Mechanosynthesis of Diaminobiphenyls-Based Schiff’s Bases as Simple Probes for the Naked-Eye Detection of Cyanide Ion
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Methods for the Synthesis of Probes S1–S3
2.1.1. Method A
2.1.2. Method B
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dash, R.R.; Gaur, A.; Balomajumde, C. Cyanide in industrial wastewaters and its removal: A review on biotreatment. J. Hazard. Mat. 2009, 163, 1–11. [Google Scholar] [CrossRef]
- Jaszczak, E.; Polkowska, Z.; Narkowicz, S.; Namieśnik, J. Cyanides in the environment-analysis-problems and challenges. Environ. Sci. Pollut. Res. Int. 2017, 24, 15929–15948. [Google Scholar] [PubMed]
- Stewart, I.; Webb, P.M.; Schluter, P.J.; Shaw, G.R. Recreational and occupational field exposure to freshwater cyanobacteria—A review of anecdotal and case reports, epidemiological studies and the challenges for epidemiologic assessment. Environ. Health 2006, 5, 6. [Google Scholar] [CrossRef]
- Vetter, J. Plant cyanogenic glycosides. Toxicon 2000, 38, 11–36. [Google Scholar] [CrossRef]
- Ballhorn, D.J. Cyanogenic glycosides in nuts and seeds. In Nuts & Seeds in Health and Disease Prevention, 1st ed.; Preedy, V.R., Watson, R.R., Patel, V.B., Eds.; Academic Press: London, UK, 2011; pp. 129–136. [Google Scholar]
- World Health Organization. Guidelines for Drinking-Water Quality; WHO: Geneva, Switzerland, 1996; Volume 2, pp. 6–8. [Google Scholar]
- Biller, J. Chapter 163. In Interface of Neurology and Internal Medicine (Illustrated Ed.); Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007; p. 939. ISBN 978-0-7817-7906-7. [Google Scholar]
- Ma, J.; Dasgupta, P.K. Recent developments in cyanide detection: A review. Anal. Chim. Acta 2010, 673, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Anslyn, E.V. (Eds.) Chemosensors: Principles, Strategies, and Applications; John Wiley & Sons, Inc.: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, X.; Kima, H.N.; Yoon, J. Sensors for the optical detection of cyanide ion. Chem. Soc. Rev. 2010, 39, 127–137. [Google Scholar] [CrossRef]
- Badugu, R.; Lakowicz, J.R.; Geddes, C.D. Cyanide-sensitive fluorescent probes. Dye. Pigment. 2005, 64, 49–55. [Google Scholar] [CrossRef]
- Yin, C.; Huo, F.; Xu, M.; Barnes, C.L.; Glass, T.E. A NIR, special recognition on HS−/CN−colorimetric and fluorescent imaging material for endogenous H2S based on nucleophilic addition. Sens. Actuators B Chem. 2017, 252, 592–599. [Google Scholar] [CrossRef]
- Kumari, N.; Jha, S.; Bhattacharya, S. An efficient probe for rapid detection of cyanide in water at parts per billion levels and naked-eye detection of endogenous cyanide. Chem. Asian J. 2014, 9, 830–837. [Google Scholar] [CrossRef]
- Niu, H.T.; Su, D.; Jiang, X.; Yang, W.; Yin, Z.; He, J.; Cheng, J.P. A simple yet highly selective colorimetric sensor for cyanide anion in an aqueous environment. Org. Biomol. Chem. 2008, 6, 3038–3040. [Google Scholar] [CrossRef]
- Barare, B.; Babahan, I.; Hijji, Y.M.; Bonyi, E.; Tadesse, S.; Aslan, K. A highly selective sensor for cyanide in organic media and on solid surfaces. Sensors 2016, 16, 271. [Google Scholar] [CrossRef]
- Chen, Y.; Shi, W.; Hui, Y.; Sun, X.; Xu, L.; Feng, L.; Xie, Z. A new highly selective fluorescent turn-on chemosensor for cyanide anion. Talanta 2015, 137, 38–42. [Google Scholar] [CrossRef]
- Chung, S.Y.; Nam, S.W.; Lim, J.; Park, S.; Yoon, J. A highly selective cyanide sensing in water via fluorescence change and its application to in vivo imaging. Chem. Commun. 2009, 2866–2868. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-K.; Tae, J. Acridinium salt based fluorescent and colorimetric chemosensor for the detection of cyanide in water. Org. Lett. 2006, 8, 5721–5723. [Google Scholar] [CrossRef]
- Sessler, J.L.; Cho, D.-G. The benzil rearrangement reaction: Trapping of a hitherto minor product and its application to the development of a selective cyanide anion indicator. Org. Lett. 2008, 10, 73–75. [Google Scholar] [CrossRef]
- Li, H.; Chen, T.; Jin, L.; Kan, Y.; Yin, B. Colorimetric and fluorometric dual-modal probes for cyanide detection based on the doubly activated Michael acceptor and their bioimaging applications. Anal. Chim. Acta 2014, 852, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Nandhini, C.; Kumar, P.S.; Shanmugapriya, R.; Satheeshkumar, A.; Vennila, K.N.; Elango, K.P. A multi-site probe for selective detection of cyanide and sulphite ions via different mechanisms with concomitant different fluorescent behaviors. Results Chem. 2022, 4, 100312. [Google Scholar] [CrossRef]
- Junaid, H.M.; Batool, M.; Harun, F.W.; Akhter, M.S.; Shabbir, N. Naked Eye Chemosensing of Anions by Schiff Bases. Crit. Rev. Anal. Chem. 2022, 52, 463–480. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Moon, J.H.; Swamy, K.M.K.; Jeong, Y.; Kim, G.; Choi, J.; Lee, J.Y.; Yoon, J. A new bis-pyrene derivative as a selective colorimetric and fluorescent chemosensor for cyanide and fluoride and anion-activated CO2 sensing. Sens. Actuators B Chem. 2014, 199, 369–376. [Google Scholar] [CrossRef]
- Orojloo, M.; Amani, S. Naked-eye detection of cyanide ions in aqueous media based on an azo-azomethine chemosensor. Comptes Rendus Chim. 2017, 20, 415–423. [Google Scholar] [CrossRef]
- Dey, S.; Sen, C.; Sinha, C. Chromogenic Hydrazide Schiff Base Reagent: Spectrophotometric Determination of CN-Ion. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 225, 117471. [Google Scholar] [CrossRef]
- Kodlady, S.N.; Narayana, B.; Sarojini, B.K.; Gauthama, B.U. Aromatic aldehyde based chemosensors for fluoride and cyanide detection in organic and aqueous media: As certained by characterization, spectroscopic and DFT studies. Inorg. Chim. Acta 2019, 494, 245–255. [Google Scholar] [CrossRef]
- Elsafy, A.G.; Al-Easa, H.S.; Hijji, Y.M. Substituted 2-aminobenzothiazoles salicylidenes synthesis and characterization as cyanide sensors in aqueous medium. Sensors 2018, 18, 2219. [Google Scholar] [CrossRef]
- Yildirim, N.; Yildiz, M. A Schiff base sensor selective to anions, biological activity and spectral studies. J. Turk. Chem. Soc. Sec. A Chem. 2018, 5, 1271–1278. [Google Scholar] [CrossRef]
- Dini, S.; Khanmohammadi, H. A new azo-azomethine sensor for detection of CN- and AcO- anions: Highly selective chemosensor for naked eye detection of sodium diclofenac. Spectrochim. Acta Part A 2019, 222, 117157. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Guo, Y.; Xu, J.; Shao, S. Novel indole based colorimetric and “turn on” fluorescent sensors for biologically important fluoride anion sensing. J. Photochem. Photobiol. B Biol. 2011, 103, 140–144. [Google Scholar] [CrossRef]
- Moghadam, F.N.; Amirnasr, M.; Meghdadi, S.; Eskandari, K.; Buchholz, A.; Plass, W. A new fluorene derived schiff-base as a dual selective fluorescent probe for Cu2+ and CN−. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 207, 6–15. [Google Scholar] [CrossRef]
- Shrivastava, A.; Gupta, V.B. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011, 2, 21–25. [Google Scholar] [CrossRef]
- Dong, C.; Nakamura, K.; Taniguchi, T.; Mita, S.; Kodama, S.; Kawaguchi, S.; Nomoto, A.; Ogawa, A.; Mizuno, T. Synthesis of Aryl Iodides from Arylhydrazines and Iodine. ACS Omega 2018, 3, 9814–9821. [Google Scholar] [CrossRef]
- Roy, P.-P.; D’Souza, K.; Cuperlovic-Culf, M.; Kienesberger, P.C.; Touaibia, M. New Atglistatin Closely Related Analogues: Synthesis and Structure-Activity Relationship towards Adipose Triglyceride Lipase Inhibition. Eur. J. Med. Chem. 2016, 118, 290–298. [Google Scholar] [CrossRef]
- Wang, L.; Lu, W. Preparation of Unsymmetrical Biaryls by Pd(II)-Catalyzed Cross-Coupling of Aryl Iodides. Org. Lett. 2009, 11, 1079–1082. [Google Scholar] [CrossRef] [PubMed]
- Schiff, H. Mittheilungen aus dem Universitäts-laboratorium in Pisa: 2. Eine neue Reihe organischer Basen. Ann. Chem. Pharm. 1864, 131, 118–119. [Google Scholar] [CrossRef]
- Qin, W.; Long, S.; Panunzio, M.; Biondi, S. Schiff bases: A short survey on an evergreen chemistry tool. Molecules 2013, 18, 12264–12289. [Google Scholar] [CrossRef]
- Nafee, S.S.; Hagar, M.; Ahmed, H.A.; Alhaddad, O.A.; El-Shishtawy, R.M.; Raffah, B.M. New two rings Schiff base liquid crystals; ball mill synthesis, mesomorphic, Hammett and DFT studies. J. Mol. Liq. 2020, 299, 112161. [Google Scholar] [CrossRef]
- El-Sayed, T.H.; Aboelnaga, A.; Hagar, M. Ball milling assisted solvent and catalyst free synthesis of benzimidazoles and their derivatives. Molecules 2016, 21, 1111. [Google Scholar] [CrossRef]
- Iqbal, A.; Siddiqui, H.L.; Ashraf, C.M.; Bukhari, M.H.; Akram, C.M. Synthesis, Spectroscopic and Cytotoxic Studies of Biologically Active New Schiff Bases Derived from p-Nitrobenzaldehyde. Chem Pharm. Bull. 2007, 55, 1070–1072. [Google Scholar] [CrossRef]
- Eshghi, H.; Rahimizadeh, M.; Eshkil, F.; Hosseini, M.; Bakavoli, M.; Sanei-Ahmadabad, M. Synthesis of novel bis(β-aminocarbonyl) compounds and some β-aminocarbonyls by catalyst-free multicomponent Mannich reactions. J. Iran. Chem. Soc. 2014, 11, 685–692. [Google Scholar] [CrossRef]
- Ingham, K.C. On the application of Job’s method of continuous variation to the stoichiometry of protein-ligand complexes. Anal. Biochem. 1975, 68, 660–663. [Google Scholar] [CrossRef]
- Gil, V.M.S.; Oliveira, N.C. On the use of the method of continuous variations. J. Chem. Educ. 1990, 67, 473. [Google Scholar] [CrossRef]
- Landy, D.; Tetart, F.; Truant, E.; Blach, P.; Fourmentin, S.; Surpateanu, G. Development of a competitive continuous variation plot for the determination of inclusion compounds stoichiometry. J. Incl. Phenom. Macrocycl. Chem. 2007, 57, 409–413. [Google Scholar] [CrossRef]
- Olson, E.J.; Bühlmann, P. Getting more out of a job plot: Determination of reactant to product stoichiometry in cases of displacement reactions and n:n complex formation. J. Org. Chem. 2011, 76, 8406–8412. [Google Scholar] [CrossRef] [PubMed]
- Ulatowski, F.; Dąbrowa, K.; Bałakier, T.; Jurczak, J. Recognizing the limited applicability of job plots in studying host–guest interactions in supramolecular chemistry. J. Org. Chem. 2016, 81, 1746–1756. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Ithawi, W.K.A.; Khasanov, A.F.; Kovalev, I.S.; Nikonov, I.L.; Kopchuk, D.S.; Platonov, V.A.; Santra, S.; Zyryanov, G.V.; Ranu, B.C. Mechanosynthesis of Diaminobiphenyls-Based Schiff’s Bases as Simple Probes for the Naked-Eye Detection of Cyanide Ion. Chemistry 2023, 5, 978-986. https://doi.org/10.3390/chemistry5020066
Al-Ithawi WKA, Khasanov AF, Kovalev IS, Nikonov IL, Kopchuk DS, Platonov VA, Santra S, Zyryanov GV, Ranu BC. Mechanosynthesis of Diaminobiphenyls-Based Schiff’s Bases as Simple Probes for the Naked-Eye Detection of Cyanide Ion. Chemistry. 2023; 5(2):978-986. https://doi.org/10.3390/chemistry5020066
Chicago/Turabian StyleAl-Ithawi, Wahab K. A., Albert F. Khasanov, Igor S. Kovalev, Igor L. Nikonov, Dmitry S. Kopchuk, Vadim A. Platonov, Sougata Santra, Grigory V. Zyryanov, and Brindaban C. Ranu. 2023. "Mechanosynthesis of Diaminobiphenyls-Based Schiff’s Bases as Simple Probes for the Naked-Eye Detection of Cyanide Ion" Chemistry 5, no. 2: 978-986. https://doi.org/10.3390/chemistry5020066
APA StyleAl-Ithawi, W. K. A., Khasanov, A. F., Kovalev, I. S., Nikonov, I. L., Kopchuk, D. S., Platonov, V. A., Santra, S., Zyryanov, G. V., & Ranu, B. C. (2023). Mechanosynthesis of Diaminobiphenyls-Based Schiff’s Bases as Simple Probes for the Naked-Eye Detection of Cyanide Ion. Chemistry, 5(2), 978-986. https://doi.org/10.3390/chemistry5020066