Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = custom-made membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1657 KB  
Article
Solid Waste Management: Degradation of Commercial and Newly Fabricated Cellulose Acetate Ultrafiltration Membranes
by Cliff Shachar, Hadas Mamane, Manohara Halanur Mruthunjayappa, Barak Halpern and Ofir Aslan Menashe
Processes 2025, 13(11), 3580; https://doi.org/10.3390/pr13113580 - 6 Nov 2025
Viewed by 477
Abstract
Treatment of polymeric solid waste, such as used membranes, is vital for environmental sustainability. Cellulose-based membranes are widely utilized in the water industry due to their resistance to biodegradation. These non-biodegradable membranes can persist in landfills and aquatic environments for extended periods. Our [...] Read more.
Treatment of polymeric solid waste, such as used membranes, is vital for environmental sustainability. Cellulose-based membranes are widely utilized in the water industry due to their resistance to biodegradation. These non-biodegradable membranes can persist in landfills and aquatic environments for extended periods. Our study assessed the biodegradation potential of Trametes versicolor on a newly fabricated cellulose acetate (CA) membrane and a commercially produced membrane under various conditions, including oxidative stress. Additionally, we employed T. versicolor encapsulated in a small bioreactor platform (SBP) for media inoculation and biomass augmentation. Treatment of the commercially produced CA membrane within a timeframe of 30 days was unsuccessful. This was primarily attributed to the structural stability of the membrane over time and the limited ability of the culture to attach to the membrane surface. These results underscore the necessity of exploring alternative biopolymer cellulose-based materials for ultrafiltration (UF) and microfiltration (MF) membrane applications. The custom-made UF membrane, treated by ozonation as a pretreatment, emerged as an effective approach for enhancing biodegradation. Combining these factors, we expect to achieve over 27.75 ± 1.5% weight loss in membrane solids by 30 days of treatment. This study represents the first inquiry into the biodegradation capabilities of T. versicolor on CA-based membranes. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Graphical abstract

21 pages, 3487 KB  
Article
Influence of Pulsed Electric Field Parameters on Electrical Conductivity in Solanum tuberosum Measured by Electrochemical Impedance Spectroscopy
by Athul Thomas, Teresa Lemainque, Marco Baragona, Joachim-Georg Pfeffer and Andreas Ritter
Appl. Sci. 2025, 15(14), 7922; https://doi.org/10.3390/app15147922 - 16 Jul 2025
Viewed by 1573
Abstract
High-voltage unipolar square wave pulsed electric fields (PEFs) can cause cell membrane rupture and cell death during a process termed irreversible electroporation (IRE). PEF effects are influenced by pulse parameters like number of pulses (NP), voltage (PV), width (PW), and interval (PI). This [...] Read more.
High-voltage unipolar square wave pulsed electric fields (PEFs) can cause cell membrane rupture and cell death during a process termed irreversible electroporation (IRE). PEF effects are influenced by pulse parameters like number of pulses (NP), voltage (PV), width (PW), and interval (PI). This study systematically evaluates their effects on the conductivity and relative conductivity changes between untreated and PEF-treated regions of potato tissue across a frequency range of 1 Hz to 5 MHz by means of electrochemical impedance spectroscopy (EIS), using a custom-made four-point EIS probe with RG58/U coaxial cables. Potatoes were chosen as a plant-based PEF model to reduce animal experiments and untreated tissue showed minimal conductivity variation across regions. Relative conductivity changes were maximal at 1000 Hz. At 1000 Hz, significant conductivity differences between untreated and PEF-treated regions were observed from PV = 200 V, NP = 10, PW = 10 µs, and PI = 50 ms onwards (most significant changes occurred for PV = 700 V; NP = 70; PW = 70 µs; PI = 250 ms and 500 ms). Our results may be beneficial for multiphysics modelling of IRE with specific electrical properties, conductivity mapping with optimal contrast—such as in electrical impedance tomography—and development of IRE procedures. Full article
(This article belongs to the Special Issue Advances in Electroporation Systems and Applications)
Show Figures

Figure 1

13 pages, 6776 KB  
Article
Bimetallic Ir-Sn Non-Carbon Supported Anode Catalysts for PEM Water Electrolysis
by Iveta Boshnakova, Elefteria Lefterova, Galin Borisov, Denis Paskalev and Evelina Slavcheva
Inorganics 2025, 13(7), 210; https://doi.org/10.3390/inorganics13070210 - 20 Jun 2025
Viewed by 1009
Abstract
Nanostructured bimetallic IrSn composites deposited on the natural aluminosilicate montmorillonite were synthesized and evaluated as anode electrocatalysts for polymer electrolyte membrane electrolysis cells (PEMECs). The test series prepared via the sol–gel method consisted of samples with 30 wt. % total metal content and [...] Read more.
Nanostructured bimetallic IrSn composites deposited on the natural aluminosilicate montmorillonite were synthesized and evaluated as anode electrocatalysts for polymer electrolyte membrane electrolysis cells (PEMECs). The test series prepared via the sol–gel method consisted of samples with 30 wt. % total metal content and varying Ir:Sn ratio. The performed X-ray diffraction analysis and high-resolution transmission electron icroscopy registered very fine nanostructure of the composites with metal particles size of 2–3 nm homogeneously dispersed on the support surface and also intercalated in the basal space of its layered structure. The electrochemical behavior was investigated by cyclic voltammetry and steady-state polarization techniques. The initial screening was performed in 0.5 M H2SO4. Then, the catalysts were integrated as anodes in membrane electrode assemblies (MEAs) and tested in a custom-made PEMEC. The electrochemical tests revealed that the catalysts with Ir:Sn ratio 15:15 and 18:12 wt. % demonstrated high efficiency toward the oxygen evolution reaction during repetitive potential cycling and sustainable performance with current density in the range 140–120 mA cm−2 at 1.6 V vs. RHE during long-term stability tests. The results obtained give credence to the studied IrSn/MMT nanocomposites to be considered promising, cost-efficient catalysts for the oxygen evolution reaction (OER). Full article
Show Figures

Graphical abstract

18 pages, 22994 KB  
Article
Design of a Proton Exchange Membrane Electrolyzer
by Torsten Berning
Hydrogen 2025, 6(2), 30; https://doi.org/10.3390/hydrogen6020030 - 2 May 2025
Cited by 4 | Viewed by 7529
Abstract
A novel design of a proton exchange membrane electrolyzer is presented. In contrast to previous designs, the flow field plates are round and oriented horizontally with the feed water entering from a central hole and spreading evenly outward over the anode flow field [...] Read more.
A novel design of a proton exchange membrane electrolyzer is presented. In contrast to previous designs, the flow field plates are round and oriented horizontally with the feed water entering from a central hole and spreading evenly outward over the anode flow field in radial, interdigitated flow channels. The cathode flow field consists of a spiral channel with an outlet hole near the outside of the bipolar plate. This results in anode and cathode flow channels that run perpendicular to avoid shear stresses. The novel sealing concept requires only o-rings, which press against the electrolyte membrane and are countered by circular gaskets that are placed over the flow channels to prevent the membrane from penetrating the channels, which makes for a much more economical sealing concept compared to prior designs using custom-made gaskets. Hydrogen leaves the electrolyzer through a vertical outward pipe placed off-center on top of the electrolyzer. The electrolyzer stack is housed in a cylinder to capture the oxygen and water vapor, which is then guided into a heat exchanger section, located underneath the electrolyzer partition. The function of the heat exchanger is to preheat the incoming fresh water and condense the escape water, thus improving the efficiency. It also serves as internal phase separator in that a level sensor controls the water level and triggers a recirculation pump for the condensate, while the oxygen outlet is located above the water level and can be connected to a vacuum pump to allow for electrolyzer operation at sub-ambient pressure to further increase efficiency and/or reduce the iridium loading. Full article
Show Figures

Figure 1

15 pages, 3156 KB  
Article
Lithium Isotope Separation Using the 15-Crown-5 Ether System and Laboratory-Made Membranes
by Andreea Maria Iordache, Ana Maria Nasture, Ramona Zgavarogea, Radu Andrei, Roxana Mandoc, Erdin Feizula, Rui Santos and Constantin Nechita
Materials 2025, 18(9), 2016; https://doi.org/10.3390/ma18092016 - 29 Apr 2025
Cited by 1 | Viewed by 1864
Abstract
The enrichment of 6Li isotopes from a natural stage of 7.6% to above 59% is required for the development of next-generation green technologies capable of sustaining climate change mitigation and energy-mix targets. In this study, we developed two categories of custom laboratory-made [...] Read more.
The enrichment of 6Li isotopes from a natural stage of 7.6% to above 59% is required for the development of next-generation green technologies capable of sustaining climate change mitigation and energy-mix targets. In this study, we developed two categories of custom laboratory-made organic membranes, membranes that were non-impregnated before electromigration (AI-1) and membranes impregnated with LiNTf2 (AI-2), to evaluate their performance in lithium isotope separation. Both types of membranes were exposed in synthesis to ionic liquid and crown ether. The objective of the study was to test the performance of membranes in separating lithium isotopes from a lithium-loaded organic phase in an aqueous solution with variable potentials and time intervals. The results show that the impregnated AI-2 membranes increased the enrichment of 6Li in the early stages, and the effect decreased after 25 h. The efficiency of lithium isotope enrichment was positively related to the potential profile applied, migration time, and concentration of organic solution in the anode chamber. The 0.5 mol/L Bis-(trifluoromethane) sulfonimide lithium salt (Li[NTf2]) with 0.1 M tetra butyl ammonium perchlorate (TBAP) in acetonitrile (CH3CN) ionic solution significantly improved Li isotope separation compared with an aqueous environment with higher salt concentrations. The maximum isotopic separation coefficient (α) for AI-1.2 (15-crown-5 ether and 1 mol/L LiNTf2 in TBAP solution after 48 h of electromigration) gradually increased to 1.0317. Our results demonstrated that in the laboratory-made setup described, the migration efficiency and Li isotope separation in the catholyte environment needed a minimum of 9 V and a migration time of 6 h, respectively; these values varied with the concentration of the organic solution in the anode chamber. The ability of laboratory-engineered membranes to impart isotope selectivity and enhance permselectivity or selectivity towards singly charged ions was demonstrated through the functionality of single-collector inductively coupled plasma mass spectrometry (ICP-MS). This technology is particularly valuable and commercially feasible for future lithium isotope research in nuclear technology. Full article
Show Figures

Graphical abstract

17 pages, 5717 KB  
Article
Transaortic Catheter Venting for Left Ventricular Unloading in Veno-Arterial Extracorporeal Life Support: A Porcine Cardiogenic Shock Model
by Sang Yoon Kim, Hyoung Woo Chang, Jae Hang Lee, Jae Hyun Jeon, Yoohwa Hwang, Hwan Hee Park and Dong Jung Kim
Medicina 2025, 61(4), 552; https://doi.org/10.3390/medicina61040552 - 21 Mar 2025
Viewed by 1194
Abstract
Background and Objectives: Left ventricle (LV) overloading during veno-arterial (VA) extracorporeal membrane oxygenation (ECMO) is detrimental to myocardial recovery. To determine whether LV unloading using transaortic catheter venting (TACV) is effective, we analyzed the effect of TACV in a human-sized porcine model. [...] Read more.
Background and Objectives: Left ventricle (LV) overloading during veno-arterial (VA) extracorporeal membrane oxygenation (ECMO) is detrimental to myocardial recovery. To determine whether LV unloading using transaortic catheter venting (TACV) is effective, we analyzed the effect of TACV in a human-sized porcine model. Materials and Methods: Hypoxic biventricular dysfunction was induced in 11 pigs using femoro-femoral VA-ECMO and custom-made TACV catheters in the LV through the common carotid artery. Hemodynamic conditions were then simulated. The TACV was either opened or closed under a controlled ECMO flow. Conversely, the ECMO flow was adjusted, varying from 1 L to 4 L, with and without TACV; 2115 observations were collected. Results: In comparing observations without TACV (TACV−) and with TACV (TACV+), the change in left ventricular end-diastolic pressure (LVEDP) after TACV application was −1.2 mmHg (p < 0.001). In the linear regression model, the reduction in LVEDP was maximized when the baseline LVEDP and ECMO flow were higher. When escalating the ECMO flow in the respective settings of TACV− and TACV+, the rise in LVEDP was significantly lower in TACV+. Conclusions: TACV decreased LVEDP; this effect was more prominent when ECMO flow and baseline LVEDP were higher. These findings suggest that TACV might support LV recovery through effective unloading, even when ECMO flow is high. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

14 pages, 1376 KB  
Article
Operational Protocol for Prosthetically Guided Reconstruction of Edentulous Sites Using a Custom-Made Technique
by Edoardo Brauner, Federico Laudoni, Lucia Terribile, Andrea Bellizzi, Giulia Amelina, Francesca De Angelis, Nicola Pranno and Stefano Di Carlo
Appl. Sci. 2025, 15(1), 203; https://doi.org/10.3390/app15010203 - 29 Dec 2024
Viewed by 1326
Abstract
The success of dental implant placement and prosthetic reconstruction relies on sufficient bone volume at the implant site. Contemporary implantology integrates prosthetic planning with implant placement, emphasizing the importance of pre-established prosthetic goals. Guided Bone Regeneration (GBR) techniques have become crucial for bone [...] Read more.
The success of dental implant placement and prosthetic reconstruction relies on sufficient bone volume at the implant site. Contemporary implantology integrates prosthetic planning with implant placement, emphasizing the importance of pre-established prosthetic goals. Guided Bone Regeneration (GBR) techniques have become crucial for bone reconstruction. This study explores the use of custom-made GBR membranes, designed through CAD-CAM technology, in 10 patients with severe bone defects. Patients underwent meticulous preoperative planning, in which digital diagnostic wax-ups and RealGUIDE™ software for implant positioning were used. The custom-made membranes, which were designed based on the individual defects, exhibited successful adaptation. Surgical phases involved membrane placement, bone grafting, and subsequent implant placement. Clinical–radiographic follow-ups demonstrated favorable bone gain outcomes, which enabled prosthetic rehabilitation. Despite membrane exposure occurring in 30% of cases, it did not compromise overall success. The study underscores the potential of custom-made GBR membranes in achieving prosthetic goals, though challenges like exposure and the need for a second surgery require further investigations. The results indicate a promising alternative for predictable bone regeneration in complex cases, shedding light on the prosthetically guided approach for optimal functional and aesthetic outcomes. Full article
(This article belongs to the Special Issue Bioactive Dental Materials: A Paradigm Shift in Dentistry?)
Show Figures

Figure 1

13 pages, 2982 KB  
Article
Nanoliposomes Permeability in a Microfluidic Drug Delivery Platform across a 3D Hydrogel
by Corentin Peyret, Aleka Manousaki, Sabine Bouguet-Bonnet, Emmanuel Stratakis, Laura Sanchez-Gonzalez, Cyril J.F. Kahn and Elmira Arab-Tehrany
Pharmaceutics 2024, 16(6), 765; https://doi.org/10.3390/pharmaceutics16060765 - 4 Jun 2024
Cited by 2 | Viewed by 2273
Abstract
Nanoliposomes are nano-sized vesicles that can be used as drug delivery carriers with the ability to encapsulate both hydrophobic and hydrophilic compounds. Moreover, their lipid compositions facilitate their internalization by cells. However, the interaction between nanoliposomes and the membrane barrier of the human [...] Read more.
Nanoliposomes are nano-sized vesicles that can be used as drug delivery carriers with the ability to encapsulate both hydrophobic and hydrophilic compounds. Moreover, their lipid compositions facilitate their internalization by cells. However, the interaction between nanoliposomes and the membrane barrier of the human body is not well-known. If cellular tests and animal testing offer a solution, their lack of physiological relevance and ethical concerns make them unsuitable to properly mimic human body complexity. Microfluidics, which allows the environment of the human body to be imitated in a controlled way, can fulfil this role. However, existing models are missing the presence of something that would mimic a basal membrane, often consisting of a simple cell layer on a polymer membrane. In this study, we investigated the diffusion of nanoliposomes in a microfluidic system and found the optimal parameters to maximize their diffusion. Then, we incorporated a custom made GelMA with a controlled degree of substitution and studied the passage of fluorescently labeled nanoliposomes through this barrier. Our results show that highly substituted GelMA was more porous than lower substitution GelMA. Overall, our work lays the foundation for the incorporation of a hydrogel mimicking a basal membrane on a drug delivery microfluidic platform. Full article
Show Figures

Figure 1

13 pages, 4045 KB  
Article
Ni and Co Catalysts on Interactive Oxide Support for Anion Exchange Membrane Electrolysis Cell (AEMEC)
by Katerina Maksimova-Dimitrova, Borislava Mladenova, Galin Borisov and Evelina Slavcheva
Inorganics 2024, 12(6), 153; https://doi.org/10.3390/inorganics12060153 - 31 May 2024
Cited by 3 | Viewed by 1962
Abstract
The work presents novel composite catalytic materials—Ni and Co deposited on Magneli phase titania—and describes their complex characterization and integration into membrane electrode assemblies to produce hydrogen by electrochemical water splitting in cells with anion exchange membranes (AEMEC). Chemical composition, surface structure, and [...] Read more.
The work presents novel composite catalytic materials—Ni and Co deposited on Magneli phase titania—and describes their complex characterization and integration into membrane electrode assemblies to produce hydrogen by electrochemical water splitting in cells with anion exchange membranes (AEMEC). Chemical composition, surface structure, and morphology were characterized by XRD and SEM analysis. The activity in the evolution of the partial electrode reactions of hydrogen (HER) and oxygen (OER) was assessed in an aqueous alkaline electrolyte (25 wt.% KOH) using linear sweep voltammetry. The interactive role of the support was investigated and discussed. Among the tested samples, the sample with 30 wt.% Co (Co30/MPT) demonstrated superior performance in the OER. The reaction started at 1.65 V, and at 1.8 V, the current density reached 75 mA cm−2. The HER is most efficient on the sample containing 40 wt.% Ni (Ni40/MPT), where the current density reaches 95 mA at a potential of −0.5 V. The change in catalytic efficiency compared to that of the unsupported Ni and Co is due to synergism resulting from electronic interactions between the transition metal having a hyper-d-electron character and hypo-d-electron support. The pre-selected catalysts were integrated in membrane electrode assembly (MEA) using commercial and laboratory-prepared anion-conductive membranes and tested in a custom-made AEMEC. The performance was compared to that of MEA with a commercial carbon-supported Pt catalyst. It was found that the MEA with newly prepared catalysts demonstrated better performance in long-term operation (50 mA cm−2 at 1.8 V in a 60 h durability test), which, combined with the higher cost efficiency, gave credence to considering this combination of materials as promising for AEMEC applications. Full article
Show Figures

Figure 1

13 pages, 2986 KB  
Article
Early Blood Clot Detection Using Forward Scattering Light Measurements Is Not Superior to Delta Pressure Measurements
by Anna Fischbach, Michael Lamberti, Julia Alexandra Simons, Erik Wrede, Alexander Theißen, Patrick Winnersbach, Rolf Rossaint, André Stollenwerk and Christian Bleilevens
Biosensors 2023, 13(12), 1012; https://doi.org/10.3390/bios13121012 - 4 Dec 2023
Viewed by 4201
Abstract
The occurrence of thrombus formation within an extracorporeal membrane oxygenator is a common complication during extracorporeal membrane oxygenation therapy and can rapidly result in a life-threatening situation due to arterial thromboembolism, causing stroke, pulmonary embolism, and limb ischemia in the patient. The standard [...] Read more.
The occurrence of thrombus formation within an extracorporeal membrane oxygenator is a common complication during extracorporeal membrane oxygenation therapy and can rapidly result in a life-threatening situation due to arterial thromboembolism, causing stroke, pulmonary embolism, and limb ischemia in the patient. The standard clinical practice is to monitor the pressure at the inlet and outlet of oxygenators, indicating fulminant, obstructive clot formation indicated by an increasing pressure difference (ΔP). However, smaller blood clots at early stages are not detectable. Therefore, there is an unmet need for sensors that can detect blood clots at an early stage to minimize the associated thromboembolic risks for patients. This study aimed to evaluate if forward scattered light (FSL) measurements can be used for early blood clot detection and if it is superior to the current clinical gold standard (pressure measurements). A miniaturized in vitro test circuit, including a custom-made test chamber, was used. Heparinized human whole blood was circulated through the test circuit until clot formation occurred. Four LEDs and four photodiodes were placed along the sidewall of the test chamber in different positions for FSL measurements. The pressure monitor was connected to the inlet and the outlet to detect changes in ΔP across the test chamber. Despite several modifications in the LED positions on the test chamber, the FSL measurements could not reliably detect a blood clot within the in vitro test circuit, although the pressure measurements used as the current clinical gold standard detected fulminant clot formation in 11 independent experiments. Full article
(This article belongs to the Special Issue Biophysical Sensors for Biomedical/Health Monitoring Applications)
Show Figures

Figure 1

15 pages, 3950 KB  
Article
Development of Tannic Acid Coated Polyvinylidene Fluoride Membrane for Filtration of River Water Containing High Natural Organic Matter
by Rosmaya Dewi, Norazanita Shamsuddin, Muhammad Saifullah Abu Bakar, Sutarat Thongratkaew, Kajornsak Faungnawakij and Muhammad Roil Bilad
Sci 2023, 5(4), 42; https://doi.org/10.3390/sci5040042 - 20 Nov 2023
Cited by 9 | Viewed by 4244
Abstract
River water can be used as a source of drinking water. However, it is vital to consider the existence of natural organic matter (NOM) and its possible influence on water quality (low turbidity, high color). The level of NOM in river water significantly [...] Read more.
River water can be used as a source of drinking water. However, it is vital to consider the existence of natural organic matter (NOM) and its possible influence on water quality (low turbidity, high color). The level of NOM in river water significantly impacts the ecosystem’s health and the water’s quality, and needs to be removed. A membrane-based approach is attractive for treating NOM successfully, but is still hindered by the membrane fouling problem. This study aims to develop polyvinylidene fluoride (PVDF)-based membranes customized for NOM removal from river water. The anti-fouling property was imposed by a coating of tannic acid (TA) and Fe3+ on the pre-prepared PVDF membrane. The results show that the TA–Fe coatings were effective, as demonstrated by the FTIR spectra, SEM, and EDS data. The coatings made the membrane more hydrophilic, with smaller pore size and lower clean water permeability. Such properties offer enhanced NOM rejections (up to 100%) and remarkably higher fouling recovery (up to 23%), desirable for maintaining a long-term filtration performance. Full article
(This article belongs to the Special Issue Feature Papers—Multidisciplinary Sciences 2023)
Show Figures

Figure 1

16 pages, 3001 KB  
Article
Plasma-Treated Electrospun PLGA Nanofiber Scaffold Supports Limbal Stem Cells
by Hanan Jafar, Khalid Ahmed, Rama Rayyan, Shorouq Sotari, Rula Buqain, Dema Ali, Muawyah Al Bdour and Abdalla Awidi
Polymers 2023, 15(21), 4244; https://doi.org/10.3390/polym15214244 - 27 Oct 2023
Cited by 9 | Viewed by 2562
Abstract
The corneal epithelial layer is continuously replaced by limbal stem cells. Reconstructing this layer in vitro using synthetic scaffolds is highly needed. Poly-lactic-co-glycolic acid (PLGA) is approved for human use due to its biocompatibility and biodegradability. However, PLGA is hydrophobic, preventing cell adherence [...] Read more.
The corneal epithelial layer is continuously replaced by limbal stem cells. Reconstructing this layer in vitro using synthetic scaffolds is highly needed. Poly-lactic-co-glycolic acid (PLGA) is approved for human use due to its biocompatibility and biodegradability. However, PLGA is hydrophobic, preventing cell adherence to PLGA membranes. PLGA scaffolds were prepared by electrospinning on a custom-made target drum spinning at a rate of 1000 rpm with a flow rate of 0.5 mL/h and voltage at 20 kV, then treated with oxygen plasma at 30 mA using a vacuum coater. Scaffolds were characterized by SEM, mechanically by tensile testing, and thermally by DSC and TGA. In vitro degradation was measured by weight loss and pH drop. Wettability was assessed through water uptake and contact angles measurements. Human limbal stem cells (hLSCs) were isolated and seeded on the scaffolds. Cell attachment and cytotoxicity assay were evaluated on day 1 and 5 after cell seeding. SEM showed regular fiber morphology with diameters ranging between 150 nm and 950 nm. Tensile strength demonstrated similar average stress values for both plasma- and non-plasma-treated samples. Scaffolds also showed gradual degradability over a period of 7–8 weeks. Water contact angle and water absorption were significantly enhanced for plasma-treated scaffolds, indicating a favorable increase in their hydrophilicity. Scaffolds have also supported hLSCs growth and attachment with no signs of cytotoxicity. We have characterized a nanofiber electrospun plasma-treated PLGA scaffold to investigate the mechanical and biological properties and the ability to support the attachment and maintenance of hLSCs. Full article
Show Figures

Figure 1

12 pages, 3003 KB  
Article
Automated Sampling System for Monitoring 85Kr in Air
by Hyemi Cha, Mee Jang, Jong-Myoung Lim, Wanno Lee and Hyuncheol Kim
Atmosphere 2023, 14(7), 1103; https://doi.org/10.3390/atmos14071103 - 1 Jul 2023
Viewed by 2427
Abstract
Radioactive krypton-85 (85Kr) gas, a chemically inert and non-proliferation indicator, is derived from fission products. Its detection relies on the Budesamt für Strahlenschutz–Institute of Atmospheric Radioactivity (BfS-IAR) method, which necessitated impurity removal using soda lime, silica gel, and liquid nitrogen for [...] Read more.
Radioactive krypton-85 (85Kr) gas, a chemically inert and non-proliferation indicator, is derived from fission products. Its detection relies on the Budesamt für Strahlenschutz–Institute of Atmospheric Radioactivity (BfS-IAR) method, which necessitated impurity removal using soda lime, silica gel, and liquid nitrogen for cryogenic adsorption. This manual process requires frequent replacements, posing challenges for its automation. To address this, we developed a prototype krypton sampling system as an interim research product for the fully automated remote monitoring of covert nuclear activity. The system incorporates a hollow fiber membrane for impurity removal, a computer-controlled multi-position valve for sampling, and an electric cooler for adsorption. The impurity removal modules demonstrated high efficiencies, removing H2O and CO2 at 99.8% and 97.8% rates, respectively. Further, the custom-made sampling system can process 16 samples in a single run without analyst intervention. We conducted experiments to verify the automatic krypton sampling capability. The activity concentration of 85Kr in ambient air was measured using the BfS-IAR processing and detection system. The system exhibited a recovery rate of ~7.8% for krypton in 1000 L air, demonstrating good continuous remote monitoring capability. This study promotes the development of an automated analysis system for the detection of 85Kr in ambient air. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

23 pages, 5761 KB  
Article
A Combined Gas and Water Permeances Method for Revealing the Deposition Morphology of GO Grafting on Ceramic Membranes
by Evdokia Galata, Charitomeni M. Veziri, George V. Theodorakopoulos, George Em. Romanos and Evangelia A. Pavlatou
Membranes 2023, 13(7), 627; https://doi.org/10.3390/membranes13070627 - 28 Jun 2023
Cited by 1 | Viewed by 1823
Abstract
The adhesion enhancement of a graphene oxide (GO) layer on porous ceramic substrates is a crucial step towards developing a high-performance membrane for many applications. In this work, we have achieved the chemical anchoring of GO layers on custom-made macroporous disks, fabricated in [...] Read more.
The adhesion enhancement of a graphene oxide (GO) layer on porous ceramic substrates is a crucial step towards developing a high-performance membrane for many applications. In this work, we have achieved the chemical anchoring of GO layers on custom-made macroporous disks, fabricated in the lab by pressing α-Al2O3 powder. To this end, three different linkers, polydopamine (PDA), 3-Glycidoxypropyltrimethoxysilane (GPTMS) and (3-Aminopropyl) triethoxysilane (APTMS), were elaborated for their capacity to tightly bind the GO laminate on the ceramic membrane surface. The same procedure was replicated on cylindrical porous commercial ZrO2 substrates because of their potentiality for applications on a large scale. The gas permeance properties of the membranes were studied using helium at 25 °C as a probe molecule and further scrutinized in conjunction with water permeance results. Measurements with helium at 25 °C were chosen to avoid gas adsorption and surface diffusion mechanisms. This approach allowed us to draw conclusions on the deposition morphology of the GO sheets on the ceramic support, the mode of chemical bonding with the linker and the stability of the deposited GO laminate. Specifically, considering that He permeance is mostly affected by the pore structural characteristics, an estimation was initially made of the relative change in the pore size of the developed membranes compared to the bare substrate. This was achieved by interpreting the results via the Knudsen equation, which describes the gas permeance as being analogous to the third power of the pore radius. Subsequently, the calculated relative change in the pore size was inserted into the Hagen–Poiseuille equation to predict the respective water permeance ratio of the GO membranes to the bare substrate. The reason that the experimental water permeance values may deviate from the predicted ones is related to the different surface chemistry, i.e., the hydrophilicity or hydrophobicity that the composite membranes acquire after the chemical modification. Various characterization techniques were applied to study the morphological and physicochemical properties of the materials, like FESEM, XRD, DLS and Contact Angle. Full article
Show Figures

Graphical abstract

9 pages, 3857 KB  
Case Report
Advanced Techniques for Bone Restoration and Immediate Loading after Implant Failure: A Case Report
by Neculai Onică, Cezara Andreea Onică, Elena-Raluca Baciu, Roxana-Ionela Vasluianu, Mihai Ciofu, Mihail Balan and Gabriela Luminița Gelețu
Healthcare 2023, 11(11), 1608; https://doi.org/10.3390/healthcare11111608 - 31 May 2023
Cited by 4 | Viewed by 2666
Abstract
The objective of this study was to report a clinical case of dental implant failure with significant bone loss that was treated using reconstructive surgical techniques. We present a 58-year-old man with a history of implant surgery and implant failure on the mandible. [...] Read more.
The objective of this study was to report a clinical case of dental implant failure with significant bone loss that was treated using reconstructive surgical techniques. We present a 58-year-old man with a history of implant surgery and implant failure on the mandible. Data collected using cone beam computed tomography (CBCT) and intraoral scans were exported into Exoplan (exocad GmbH, Darmstadt, Germany), from which a standard tessellation file was obtained. To create a customized mandible mesh design, DentalCAD 3.0 Galway software (exocad GmbH, Darmstadt, Germany) was used. Based on guided bone regeneration, the method involved bone reconstruction and the application of a custom titanium mesh. The bone mix was obtained by combining a xenograft (Cerabone, Bottis biomaterials Gmbh, Zossen, Germany), an allograft (Max Graft, granules Bottis biomaterials Gmbh, Zossen, Germany), and an autograft. The titanium meshes were fixed to the bone using self-drilling screws and covered with a resorbable membrane. Immediately after surgery, an impression was recorded, and the next day, the patient received a milled polymethyl methacrylate interim denture. Based on our case study, the presented custom-made implant can be considered a temporary solution, during which guided bone regeneration is expected to take place. Full article
Show Figures

Figure 1

Back to TopTop