Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = cyanide anion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 7313 KB  
Review
Sodium Thiosulfate: An Innovative Multi-Target Repurposed Treatment Strategy for Late-Onset Alzheimer’s Disease
by Melvin R. Hayden and Neetu Tyagi
Pharmaceuticals 2024, 17(12), 1741; https://doi.org/10.3390/ph17121741 - 23 Dec 2024
Cited by 2 | Viewed by 3454
Abstract
Late-onset Alzheimer’s disease (LOAD) is a chronic, multifactorial, and progressive neurodegenerative disease that associates with aging and is highly prevalent in our older population (≥65 years of age). This hypothesis generating this narrative review will examine the important role for the use of [...] Read more.
Late-onset Alzheimer’s disease (LOAD) is a chronic, multifactorial, and progressive neurodegenerative disease that associates with aging and is highly prevalent in our older population (≥65 years of age). This hypothesis generating this narrative review will examine the important role for the use of sodium thiosulfate (STS) as a possible multi-targeting treatment option for LOAD. Sulfur is widely available in our environment and is responsible for forming organosulfur compounds that are known to be associated with a wide range of biological activities in the brain. STS is known to have (i) antioxidant and (ii) anti-inflammatory properties; (iii) chelation properties for calcium and the pro-oxidative cation metals such as iron and copper; (iv) donor properties for hydrogen sulfide production; (v) possible restorative properties for brain endothelial-cell-derived bioavailable nitric oxide. Thus, it becomes apparent that STS has the potential for neuroprotection and neuromodulation and may allow for an attenuation of the progressive nature of neurodegeneration and impaired cognition in LOAD. STS has been successfully used to prevent cisplatin oxidative-stress-induced ototoxicity in the treatment of head and neck and solid cancers, cyanide and arsenic poisoning, and fungal skin diseases. Most recently, intravenous STS has become part of the treatment plan for calciphylaxis globally due to vascular calcification and ischemia-induced skin necrosis and ulceration. Side effects have been minimal with reports of metabolic acidosis and increased anion gap; as with any drug treatment, there is also the possibility of allergic reactions, possible long-term osteoporosis from animal studies to date, and minor side-effects of nausea, headache, and rhinorrhea if infused too rapidly. While STS poorly penetrates the intact blood–brain barrier(s) (BBBs), it could readily penetrate BBBs that are dysfunctional and disrupted to deliver its neuroprotective and neuromodulating effects in addition to its ability to penetrate the blood–cerebrospinal fluid barrier of the choroid plexus. Novel strategies such as the future use of nano-technology may be helpful in allowing an increased entry of STS into the brain. Full article
(This article belongs to the Special Issue Novel Therapeutic Strategies for Alzheimer’s Disease Treatment)
Show Figures

Graphical abstract

19 pages, 2586 KB  
Review
Cyanide and Cyanogenic Compounds—Toxicity, Molecular Targets, and Therapeutic Agents
by Joanna Izabela Lachowicz, Jan Alexander and Jan O. Aaseth
Biomolecules 2024, 14(11), 1420; https://doi.org/10.3390/biom14111420 - 7 Nov 2024
Cited by 13 | Viewed by 8458
Abstract
Cyanide (CN) is a well-known mitochondrial poison. CN poisoning may result from acute or long-term exposure to a number of CN compounds. Recent insight into the chemical affinities of the CN anion has increased our understanding of its toxicity and the mechanisms of [...] Read more.
Cyanide (CN) is a well-known mitochondrial poison. CN poisoning may result from acute or long-term exposure to a number of CN compounds. Recent insight into the chemical affinities of the CN anion has increased our understanding of its toxicity and the mechanisms of antidotal actions, which, together with information on various exposure sources, are reviewed in the present article. A literature search in Scopus, Embase, Web of Science, PubMed, and Google Scholar for the period 2001–2024 revealed that the CN anion after exposure or degradation of CN compounds is distributed to vulnerable copper and iron-containing targets, especially in mitochondria, thus blocking the electron transport chain. Intake of cyanogenic compounds may exert subacute or chronic toxic effects, also because of the interaction with cobalt in vitamin B12. Antidotal agents exert their effects through the affinity of CN for cobalt- or iron-containing compounds. Research on CN interactions with metalloproteins may increase our insight into CN toxicity and efficient antidotal regimens. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

13 pages, 2237 KB  
Article
Research on Synthesis, Structure, and Catalytic Performance of Tetranuclear Copper(I) Clusters Supported by 2-Mercaptobenz-zole-Type Ligands
by Tingyu Zhu, Wangyuan Zhan, Weibin Fan and Xiaofeng Zhang
Molecules 2024, 29(17), 4228; https://doi.org/10.3390/molecules29174228 - 6 Sep 2024
Viewed by 1817
Abstract
Tetrahedral copper(I) clusters [Cu4(MBIZ)4(PPh3)2] (2), [Cu4(MBOZ)4(PPh3)4] (6) (MBIZ = 2-mercaptobenzimidazole, MBOZ = 2-mercaptobenzoxazole) were prepared by regulation of the copper-thiolate clusters [Cu6 [...] Read more.
Tetrahedral copper(I) clusters [Cu4(MBIZ)4(PPh3)2] (2), [Cu4(MBOZ)4(PPh3)4] (6) (MBIZ = 2-mercaptobenzimidazole, MBOZ = 2-mercaptobenzoxazole) were prepared by regulation of the copper-thiolate clusters [Cu6(MBIZ)6] (1) and [Cu8(MBOZ)8I] (5) with PPh3. With the presence of iodide anion, the regulation provided the iodide-containing clusters [CuI4(MBIZ)3(PPh3)3I] (3) and [CuI4(MBOZ)3(PPh3)3I] (7). The cyclic voltammogram of 3 in MeCN (0.1 M nBu4NPF6, 298 K) at a scan rate of 100 mV s−1 shows two oxidation processes at Epa = +0.11 and +0.45 V with return waves observed at Epc = +0.25 V (vs. Fc+/Fc). Complex 3 has a higher capability to lose and gain electrons in the redox processes than complexes 2, 4, 4′, 6, and 7. Its thermal stability was confirmed by thermogravimetric analysis. The catalytic performance of 3 was demonstrated by the catalytic transformation of iodobenzenes to benzonitriles using AIBN as the cyanide source. The nitrile products show potential applications in the preparation of 1,3,5-triazine compounds for organic fluorescence materials. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

13 pages, 7927 KB  
Article
Highly Efficient and Selective Extraction of Gold from Thiosulfate Leaching Solution Using Functionalized Dicationic Ionic Liquids
by Qiang Zhou, Yunchang Fan and Sheli Zhang
Molecules 2024, 29(11), 2659; https://doi.org/10.3390/molecules29112659 - 4 Jun 2024
Cited by 2 | Viewed by 2602
Abstract
Thiosulfate leaching has been regarded as a promising alternative to cyanidation, but it still faces the challenge of the recovery of low content of gold from high concentrations of thiosulfate solutions. Liquid–liquid extraction is a method to address this issue but is still [...] Read more.
Thiosulfate leaching has been regarded as a promising alternative to cyanidation, but it still faces the challenge of the recovery of low content of gold from high concentrations of thiosulfate solutions. Liquid–liquid extraction is a method to address this issue but is still limited by the use of volatile and toxic organic solvents. To overcome this limitation, this work synthesized some functionalized dicationic ionic liquids (DILs) to serve as extraction solvents for the recovery of the gold–thiosulfate complex, [Au(S2O3)2]3−, from thiosulfate solutions. Experimental results indicated that the DILs showed higher extraction rates toward [Au(S2O3)2]3− compared with their monocationic-based counterparts, likely due to the stronger electrostatic interaction between the dications of the ILs and [Au(S2O3)2]3−. The transfer of [Au(S2O3)2]3− from the water phase to the IL phase was identified as an anion exchange and endothermic process. The rate of extraction was limited by the anion exchange process occurring at the IL–water interface. The extraction ability of ILs highly depended on the type of anion; specifically, the ILs with anions that had strong hydrogen-bonding ability exhibited high extraction ability toward [Au(S2O3)2]3−. Finally, DILs proved effective in the recovery of [Au(S2O3)2]3− from an actual gold leaching solution and exhibited high selectivity toward coexisting ions, indicating their potential as environmentally friendly solvents for gold recovery. Full article
Show Figures

Figure 1

16 pages, 4672 KB  
Article
Supramolecular Gels Based on C3-Symmetric Amides: Application in Anion-Sensing and Removal of Dyes from Water
by Geethanjali Kuppadakkath, Sreejith Sudhakaran Jayabhavan and Krishna K. Damodaran
Molecules 2024, 29(9), 2149; https://doi.org/10.3390/molecules29092149 - 5 May 2024
Cited by 5 | Viewed by 2309
Abstract
We modified C3-symmetric benzene-1,3,5-tris-amide (BTA) by introducing flexible linkers in order to generate an N-centered BTA (N-BTA) molecule. The N-BTA compound formed gels in alcohols and aqueous mixtures of high-polar solvents. Rheological studies showed that the DMSO/water (1:1, v [...] Read more.
We modified C3-symmetric benzene-1,3,5-tris-amide (BTA) by introducing flexible linkers in order to generate an N-centered BTA (N-BTA) molecule. The N-BTA compound formed gels in alcohols and aqueous mixtures of high-polar solvents. Rheological studies showed that the DMSO/water (1:1, v/v) gels were mechanically stronger compared to other gels, and a similar trend was observed for thermal stability. Powder X-ray analysis of the xerogel obtained from various aqueous gels revealed that the packing modes of the gelators in these systems were similar. The stimuli-responsive properties of the N-BTA towards sodium/potassium salts indicated that the gel network collapsed in the presence of more nucleophilic anions such as cyanide, fluoride, and chloride salts at the MGC, but the gel network was intact when in contact with nitrate, sulphate, acetate, bromide, and iodide salts, indicating the anion-responsive properties of N-BTA gels. Anion-induced gel formation was observed for less nucleophilic anions below the MGC of N-BTA. The ability of N-BTA gels to act as an adsorbent for hazardous anionic and cationic dyes in water was evaluated. The results indicated that the ethanolic gels of N-BTA successfully absorbed methylene blue and methyl orange dyes from water. This work demonstrates the potential of the N-BTA gelator to act as a stimuli-responsive material and a promising candidate for water purification. Full article
(This article belongs to the Special Issue Chemistry of Materials for Energy and Environmental Sustainability)
Show Figures

Graphical abstract

6 pages, 1895 KB  
Proceeding Paper
Chromo-Fluorogenic Detection of Cyanide Ion with a Cyanine Probe
by Cátia D. F. Martins, Maria Manuela M. Raposo and Susana P. G. Costa
Chem. Proc. 2023, 14(1), 64; https://doi.org/10.3390/ecsoc-27-16109 - 15 Nov 2023
Viewed by 997
Abstract
Due to the extreme toxicity of cyanide in biological systems and its widespread presence in the environment, great efforts have been focused on developing sensitive and selective methods for cyanide detection. In this regard, sulfo-cyanine dye 1 was evaluated as a colorimetric and [...] Read more.
Due to the extreme toxicity of cyanide in biological systems and its widespread presence in the environment, great efforts have been focused on developing sensitive and selective methods for cyanide detection. In this regard, sulfo-cyanine dye 1 was evaluated as a colorimetric and fluorimetric probe for various anions. Chemosensing studies revealed that this compound exhibited remarkable selectivity and sensitivity for CN in acetonitrile solution, with a marked colour change from cyan to colourless and fluorescence emission switched off. The detection limit was estimated to be as low as 0.45 μM, and the binding mode was studied using NMR techniques. Full article
Show Figures

Figure 1

13 pages, 2891 KB  
Article
TmCN@C82: Monometallic Clusterfullerene Encapsulating a Tm3+ Ion
by Huichao Zhang, Jinpeng Xin, Huaimin Jin, Wenhao Xiang, Muqing Chen, Yang-Rong Yao and Shangfeng Yang
Inorganics 2023, 11(8), 323; https://doi.org/10.3390/inorganics11080323 - 31 Jul 2023
Cited by 2 | Viewed by 2089
Abstract
Metal cyanide clusterfullerenes (CYCFs) are formed via the encapsulation of a single metal atom and a cyanide unit inside fullerene cages, endowing them with excellent properties in various applications. In this work, we report the synthesis, isolation, and characterizations of the first cases [...] Read more.
Metal cyanide clusterfullerenes (CYCFs) are formed via the encapsulation of a single metal atom and a cyanide unit inside fullerene cages, endowing them with excellent properties in various applications. In this work, we report the synthesis, isolation, and characterizations of the first cases of thulium (Tm)-based CYCFs with the popular C82 carbon cages. The structural elucidation of the two TmCN@C82 isomers was achieved via diverse analytical techniques, including mass spectrometry, Vis-NIR spectroscopy, single-crystal X-ray crystallography, and cyclic voltammetry. The crystallographic analyses unambiguously confirmed the molecular structures of the two TmCN@C82 isomers as TmCN@Cs(6)-C82 and TmCN@C2v(9)-C82. Both TmCN clusters adopt a well-established triangular configuration, with the Tm ion located on the symmetrical plane of the carbon cages. The electronic structures of both TmCN@C82 isomers adopt a Tm3+(CN)@(C82)2− configuration, exhibiting characteristic spectral and electrochemical properties reminiscent of divalent endohedral metallofullerenes (EMFs). Intriguingly, unlike the divalent Tm2+ ion observed in the mono-metallofullerenes Tm@C2n, a higher oxidation state of Tm3+ is identified in the monometallic TmCN cluster due to bonding with the cyanide anion. This result provides valuable insight into the essential role of the non-metallic endo-units in governing the oxidation state of the metal ion and the electronic behaviors of EMFs. Full article
(This article belongs to the Special Issue Research on Metallofullerenes)
Show Figures

Graphical abstract

20 pages, 6632 KB  
Article
Separation of Palladium from Alkaline Cyanide Solutions through Microemulsion Extraction Using Imidazolium Ionic Liquids
by Hui Deng, Chali Liu, Xin Xu, Yuanyuan Wu, Muhan Chen and Zhangjie Huang
Int. J. Mol. Sci. 2023, 24(13), 10709; https://doi.org/10.3390/ijms241310709 - 27 Jun 2023
Cited by 3 | Viewed by 1715
Abstract
In this paper, three imidazolium-based ionic liquids, viz., 1-butyl-3-undecyl imidazolium bromide ([BUIm]Br), 1-butyl-3-octyl imidazolium bromide ([BOIm]Br), and 1-butyl-3-hexadecyl imidazolium bromide ([BCIm]Br), were synthesized. Three novel microemulsions systems were constructed and then were used to recover Pd (II) from cyanide media. Key extraction parameters [...] Read more.
In this paper, three imidazolium-based ionic liquids, viz., 1-butyl-3-undecyl imidazolium bromide ([BUIm]Br), 1-butyl-3-octyl imidazolium bromide ([BOIm]Br), and 1-butyl-3-hexadecyl imidazolium bromide ([BCIm]Br), were synthesized. Three novel microemulsions systems were constructed and then were used to recover Pd (II) from cyanide media. Key extraction parameters such as the concentration of ionic liquids (ILs), equilibration time, phase ratio (RA/O), and pH were evaluated. The [BUIm]Br/n-heptane/n-pentanol/sodium chloride microemulsion system exhibited a higher extraction percentage of Pd (II) than the [BOIm]Br/n-heptane/n-pentanol/sodium chloride and [BCIm]Br/n-heptane/n-pentanol/sodium chloride microemulsion systems. Under the optimal conditions (equilibrium time of 10 min and pH 10), the extraction percentages of these metals were all higher than 98.5% when using the [BUIm]Br/n-heptane/n-pentanol/sodium chloride microemulsion system. Pd(CN)42− was separated through a two-step stripping procedure, in which Fe (III) and Co (III) were first separated using KCl solution, then Pd(CN)42− was stripped using KSCN solution (separation factors of Pd from Fe and Co exceeded 103). After five extraction–recovery experiments, the recovery of Pd (II) through the microemulsion system remained over 90%. The Pd (II) extraction mechanism of the ionic liquid [BUIm]Br was determined to occur via anion exchange, as shown by spectral analysis (UV, FTIR), Job’s method, and DFT calculations. The proposed process has potential applications for the comprehensive treatment of cyanide metallurgical wastewater. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

9 pages, 1319 KB  
Communication
Mechanosynthesis of Diaminobiphenyls-Based Schiff’s Bases as Simple Probes for the Naked-Eye Detection of Cyanide Ion
by Wahab K. A. Al-Ithawi, Albert F. Khasanov, Igor S. Kovalev, Igor L. Nikonov, Dmitry S. Kopchuk, Vadim A. Platonov, Sougata Santra, Grigory V. Zyryanov and Brindaban C. Ranu
Chemistry 2023, 5(2), 978-986; https://doi.org/10.3390/chemistry5020066 - 25 Apr 2023
Cited by 7 | Viewed by 2302
Abstract
Cyanide ions are known to be lethal for insects and mammals and harmful for the environment, and new methods for their selective detection are in high demand. Herein, the mechanosynthesis of simple Schiff’s bases-based probes S1S3 for visual detection of CN [...] Read more.
Cyanide ions are known to be lethal for insects and mammals and harmful for the environment, and new methods for their selective detection are in high demand. Herein, the mechanosynthesis of simple Schiff’s bases-based probes S1S3 for visual detection of CN anion is reported. These probes were obtained by means of a reaction between isomeric 4,4-, 3,3- and 2,2-diaminobiphenyls and 4-nitrobenzaldehyde under ball milling conditions. The probes showed high selectivity and sensitivity toward CN anion via a dramatic “yellow-to-dark purple” color change with a detection limit of 26 × 103, 8.7 × 103 and 14 × 103 ppm for S1S3, respectively. The proposed mechanism of the detection suggests the deprotonation of a proton from an imine moiety, followed by the formation of charge transfer complexes (CTC). Full article
(This article belongs to the Section Molecular Organics)
Show Figures

Figure 1

21 pages, 4915 KB  
Article
Interplay of Anisotropic Exchange Interactions and Single-Ion Anisotropy in Single-Chain Magnets Built from Ru/Os Cyanidometallates(III) and Mn(III) Complex
by Vladimir S. Mironov, Eugenia V. Peresypkina and Kira E. Vostrikova
Molecules 2023, 28(3), 1516; https://doi.org/10.3390/molecules28031516 - 3 Feb 2023
Cited by 4 | Viewed by 2908
Abstract
Two novel 1D heterobimetallic compounds {[MnIII(SB2+)MIII(CN)6]·4H2O}n (SB2+ = N,N′-ethylenebis(5-trimethylammoniomethylsalicylideneiminate) based on orbitally degenerate cyanidometallates [OsIII(CN)6]3− (1) and [RuIII(CN)6]3− ( [...] Read more.
Two novel 1D heterobimetallic compounds {[MnIII(SB2+)MIII(CN)6]·4H2O}n (SB2+ = N,N′-ethylenebis(5-trimethylammoniomethylsalicylideneiminate) based on orbitally degenerate cyanidometallates [OsIII(CN)6]3− (1) and [RuIII(CN)6]3− (2) and MnIII Schiff base complex were synthesized and characterized structurally and magnetically. Their crystal structures consist of electrically neutral, well-isolated chains composed of alternating [MIII(CN)6]3− anions and square planar [MnIII(SB2+)]3+ cations bridged by cyanide groups. These -ion magnetic anisotropy of MnIII centers. These results indicate that the presence of compounds exhibit single-chain magnet (SCM) behavior with the energy barriers of Δτ1/kB = 73 K, Δτ2/kB = 41.5 K (1) and Δτ1/kB = 51 K, Δτ2 = 27 K (2). Blocking temperatures of TB = 2.8, 2.1 K and magnetic hysteresis with coercive fields (at 1.8 K) of 8000, 1600 Oe were found for 1 and 2, respectively. Theoretical analysis of the magnetic data reveals that their single-chain magnet behavior is a product of a complicated interplay of extremely anisotropic triaxial exchange interactions in MIII(4d/5d)–CN–MnIII fragments: −JxSMxSMnxJySMySMnyJzSMzSMnz, with opposite sign of exchange parameters Jx = −22, Jy = +28, Jz = −26 cm−1 and Jx = −18, Jy = +20, Jz = −18 cm−1 in 1 and 2, respectively) and single orbitally degenerate [OsIII(CN)6]3− and [RuIII(CN)6]3− spin units with unquenched orbital angular momentum in the chain compounds 1 and 2 leads to a peculiar regime of slow magnetic relaxation, which is beyond the scope of the conventional Glaubers’s 1D Ising model and anisotropic Heisenberg model. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

27 pages, 6968 KB  
Review
Optical Sensing of Toxic Cyanide Anions Using Noble Metal Nanomaterials
by Ramar Rajamanikandan, Kandasamy Sasikumar, Saikiran Kosame and Heongkyu Ju
Nanomaterials 2023, 13(2), 290; https://doi.org/10.3390/nano13020290 - 10 Jan 2023
Cited by 36 | Viewed by 4413
Abstract
Water toxicity, one of the major concerns for ecosystems and the health of humanity, is usually attributed to inorganic anions-induced contamination. Particularly, cyanide ions are considered one of the most harmful elements required to be monitored in water. The need for cyanide sensing [...] Read more.
Water toxicity, one of the major concerns for ecosystems and the health of humanity, is usually attributed to inorganic anions-induced contamination. Particularly, cyanide ions are considered one of the most harmful elements required to be monitored in water. The need for cyanide sensing and monitoring has tempted the development of sensing technologies without highly sophisticated instruments or highly skilled operations for the objective of in-situ monitoring. Recent decades have witnessed the growth of noble metal nanomaterials-based sensors for detecting cyanide ions quantitatively as nanoscience and nanotechnologies advance to allow nanoscale-inherent physicochemical properties to be exploited for sensing performance. Particularly, noble metal nanostructure e-based optical sensors have permitted cyanide ions of nanomolar levels, or even lower, to be detectable. This capability lends itself to analytical application in the quantitative detection of harmful elements in environmental water samples. This review covers the noble metal nanomaterials-based sensors for cyanide ions detection developed in a variety of approaches, such as those based on colorimetry, fluorescence, Rayleigh scattering (RS), and surface-enhanced Raman scattering (SERS). Additionally, major challenges associated with these nano-platforms are also addressed, while future perspectives are given with directions towards resolving these issues. Full article
Show Figures

Figure 1

10 pages, 4411 KB  
Article
Synthesis of Fumed-Pr-Pi-TCT as a Fluorescent Chemosensor for the Detection of Cyanide Ions in Aqueous Media
by Sepideh Saberi Afshar, Ghodsi Mohammadi Ziarani, Fatemeh Mohajer, Alireza Badiei, Siavash Iravani and Rajender S. Varma
Water 2022, 14(24), 4137; https://doi.org/10.3390/w14244137 - 19 Dec 2022
Cited by 5 | Viewed by 3370
Abstract
In this research, fumed silica scaffolds modified via treatment with (3-chloropropyl)-triethoxysilane, piperazine, and trichlorotriazine groups were deployed for the specific detection of cyanide ions, thus paving the way for the detection of environmental hazards and pollutants with high specificity. Fumed-propyl -piperazine-trichlorotriazine (fumed-Pr-Pi-TCT) was [...] Read more.
In this research, fumed silica scaffolds modified via treatment with (3-chloropropyl)-triethoxysilane, piperazine, and trichlorotriazine groups were deployed for the specific detection of cyanide ions, thus paving the way for the detection of environmental hazards and pollutants with high specificity. Fumed-propyl -piperazine-trichlorotriazine (fumed-Pr-Pi-TCT) was synthesized in three steps starting from fume silica. It was functionalized subsequently using 3-(choloropropyl)-trimethoxysilane, piperazine, and trichlorotriazine, and then, the product was characterized through several methods including Fourier-transform infrared spectroscopy (FTIR) spectrum, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Fumed-Pr-Pi-TCT was exposed as a nanoparticle sensor to a range of different anions in aqueous media. This novel sensor could detect cyanide ions as a hazardous material, with the limit of detection being 0.82 × 10−4 M. Full article
Show Figures

Figure 1

5 pages, 1907 KB  
Proceeding Paper
Anion Dual Mode Fluoro-Chromogenic Chemosensor Based on a BODIPY Core
by Raquel C. R. Gonçalves, Mathilde L. Boland, Susana P. G. Costa and M. Manuela M. Raposo
Eng. Proc. 2022, 27(1), 6; https://doi.org/10.3390/ecsa-9-13191 - 1 Nov 2022
Cited by 2 | Viewed by 1219
Abstract
Herein, we report the synthesis and chromo-fluorogenic behavior of a BODIPY derivative. The BODIPY core was functionalized with a phenyl group at the meso-position and a formyl group at position 2 introduced through the Vilsmeier Haack reaction. The compound showed an absorption [...] Read more.
Herein, we report the synthesis and chromo-fluorogenic behavior of a BODIPY derivative. The BODIPY core was functionalized with a phenyl group at the meso-position and a formyl group at position 2 introduced through the Vilsmeier Haack reaction. The compound showed an absorption band at 492 nm and an emission band at 508 nm, with a ΦF = 0.84. The evaluation of the chemosensing ability of the BODIPY was investigated in the presence of several anions with environmental and biomedical relevance, and a simultaneous colorimetric and fluorimetric response was observed for cyanide and fluoride anions. Full article
Show Figures

Figure 1

22 pages, 5227 KB  
Article
Supramolecular cis-“Bis(Chelation)” of [M(CN)6]3− (M = CrIII, FeIII, CoIII) by Phloroglucinol (H3PG)
by Katarzyna Jędrzejowska, Jedrzej Kobylarczyk, Dorota Glosz, Emilia Kuzniak-Glanowska, Dominika Tabor, Monika Srebro-Hooper, Jakub J. Zakrzewski, Katarzyna Dziedzic-Kocurek, Tadeusz M. Muzioł and Robert Podgajny
Molecules 2022, 27(13), 4111; https://doi.org/10.3390/molecules27134111 - 26 Jun 2022
Cited by 3 | Viewed by 5431
Abstract
Studies on molecular co-crystal type materials are important in the design and preparation of easy-to-absorb drugs, non-centrosymmetric, and chiral crystals for optical performance, liquid crystals, or plastic phases. From a fundamental point of view, such studies also provide useful information on various supramolecular [...] Read more.
Studies on molecular co-crystal type materials are important in the design and preparation of easy-to-absorb drugs, non-centrosymmetric, and chiral crystals for optical performance, liquid crystals, or plastic phases. From a fundamental point of view, such studies also provide useful information on various supramolecular synthons and molecular ordering, including metric parameters, molecular matching, energetical hierarchy, and combinatorial potential, appealing to the rational design of functional materials through structure–properties–application schemes. Co-crystal salts involving anionic d-metallate coordination complexes are moderately explored (compared to the generality of co-crystals), and in this context, we present a new series of isomorphous co-crystalline salts (PPh4)3[M(CN)6](H3PG)2·2MeCN (M = Cr, 1; Fe, 2; Co 3; H3PG = phloroglucinol, 1,3,5-trihydroxobenzene). In this study, 13 were characterized experimentally using SC XRD, Hirshfeld analysis, ESI-MS spectrometry, vibrational IR and Raman, 57Fe Mössbauer, electronic absorption UV-Vis-NIR, and photoluminescence spectroscopies, and theoretically with density functional theory calculations. The two-dimensional square grid-like hydrogen-bond {[M(CN)6]3−;(H3PG)2} network features original {[M(CN)6]3−;(H3PG)4} supramolecular cis-bis(chelate) motifs involving: (i) two double cyclic hydrogen bond synthons M(-CN⋅⋅⋅HO-)2Ar, {[M(CN)6]3−;H2PGH}, between cis-oriented cyanido ligands of [M(CN)6]3− and resorcinol-like face of H3PG, and (ii) two single hydrogen bonds M-CN⋅⋅⋅HO-Ar, {[M(CN)6]3−;HPGH2}, involving the remaining two cyanide ligands. The occurrence of the above tectonic motif is discussed with regard to the relevant data existing in the CCDC database, including the multisite H-bond binding of [M(CN)6]3− by organic species, mononuclear coordination complexes, and polynuclear complexes. The physicochemical and computational characterization discloses notable spectral modifications under the regime of an extended hydrogen bond network. Full article
Show Figures

Graphical abstract

18 pages, 4708 KB  
Article
A Sustainable Decision Support System for Drinking Water Systems: Resiliency Improvement against Cyanide Contamination
by Mohammad Gheibi, Mohammad Eftekhari, Mehran Akrami, Nima Emrani, Mostafa Hajiaghaei-Keshteli, Amir M. Fathollahi-Fard and Maziar Yazdani
Infrastructures 2022, 7(7), 88; https://doi.org/10.3390/infrastructures7070088 - 23 Jun 2022
Cited by 29 | Viewed by 4440
Abstract
Maintaining drinking water quality is considered important in building sustainable cities and societies. On the other hand, water insecurity is an obstacle to achieving sustainable development goals based on the issues of threatening human health and well-being and global peace. One of the [...] Read more.
Maintaining drinking water quality is considered important in building sustainable cities and societies. On the other hand, water insecurity is an obstacle to achieving sustainable development goals based on the issues of threatening human health and well-being and global peace. One of the dangers threatening water sources is cyanide contamination due to industrial wastewater leakage or sabotage. The present study investigates and provides potential strategies to remove cyanide contamination by chlorination. In this regard, the main novelty is to propose a sustainable decision support system for the dirking water system in a case study in Iran. First, three scenarios have been defined with low ([CN] = 2.5 mg L−1), medium ([CN] = 5 mg L−1), and high ([CN] = 7.5 mg L−1) levels of contamination. Then, the optimal chlorine dosage has been suggested as 2.9 mg L−1, 4.7 mg L−1, and 6.1 mg L−1, respectively, for these three scenarios. In the next step, the residual cyanide was modelled with mathematical approaches, which revealed that the Gaussian distribution has the best performance accordingly. The main methodology was developing a hybrid approach based on the Gaussian model and the genetic algorithm. The outcomes of statistical evaluations illustrated that both injected chlorine and initial cyanide load have the greatest effects on residual cyanide ions. Finally, the proposed hybrid algorithm is characterized by the multilayer perceptron algorithm, which can forecast residual cyanide anion with a regression coefficient greater than 0.99 as a soft sensor. The output can demonstrate a strong positive relationship between residual cyanide- (RCN) and injected chlorine. The main finding is that the proposed sustainable decision support system with our hybrid algorithm improves the resiliency levels of the considered drinking water system against cyanide treatments. Full article
(This article belongs to the Special Issue Challenges of Rehabilitation of Infrastructures in Future)
Show Figures

Figure 1

Back to TopTop