorghum bicolor and S. halepense resulted in two released cultivars of perennial sorghum used primarily for forage production under arid conditions. Russia’s agroclimatic diversity in agricultural production systems provides significant opportunities for perennial crop development. The broader scientific and practical implications of perennial crops in Russia extend to climate-resilient, sustainable agriculture and international cooperation in this emerging field. Full article
Show Figures

Figure 1

18 pages, 4914 KiB  
Article
Preparation and Failure Behavior of Gel Electrolytes for Multilayer Structure Lithium Metal Solid-State Batteries
by Chu Chen, Wendong Qin, Qiankun Hun, Yujiang Wang, Xinghua Liang, Renji Tan, Junming Li and Yifeng Guo
Gels 2025, 11(8), 573; https://doi.org/10.3390/gels11080573 - 23 Jul 2025
Abstract
High safety gel polymer electrolyte (GPE) is used in lithium metal solid state batteries, which has the advantages of high energy density, wide temperature range, high safety, and is considered as a subversive new generation battery technology. However, solid-state lithium batteries with multiple [...] Read more.
High safety gel polymer electrolyte (GPE) is used in lithium metal solid state batteries, which has the advantages of high energy density, wide temperature range, high safety, and is considered as a subversive new generation battery technology. However, solid-state lithium batteries with multiple layers and large capacity currently have poor cycle life and a large gap between the actual output cycle capacity retention rate and the theoretical level. In this paper, polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP)/polyacrylonitrile (PAN)—lithium perchlorate (LiClO4)—lithium lanthanum zirconium tantalate (LLZTO) gel polymer electrolytes was prepared by UV curing process using a UV curing machine at a speed of 0.01 m/min for 10 s, with the temperature controlled at 30 °C and wavelength 365 nm. In order to study the performance and failure mechanism of multilayer solid state batteries, single and three layers of solid state batteries with ceramic/polymer composite gel electrolyte were assembled. The results show that the rate and cycle performance of single-layer solid state battery with gel electrolyte are better than those of three-layer solid state battery. As the number of cycles increases, the interface impedance of both single-layer and three-layer electrolyte membrane solid-state batteries shows an increasing trend. Specifically, the three-layer battery impedance increased from 17 Ω to 42 Ω after 100 cycles, while the single-layer battery showed a smaller increase, from 2.2 Ω to 4.8 Ω, indicating better interfacial stability. After 100 cycles, the interface impedance of multi-layer solid-state batteries increases by 9.61 times that of single-layer batteries. After 100 cycles, the corresponding capacity retention rates were 48.9% and 15.6%, respectively. This work provides a new strategy for large capacity solid state batteries with gel electrolyte design. Full article
(This article belongs to the Special Issue Research Progress and Application Prospects of Gel Electrolytes)
Show Figures

Figure 1

14 pages, 4639 KiB  
Article
CNTs/CNPs/PVA–Borax Conductive Self-Healing Hydrogel for Wearable Sensors
by Chengcheng Peng, Ziyan Shu, Xinjiang Zhang and Cailiu Yin
Gels 2025, 11(8), 572; https://doi.org/10.3390/gels11080572 - 23 Jul 2025
Abstract
The development of multifunctional conductive hydrogels with rapid self-healing capabilities and powerful sensing functions is crucial for advancing wearable electronics. This study designed and prepared a polyvinyl alcohol (PVA)–borax hydrogel incorporating carbon nanotubes (CNTs) and biomass carbon nanospheres (CNPs) as dual-carbon fillers. This [...] Read more.
The development of multifunctional conductive hydrogels with rapid self-healing capabilities and powerful sensing functions is crucial for advancing wearable electronics. This study designed and prepared a polyvinyl alcohol (PVA)–borax hydrogel incorporating carbon nanotubes (CNTs) and biomass carbon nanospheres (CNPs) as dual-carbon fillers. This hydrogel exhibits excellent conductivity, mechanical flexibility, and self-recovery properties. Serving as a highly sensitive piezoresistive sensor, it efficiently converts mechanical stimuli into reliable electrical signals. Sensing tests demonstrate that the CNT/CNP/PVA–borax hydrogel sensor possesses an extremely fast response time (88 ms) and rapid recovery time (88 ms), enabling the detection of subtle and rapid human motions. Furthermore, the hydrogel sensor also exhibits outstanding cyclic stability, maintaining stable signal output throughout continuous loading–unloading cycles exceeding 3200 repetitions. The hydrogel sensor’s characteristics, including rapid self-healing, fast-sensing response/recovery, and high fatigue resistance, make the CNT/CNP/PVA–borax conductive hydrogel an ideal choice for multifunctional wearable sensors. It successfully monitored various human motions. This study provides a promising strategy for high-performance self-healing sensing devices, suitable for next-generation wearable health monitoring and human–machine interaction systems. Full article
Show Figures

Figure 1

19 pages, 6349 KiB  
Article
From Theory to Practice: Assessing the Open Building Movement’s Role in Egypt’s Housing Market over Four Decades
by Rania Nasreldin and Dalia Abdelfattah
Buildings 2025, 15(15), 2600; https://doi.org/10.3390/buildings15152600 - 23 Jul 2025
Abstract
This research explores the concept of open building (OB) in the context of low-cost housing, focusing on its historical applications in Egypt during the 1980s. By evaluating past experiences, the study aims to extract key lessons that can inform the design and implementation [...] Read more.
This research explores the concept of open building (OB) in the context of low-cost housing, focusing on its historical applications in Egypt during the 1980s. By evaluating past experiences, the study aims to extract key lessons that can inform the design and implementation of contemporary social housing projects. The goal is to foster resilience and diversity in housing typologies to ensure they align with the evolving needs of residents. To achieve these objectives, the research employed a multi-dimensional strategy, beginning with a comprehensive literature review of the open building movement (OB); then, the study traced the evolution of the OB movement in Egypt using a qualitative analysis approach, which involved analyzing its implementation in low-cost housing projects over the past four decades. Through this historical lens, the study identifies design principles and strategies that can enhance social housing projects by applying OB. Considering the life cycle cost, OB enables an incremental process that would align with users’ financial capacities. The research revealed the substantial capacity of open building (OB) to address Egypt’s social housing challenges, primarily by fostering user-driven flexibility in housing unit design and area selection. This empowers occupants to choose spaces perfectly suited to their family’s evolving needs. Moreover, the findings provide a roadmap for revitalizing the OB movement by analyzing and overcoming past implementation difficulties, consequently balancing the initial cost and long-term economics for citizens and significantly reducing the governmental sector’s expenditure. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

19 pages, 2452 KiB  
Article
Women’s Right to the City: The Case of Quito, Ecuador
by Maria Carolina Baca Calderón, Gloria Quattrone, Eufemia Sánchez Borja and Daniele Rocchio
Soc. Sci. 2025, 14(8), 448; https://doi.org/10.3390/socsci14080448 - 23 Jul 2025
Abstract
Henri Lefebvre’s “right to the city” has rarely been examined through an intersectional feminist lens, leaving unnoticed the uneven burdens that urban design and policy place on women. This article bridges that gap by combining constitutional analysis, survey data (n = 736), [...] Read more.
Henri Lefebvre’s “right to the city” has rarely been examined through an intersectional feminist lens, leaving unnoticed the uneven burdens that urban design and policy place on women. This article bridges that gap by combining constitutional analysis, survey data (n = 736), in-depth interviews, and participatory observation to assess how Quito’s public spaces affect women’s safety and mobility. Quantitative results show that 81% of respondents endured sexual or offensive remarks, 69.8% endured obscene gestures, and 38% endured severe harassment in the month before the survey; 43% of these incidents occurred only days or weeks beforehand, underscoring their routine nature. Qualitative narratives reveal behavioral adaptations—altered routes, self-policing dress codes, and distrust of authorities—and identify poorly lit corridors and weak institutional presence as spatial amplifiers of violence. Analysis of Quito’s “Safe City” program exposes a gulf between its ambitious rhetoric and its narrow, transport-centered implementation. We conclude that constitutional guarantees of participation, appropriation, and urban life will remain aspirational until urban planning mainstreams gender-sensitive design, secures intersectoral resources, and embeds women’s substantive participation throughout policy cycles. A feminist reimagining of Quito’s public realm is therefore indispensable to transform the right to the city from legal principle into lived reality. Full article
(This article belongs to the Section Gender Studies)
Show Figures

Figure 1

20 pages, 1475 KiB  
Article
Design Optimization and Assessment Platform for Wind-Assisted Ship Propulsion
by Timoleon Plessas and Apostolos Papanikolaou
J. Mar. Sci. Eng. 2025, 13(8), 1389; https://doi.org/10.3390/jmse13081389 - 22 Jul 2025
Abstract
The maritime industry faces growing pressure to reduce greenhouse gas (GHG) emissions, reflected in the progressive adoption of stricter international energy regulations. Wind-Assisted Propulsion Systems (WAPS) offer a promising solution by significantly contributing to decarbonization. This paper presents a versatile simulation and optimization [...] Read more.
The maritime industry faces growing pressure to reduce greenhouse gas (GHG) emissions, reflected in the progressive adoption of stricter international energy regulations. Wind-Assisted Propulsion Systems (WAPS) offer a promising solution by significantly contributing to decarbonization. This paper presents a versatile simulation and optimization platform that supports the conceptual design of WAPS-equipped vessels and evaluates the viability of such investments. The platform uses a steady-state force equilibrium model to simulate vessel performance along predefined routes under realistic weather conditions, incorporating regulatory frameworks and economic assessments. A multi-objective optimization framework identifies optimal designs across user-defined criteria. To demonstrate its capabilities, the platform is applied to a bulk carrier operating between China and the USA, optimizing for capital expenditure, net present value (NPV), and CO2 emissions. Results show the platform can effectively balance conflicting objectives, achieving substantial emissions reductions without compromising economic performance. The final optimized design achieved a 12% reduction in CO2 emissions, a 7% decrease in capital expenditure, and a 6.6 million USD increase in net present value compared to the reference design with sails, demonstrating the platform’s capability to deliver balanced improvements across all objectives. The methodology is adaptable to various ship types, WAPS technologies, and operational profiles, offering a valuable decision-support tool for stakeholders navigating the transition to zero-carbon shipping. Full article
(This article belongs to the Special Issue Design Optimisation in Marine Engineering)
Show Figures

Figure 1

12 pages, 395 KiB  
Article
Effects of Translucency-Enhancing Coloring Liquids on the Mechanical Properties of 3Y- and 4Y-TZP Zirconia Ceramics
by Andreas Pfeffer, Sebastian Hahnel, Angelika Rauch and Martin Rosentritt
Ceramics 2025, 8(3), 92; https://doi.org/10.3390/ceramics8030092 - 22 Jul 2025
Abstract
The aim of translucency-enhancing liquids (TEL) is to locally influence the phase composition of zirconia in order to increase its translucency. This study aimed to determine the influence of TEL on 3Y- and 4Y-TZP zirconia concerning roughness, hardness, wear, flexural strength, dynamic stability [...] Read more.
The aim of translucency-enhancing liquids (TEL) is to locally influence the phase composition of zirconia in order to increase its translucency. This study aimed to determine the influence of TEL on 3Y- and 4Y-TZP zirconia concerning roughness, hardness, wear, flexural strength, dynamic stability and fracture force of fixed dental prostheses after thermal cycling and mechanical loading. Two zirconia materials (4Y-TZP; 3Y-TZP-LA, n = 8 per material and test) were investigated with and without prior application of TEL. Two-body wear tests were performed in a pneumatic pin-on-block design (50 N, 120,000 cycles, 1.6 Hz) with steatite balls (r = 1.5 mm) as antagonists. Mean and maximum vertical loss as well as roughness (Ra, Rz) were measured with a 3D laser-scanning microscope (KJ 3D, Keyence, J). Antagonist wear was determined as percent area of the projected antagonist area. Martens hardness (HM; ISO 14577-1) and biaxial flexural strength (BFS; ISO 6872) were investigated. The flexural fatigue limit BFSdyn was determined under cyclic loading in a staircase approach with a piston-on-three-ball-test. Thermal cycling and mechanical loading (TCML: 2 × 3000 × 5 °C/55 °C, 2 min/cycle, H2O dist., 1.2 × 106 force á 50 N) was performed on four-unit fixed dental prostheses (FDPs) (n = 8 per group) and the fracture force after TCML was determined. Statistics: ANOVA, Bonferroni test, Kaplan–Meier survival, Pearson correlation; α = 0.05. TEL application significantly influences roughness, hardness, biaxial flexural strength, dynamic performance, as well as fracture force after TCML in 3Y-TZP. For 4Y-TZP, a distinct influence of TEL was only identified for BFS. The application of TEL on 3Y- or 4Y-TZP did not affect wear. TEL application has a strong effect on the mechanical properties of 3Y-TZP and minor effects on 4Y-TZP. All effects of the TEL application are of a magnitude that is unlikely to restrict clinical application. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Graphical abstract

18 pages, 3220 KiB  
Article
High-Throughput Microfluidic Electroporation (HTME): A Scalable, 384-Well Platform for Multiplexed Cell Engineering
by William R. Gaillard, Jess Sustarich, Yuerong Li, David N. Carruthers, Kshitiz Gupta, Yan Liang, Rita Kuo, Stephen Tan, Sam Yoder, Paul D. Adams, Hector Garcia Martin, Nathan J. Hillson and Anup K. Singh
Bioengineering 2025, 12(8), 788; https://doi.org/10.3390/bioengineering12080788 - 22 Jul 2025
Abstract
Electroporation-mediated gene delivery is a cornerstone of synthetic biology, offering several advantages over other methods: higher efficiencies, broader applicability, and simpler sample preparation. Yet, electroporation protocols are often challenging to integrate into highly multiplexed workflows, owing to limitations in their scalability and tunability. [...] Read more.
Electroporation-mediated gene delivery is a cornerstone of synthetic biology, offering several advantages over other methods: higher efficiencies, broader applicability, and simpler sample preparation. Yet, electroporation protocols are often challenging to integrate into highly multiplexed workflows, owing to limitations in their scalability and tunability. These challenges ultimately increase the time and cost per transformation. As a result, rapidly screening genetic libraries, exploring combinatorial designs, or optimizing electroporation parameters requires extensive iterations, consuming large quantities of expensive custom-made DNA and cell lines or primary cells. To address these limitations, we have developed a High-Throughput Microfluidic Electroporation (HTME) platform that includes a 384-well electroporation plate (E-Plate) and control electronics capable of rapidly electroporating all wells in under a minute with individual control of each well. Fabricated using scalable and cost-effective printed-circuit-board (PCB) technology, the E-Plate significantly reduces consumable costs and reagent consumption by operating on nano to microliter volumes. Furthermore, individually addressable wells facilitate rapid exploration of large sets of experimental conditions to optimize electroporation for different cell types and plasmid concentrations/types. Use of the standard 384-well footprint makes the platform easily integrable into automated workflows, thereby enabling end-to-end automation. We demonstrate transformation of E. coli with pUC19 to validate the HTME’s core functionality, achieving at least a single colony forming unit in more than 99% of wells and confirming the platform’s ability to rapidly perform hundreds of electroporations with customizable conditions. This work highlights the HTME’s potential to significantly accelerate synthetic biology Design-Build-Test-Learn (DBTL) cycles by mitigating the transformation/transfection bottleneck. Full article
(This article belongs to the Section Cellular and Molecular Bioengineering)
Show Figures

Figure 1

31 pages, 5652 KiB  
Article
Modeling of Dry Clutch Wear for a Wide Range of Operating Parameters
by Krunoslav Haramina, Branimir Škugor, Matija Hoić, Nenad Kranjčević, Joško Deur and Andreas Tissot
Appl. Sci. 2025, 15(15), 8150; https://doi.org/10.3390/app15158150 - 22 Jul 2025
Abstract
The paper presents an experimentally validated regression model for dry clutch friction lining wear, accounting for the influence of clutch temperature, initial slip speed, torque, and closing time. The experimental data have been collected by using a custom-designed disk-on-disk computer-controlled tribometer and conducting [...] Read more.
The paper presents an experimentally validated regression model for dry clutch friction lining wear, accounting for the influence of clutch temperature, initial slip speed, torque, and closing time. The experimental data have been collected by using a custom-designed disk-on-disk computer-controlled tribometer and conducting repetitive real operation-like clutch closing cycles for different levels of the above operating parameters. The model is designed to be cycle-wise, predicting cumulative worn volume expectation and standard deviation after each closing cycle. It is organized around three distinctive submodels, which provide predictions of: (i) wear rate expectation, (ii) wear rate variance, and (iii) elevated wear rate during run-in operation. Finally, the wear rate expectation and variance submodels and the overall, cumulative worn volume model are validated on independent experimental datasets. The main novelty of the presented research lies in the development of stochastic multi-input cycle-wise dry cutch wear model for clutch design and monitoring applications. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

27 pages, 2034 KiB  
Article
LCFC-Laptop: A Benchmark Dataset for Detecting Surface Defects in Consumer Electronics
by Hua-Feng Dai, Jyun-Rong Wang, Quan Zhong, Dong Qin, Hao Liu and Fei Guo
Sensors 2025, 25(15), 4535; https://doi.org/10.3390/s25154535 - 22 Jul 2025
Abstract
As a high-market-value sector, the consumer electronics industry is particularly vulnerable to reputational damage from surface defects in shipped products. However, the high level of automation and the short product life cycles in this industry make defect sample collection both difficult and inefficient. [...] Read more.
As a high-market-value sector, the consumer electronics industry is particularly vulnerable to reputational damage from surface defects in shipped products. However, the high level of automation and the short product life cycles in this industry make defect sample collection both difficult and inefficient. This challenge has led to a severe shortage of publicly available, comprehensive datasets dedicated to surface defect detection, limiting the development of targeted methodologies in the academic community. Most existing datasets focus on general-purpose object categories, such as those in the COCO and PASCAL VOC datasets, or on industrial surfaces, such as those in the MvTec AD and ZJU-Leaper datasets. However, these datasets differ significantly in structure, defect types, and imaging conditions from those specific to consumer electronics. As a result, models trained on them often perform poorly when applied to surface defect detection tasks in this domain. To address this issue, the present study introduces a specialized optical sampling system with six distinct lighting configurations, each designed to highlight different surface defect types. These lighting conditions were calibrated by experienced optical engineers to maximize defect visibility and detectability. Using this system, 14,478 high-resolution defect images were collected from actual production environments. These images cover more than six defect types, such as scratches, plain particles, edge particles, dirt, collisions, and unknown defects. After data acquisition, senior quality control inspectors and manufacturing engineers established standardized annotation criteria based on real-world industrial acceptance standards. Annotations were then applied using bounding boxes for object detection and pixelwise masks for semantic segmentation. In addition to the dataset construction scheme, commonly used semantic segmentation methods were benchmarked using the provided mask annotations. The resulting dataset has been made publicly available to support the research community in developing, testing, and refining advanced surface defect detection algorithms under realistic conditions. To the best of our knowledge, this is the first comprehensive, multiclass, multi-defect dataset for surface defect detection in the consumer electronics domain that provides pixel-level ground-truth annotations and is explicitly designed for real-world applications. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

Back to TopTop