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Abstract: In this research, fumed silica scaffolds modified via treatment with (3-chloropropyl)-
triethoxysilane, piperazine, and trichlorotriazine groups were deployed for the specific detection of
cyanide ions, thus paving the way for the detection of environmental hazards and pollutants with
high specificity. Fumed-propyl -piperazine-trichlorotriazine (fumed-Pr-Pi-TCT) was synthesized in
three steps starting from fume silica. It was functionalized subsequently using 3-(choloropropyl)-
trimethoxysilane, piperazine, and trichlorotriazine, and then, the product was characterized through
several methods including Fourier-transform infrared spectroscopy (FTIR) spectrum, thermogravi-
metric analysis (TGA), and scanning electron microscopy (SEM). Fumed-Pr-Pi-TCT was exposed as a
nanoparticle sensor to a range of different anions in aqueous media. This novel sensor could detect
cyanide ions as a hazardous material, with the limit of detection being 0.82 × 10−4 M.

Keywords: Fumed-Pr-Pi-TCT; piperazine; trichlorotriazine; fluorescent spectroscopy; cyanide ions

1. Introduction

Cyanide (CN−) is a multifaceted toxin that can cause poisoning and death in hu-
mans [1,2] and is associated with many environmental hazards [2–4]. Despite its high
toxicity, cyanide has been widely utilized on an industrial scale, which can lead to water
pollution [5–7]. Recently, chemical sensors have received much attention due to their
rapid response, simplicity, sensitivity, and low cost [8,9]. Chemical sensors that operate
in conditions without a solvent or the use of an aqueous solvent have found a special
place in analytical sensing or diagnostic methods as they follow the principles of green
chemistry [10–13]. On the other hand, photochemistry is a branch of science that deals
with the interaction between matter and light [14]. It can be employed in different areas,
such as medicine, energy, and environmental sciences [15]. In this context, the construc-
tion of nanostructures with unique photochemical properties (light absorption/emission,
energy, and electron transfer) via intermolecular interactions has been investigated by
researchers [16–19].

Luminescence silica is broadly employed in many applications, from chemical sens-
ing [20] to interfacial interactions, like immunoassays [21–23], bio-analysis [24], nucleic acid
studies [25], and drug delivery [26–29]. These nanoparticles, with intrinsic properties, can
be considered promising candidates for designing chemical fluorescence sensors; silica is a
transparent material with visible light, which is not tangled in energy- and electron-transfer
procedures alone [30]. All fluorescence properties of silica particles are due to the associa-
tion between organic and inorganic groups on their surface [31,32]. Silica (nano)particles
are not inherently toxic; thus, they are environmentally friendly and suitable for in vivo
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applications [33]. These materials have many active sites on their surface that can be used
as scaffolds to react with a variety of organic and inorganic components. Silica scaffolds
can protect the entry of foreign chemicals [34,35]. This allows the use of silica particles as
chemosensors for the analysis of small dimensions, reducing the possibility of undesired
photoreactions [36]. Chemical sensors made from silica (nano)particles have shown the
advantages of cost-effectiveness, simplicity, requirement of mild conditions, and ease of
separation [37]. Piperazine is a heterocycle with reactive nitrogen groups and was first
introduced as an anthelmintic in 1953 [38]. Due to its high reactivity, this compound has
been used in many chemical sensors in recent years, as the ensuing material can bind differ-
ent anions via strong coordination [39,40]. The organic fluorophore moieties bound at the
surface of the fumed silicas have become an important research area for selective adsorption
and sensing applications [41]. Herein, fumed silica scaffolds, improved by (3-chloropropyl)-
triethoxysilane, piperazine, and trichlorotriazine groups, were deployed for the specific
detection of cyanide ions. Phenothiazines have notable sensitivity and selectivity for CN−

among other anions [42]. 5-(4-(Diphenylamine)phenyl) thiophen-2-formaldehyde was
synthesized as a turn-on fluorescent reply to CN−, which has the advantage of a lower
detection limit [43]. In continuation of our previous research, the anion detection ability of
the chemosensor among different anions was examined and characterized [18,44]. In this
research, the fumed silica surface was modified through treatment with 3-(choloropropyl)-
trimethoxysilane, piperazine, and trichlorotriazine, followed by the appropriate structural
characterization of the synthesized material; the efficiency of this chemical sensor was
demonstrated for the detection of cyanide ion from water.

2. Materials and Methods
2.1. Instruments and Materials

IR spectra were prepared using the FT-IR device TENSOR 27 from the Brooker Com-
pany. For thermal gravimetric analysis of the samples, the TGA model Q600, made in
America, was used. To acquire scanning electron microscope (SEM) images, a MIRA III
FESEM machine made in the Czech Republic was used. PL Spectroscopy model G9800A,
from Agilent Company, was used for the investigation and study of the fluorescence spec-
troscopy of the ensuing material. The chemicals used in this research were purchased
from Merck. The raw materials and solvents used in this section include the follow-
ing: fumed silica, (3-chloropropyl)trimethoxysilane (CPTMS), piperazine, trichlorotriazine
(TCT), toluene and methanol as solvents, and metal ions of different anions of Br−, NO3

−,
HSO3

−, SO4
2−, OH−, Cl−, I−, F−, CH3COO−, H2PO4

−, CO3
2−, NO2

−, SCN−, and CN−

with a concentration of 0.01 M in distilled water.

2.2. Methods
2.2.1. General Synthesis of Fumed-Pr–Pi-TCT

At first, fumed-Pr–Cl and fumed-Pr–Pi were synthesized as in our reported proce-
dure [45], and then, after activating fumed-Pr–Pi (1 g) at 100 ◦C, it was refluxed with
trichlorotriazine (1 mmol) and dry toluene solvent for 12 h. To obtain the final product
(fumed-Pr–Pi-TCT), the resulting precipitate was subjected to a Soxhlet apparatus using
methanol as a solvent for 24 h.

2.2.2. Preparation of 10−3 M Aqueous Solution of Fumed-Pr-Pi-TCT in H2O

In volumetric flasks, the aqueous solution of fumed-Pr-Pi-TCT (0.02 g L−1) was pre-
pared in H2O. The aqueous solution of fumed-Pr-Pi-TCT (3 mL) was placed into the sample
tubes, and then, an aqueous solution of various anions (200 µL, 10−2 M) was added.

2.2.3. Synthesis of Fumed-Pr-Pi-TCT

In the first step, the surface of fumed silica particles was improved using (3-chloropropyl)-
triethoxysilane (ClPTES). In the next steps, it was functionalized with piperazine and
trichlorotriazine (TCT), respectively (Scheme 1).
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Scheme 1. Preparative process for fumed-Pr-Pi-TCT chemosensor.

3. Results and Discussion
3.1. Characterization Data
3.1.1. FT-IR Studies

The FT-IR spectra of fumed-Pr-Cl, fumed-Pr-Pi, and fumed-Pr-Pi-TCT are shown in
Figure 1. According to the FT-IR spectrum, the organic moieties bonded on the silica
fume were proven. The two peaks at 1100 and 800 cm−1 depend on the asymmetric
stretching vibrations of Si-O-Si groups. The band was about 3420 cm−1 and can also be
considered to be related to the stretching O-H of Si-OH functional groups on the surface.
The absorbance bands at 3431 and 1101 cm−1 fit the stretching and bending of N-H in
fumed-Pr-Pi, respectively [45]. Finally, the peak at 1700 cm−1 is related to the C=N groups,
and the peaks at 1560 to 1400 cm−1 are also related to the aromatic groups in the TCT.

3.1.2. Thermogravimetric Analysis (TGA) Studies

Thermogravimetric analysis (TGA) established the loading of organic compounds on
the fumed silica (Figure 2). In the TGA diagram, two weight-loss steps were observed.
The first weight loss, which occurred up to 200 ◦C, is related to the loss of H2O in the
fumed silica cavities. Weight loss in the range 200–800 ◦C is related to the decomposition
of existing organic components on the fumed silica. TGA curves indicated, respectively,
the weight losses of organic compounds for 8% (fumed-PrCl), 17% (fumed-Pr-Pi), and 45%
(Fumed-Pr-Pi-TCT), as predicated for materials with increasing loadings of organic content.

3.1.3. SEM Studies

Fumed silica and Fumed-Pr-Pi-TCT SEM images are shown in Figure 3, which could
be used to determine morphology. The image shows that the spherical particle scale of the
silica fume had not changed much after functionalization.
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3.2. Fluorescence Response of Fumed-Pr–Pi-TCT for CN−

To investigate the fluorescence properties of fumed-Pr-Pi-TCT, its solution (0.02 g L−1)
was made in an aqueous solvent. Then, its fluorescence response was studied using different
anions, such as Br−, NO3

−, HSO3
−, SO4

2−, OH−, Cl−, I−, F−, CH3COO−, H2PO4
−, CO3

2−,
NO2

−, SCN−, and CN−. By adding a 10−2 M concentration of different anions to 3 mL of
fumed solution(0.2 g L−1), the spectra were recorded after 30 s. The fluorescence intensity
of fumed-Pr–Pi-TCT decreased significantly after the addition of CN− but did not change
significantly compared to that with other anions, which affirmed that this ligand could be
applicable to detect CN− among other anions (Figure 4).

3.2.1. Selectivity Studies

To evaluate the selectivity, a CN− competition test was performed against other anions.
For this purpose, the spectra were recorded by adding anions (100 µL × 10−2 M) to the
mixture of fumed-Pr-Pi-TCT (3 mL H2O suspension, 0.2 g L−1) and CN− (100 µL × 10−2 M).
The results presented in Figure 5 demonstrate that the CN− anion has high selectivity
against other anions according to the fluorescence intensity.

3.2.2. Titration Studies

To evaluate the detection potential of this chemical sensor, a titration test was per-
formed. For this purpose, diverse concentrations of CN− (1 × 10−4 M to 100 × 10−4 M)
were added to fumed-Pr-Pi-TCT. After each addition, the fluorescence spectrum was
recorded. It gradually decreased after adding different amounts of anion (Figure 6).

According to the titration diagram, the fluorescence intensity was reduced by adding CN−.
By plotting the ratio of fluorescence intensity to different CN− concentrations (Figure 7), a linear
relationship could be established between them that followed the equation y = −0.0069x + 0.8262,
with a regression coefficient of R2 = 0.9541. The DL = 3 Sd/m equation was used to calculate the
detection limit (DL is the detection limit, Sd is the standard derivation of the blank, and m is the
slope of fluorescence intensity) [46]. According to the above equation, the detection limit was
obtained 0.82 × 10−4 M.
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of CN−.

3.2.3. Competition Studies

To compare our work with other previous research documented in the literature,
in terms of the limit of detection (LOD), media with different structures are shown in
Table 1. In recent years, the use of fumed silica as a scaffold for the production of organic–
inorganic hybrids has garnered special attention due to its simple reactions, non-toxicity,
and inexpensive nature, and hence, fumed silica was used in this research.
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Table 1. Comparison between various sensors.

Sensors Solvent
System Sensing Ions LOD Reference

SSA1 H2O CN− 2 × 10−4 M [46]
SBA-II H2O CN− 3.9 × 10−4 M [47]

Fumed-Pr-Pi-TCT H2O CN− 0.82 × 10−4 Present work
1 SBA-15, (3-aminopropyl)triethoxysilane, salicylaldehyde; 2 SBA15, NaN3, 1, 2, 3-triazole linked 8-hydroxyquinoline

4. Conclusions

Fumed-Pr-Pi-TCT was prepared successfully via functionalization with piperazine,
and the trichlorotriazine and the ensued chemical sensor could selectively and successfully
detect CN−. The fluorescence intensity was significantly reduced after adding CN− in the
presence of different anions. In the field of environmental hazards and pollutants, cyanide is
one of the most important pollutants in water, soil, and air, which has detrimental ecological
impacts on the ecosystem and the environment; thus, its removal from the environment is
vital. Fumed-Pr-Pi-TCT can be modified with different nucleophilic groups to yield other
newer optical sensors, which could serve as scavengers of metal ions and assorted anions.
Therefore, these types of compounds could be used for detecting pollutants successfully.
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