Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (31,636)

Search Parameters:
Keywords = current measuring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 2043 KiB  
Review
Review on Metal (-Oxide, -Nitride, -Oxy-Nitride) Thin Films: Fabrication Methods, Applications, and Future Characterization Methods
by Georgi Kotlarski, Daniela Stoeva, Dimitar Dechev, Nikolay Ivanov, Maria Ormanova, Valentin Mateev, Iliana Marinova and Stefan Valkov
Coatings 2025, 15(8), 869; https://doi.org/10.3390/coatings15080869 - 24 Jul 2025
Abstract
During the last few years, the requirements for highly efficient, sustainable, and versatile materials in modern biomedicine, aircraft and aerospace industries, automotive production, and electronic and electrical engineering applications have increased. This has led to the development of new and innovative methods for [...] Read more.
During the last few years, the requirements for highly efficient, sustainable, and versatile materials in modern biomedicine, aircraft and aerospace industries, automotive production, and electronic and electrical engineering applications have increased. This has led to the development of new and innovative methods for material modification and optimization. This can be achieved in many different ways, but one such approach is the application of surface thin films. They can be conductive (metallic), semi-conductive (metal-ceramic), or isolating (polymeric). Special emphasis is placed on applying semi-conductive thin films due to their unique properties, be it electrical, chemical, mechanical, or other. The particular thin films of interest are composite ones of the type of transition metal oxide (TMO) and transition metal nitride (TMN), due to their widespread configurations and applications. Regardless of the countless number of studies regarding the application of such films in the aforementioned industrial fields, some further possible investigations are necessary to find optimal solutions for modern problems in this topic. One such problem is the possibility of characterization of the applied thin films, not via textbook approaches, but through a simple, modern solution using their electrical properties. This can be achieved on the basis of measuring the films’ electrical impedance, since all different semi-conductive materials have different impedance values. However, this is a huge practical work that necessitates the collection of a large pool of data and needs to be based on well-established methods for both characterization and formation of the films. A thorough review on the topic of applying thin films using physical vapor deposition techniques (PVD) in the field of different modern applications, and the current results of such investigations are presented. Furthermore, current research regarding the possible methods for applying such films, and the specifics behind them, need to be summarized. Due to this, in the present work, the specifics of applying thin films using PVD methods and their expected structure and properties were evaluated. Special emphasis was paid to the electrical impedance spectroscopy (EIS) method, which is typically used for the investigation and characterization of electrical systems. This method has increased in popularity over the last few years, and its applicability in the characterization of electrical systems that include thin films formed using PVD methods was proven many times over. However, a still lingering question is the applicability of this method for backwards engineering of thin films. Currently, the EIS method is used in combination with traditional techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), and others. There is, however, a potential to predict the structure and properties of thin films using purely a combination of EIS measurements and complex theoretical models. The current progress in the development of the EIS measurement method was described in the present work, and the trend is such that new theoretical models and new practical testing knowledge was obtained that help implement the method in the field of thin films characterization. Regardless of this progress, much more future work was found to be necessary, in particular, practical measurements (real data) of a large variety of films, in order to build the composition–structure–properties relationship. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

35 pages, 2034 KiB  
Review
The Role of Gut Microbiota in Gastrointestinal Immune Homeostasis and Inflammation: Implications for Inflammatory Bowel Disease
by Elisabetta Bretto, Miquel Urpì-Ferreruela, Gherzon Rimer Casanova and Begoña González-Suárez
Biomedicines 2025, 13(8), 1807; https://doi.org/10.3390/biomedicines13081807 - 24 Jul 2025
Abstract
Inflammatory bowel disease (IBD), a heterogeneous group of recurring inflammatory conditions of the digestive system that encompass both ulcerative colitis (UC) and Crohn’s disease (CD), pose a significant public health challenge, currently lacking a definitive cure. The specific etiopathogenesis of IBD is not [...] Read more.
Inflammatory bowel disease (IBD), a heterogeneous group of recurring inflammatory conditions of the digestive system that encompass both ulcerative colitis (UC) and Crohn’s disease (CD), pose a significant public health challenge, currently lacking a definitive cure. The specific etiopathogenesis of IBD is not yet fully understood, but a multifactorial interplay of genetic and environmental factors is suspected. A growing body of evidence supports the involvement of intestinal dysbiosis in the development of IBD, including the effects of dysbiosis on the integrity of the intestinal epithelial barrier, modulation of the host immune system, alterations in the enteric nervous system, and the perpetuation of chronic inflammation. A comprehensive understanding of these mechanisms is important to define preventive measures, to develop new effective and lasting treatments, and to improve disease outcome. This review examines the complex tri-directional relationship between gut microbiota, mucosal immune system, and intestinal epithelium in IBD. In addition, nonpharmacological and behavioral strategies aimed at restoring a proper microbial–immune relationship will be suggested. Full article
Show Figures

Figure 1

18 pages, 926 KiB  
Systematic Review
The Impact of Strength Changes on Active Function Following Botulinum Neurotoxin-A (BoNT-A): A Systematic Review
by Renée Gill, Megan Banky, Zonghan Yang, Pablo Medina Mena, Chi Ching Angie Woo, Adam Bryant, John Olver, Elizabeth Moore and Gavin Williams
Toxins 2025, 17(8), 362; https://doi.org/10.3390/toxins17080362 (registering DOI) - 23 Jul 2025
Abstract
Botulinum neurotoxin-A (BoNT-A) injections are effective in reducing focal limb spasticity; however, their impact on strength and active function needs to be established. This review was a secondary analysis aimed at evaluating changes to active function in the context of muscle strength changes [...] Read more.
Botulinum neurotoxin-A (BoNT-A) injections are effective in reducing focal limb spasticity; however, their impact on strength and active function needs to be established. This review was a secondary analysis aimed at evaluating changes to active function in the context of muscle strength changes following BoNT-A intramuscular injection for adult upper and lower limb spasticity. The original review searched eight databases (CINAHL, Cochrane Central Register of Controlled Trials (CENTRAL), Embase, Google Scholar, MEDLINE, PEDro, PubMed, Web of Science) and was conducted with methodology that followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines as described in section 6.2 of Gill et al. For this secondary analysis, no databases were searched; only further data were extracted. The current and preceding review were registered in the Prospective Register of Systematic Reviews (PROSPERO: CRD42022315241). Twenty studies were screened for inclusion, and three studies were excluded because active function was not assessed in all participants. Seventeen studies (677 participants) met the inclusion criteria for analysis. Quality was examined using the PEDro scale and modified Downs and Black checklist and rated as fair to good. Pre- and post-BoNT-A injection strength (agonist, antagonist, and global), active function (activity), participation, and quality-of-life outcomes at short-, mid-, and long-term time points were extracted and analysed. Significant heterogeneity and limited responsiveness in strength and active function outcome measures limited the ability to determine whether changes in strength mediate an effect on active function. Further, variability in BoNT-A type and dose, adjunctive therapies provided, and variability in reporting limited analyses. Overall, no clear relationship existed between the change in muscle strength and active function following BoNT-A injections to the upper and lower limbs for focal spasticity in adult-onset neurological conditions. Full article
Show Figures

Figure 1

9 pages, 1478 KiB  
Article
Investigating Coherent Smith–Purcell Radiation from Shallow Blazed Gratings: Shading Effect’s Influence on Surface Current Model
by Hiroki Yamada, Toshiya Muto, Fujio Hinode, Shigeru Kashiwagi, Kenichi Nanbu, Ikuro Nagasawa, Kotaro Shibata, Ken Takahashi, Anjali Bhagwan Kavar, Kodai Kudo, Hayato Abiko, Pitchayapak Kitisri and Hiroyuki Hama
Particles 2025, 8(3), 71; https://doi.org/10.3390/particles8030071 - 23 Jul 2025
Abstract
To evaluate the characteristics of Smith–Purcell radiation, we modified a surface current model to consider the geometrical shading effect of a grating, which was ignored in the original one, and compared it with measurements for a grating with a shallow blaze angle. According [...] Read more.
To evaluate the characteristics of Smith–Purcell radiation, we modified a surface current model to consider the geometrical shading effect of a grating, which was ignored in the original one, and compared it with measurements for a grating with a shallow blaze angle. According to the numerical calculations based on the surface current model with and without the shading effect, it was found that the azimuthal angular distribution, polarization components and the variation in radiation intensity with the blaze angle of the grating are predicted to show significantly different behaviors under our experimental conditions. Generating the coherent Smith–Purcell radiation using the very short electron bunch in the test accelerator, t-ACTS at the Research Center for Accelerator and Radioisotope Science, Tohoku University, we measured polarization and the angular distribution of radiation for the gratings with different blaze angles. This study supports the validity of the modified surface current model with the shading effect and will provide new insights into the evaluation of the characteristics of Smith–Purcell radiation. Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources 2025)
Show Figures

Figure 1

9 pages, 3725 KiB  
Article
A Strain-Compensated InGaAs/InGaSb Type-II Superlattice Grown on InAs Substrates for Long-Wavelength Infrared Photodetectors
by Hao Zhou, Chang Liu and Yiqiao Chen
Nanomaterials 2025, 15(15), 1143; https://doi.org/10.3390/nano15151143 - 23 Jul 2025
Abstract
In this paper, the first demonstration of a highly strained In0.8Ga0.2As/In0.2Ga0.8Sb type-II superlattice structure grown on InAs substrates by molecular beam epitaxy (MBE) for long-wavelength infrared detection was reported. Novel methodologies were developed to optimize [...] Read more.
In this paper, the first demonstration of a highly strained In0.8Ga0.2As/In0.2Ga0.8Sb type-II superlattice structure grown on InAs substrates by molecular beam epitaxy (MBE) for long-wavelength infrared detection was reported. Novel methodologies were developed to optimize the As and Sb flux growth conditions. The quality of the epitaxial layer was characterized using multiple analytical techniques, including differential interference contrast microscopy, atomic force microscopy, high-resolution X-ray diffraction, and high-resolution transmission electron microscopy. The high-quality superlattice structure, with a total thickness of 1.5 μm, exhibited exceptional surface morphology with a root-mean-square roughness of 0.141 nm over a 5 × 5 μm2 area. Single-element devices with PIN architecture were fabricated and characterized. At 77 K, these devices demonstrated a 50% cutoff wavelength of approximately 12.1 μm. The long-wavelength infrared PIN devices exhibited promising performance metrics, including a dark current density of 7.96 × 10−2 A/cm2 at −50 mV bias and a high peak responsivity of 4.90 A/W under zero bias conditions, both measured at 77 K. Furthermore, the devices achieved a high peak quantum efficiency of 65% and a specific detectivity (D*) of 2.74 × 1010 cm·Hz1/2/W at the peak responsivity wavelength of 10.7 µm. These results demonstrate the viability of this material system for long-wavelength infrared detection applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

21 pages, 1934 KiB  
Article
Energy Conservation and Carbon Emission Reduction Potentials of Major Household Appliances in China Leveraging the LEAP Model
by Runhao Guo, Aijun Xu and Heng Li
Buildings 2025, 15(15), 2615; https://doi.org/10.3390/buildings15152615 - 23 Jul 2025
Abstract
Household appliances constitute the second largest source of residential energy consumption in China, accounting for over 20% of the total and exhibiting a steady growth trend. Despite their substantial impact on energy demand and carbon emissions, a comprehensive analysis of the current status [...] Read more.
Household appliances constitute the second largest source of residential energy consumption in China, accounting for over 20% of the total and exhibiting a steady growth trend. Despite their substantial impact on energy demand and carbon emissions, a comprehensive analysis of the current status and future trends of household appliances in China is still lacking. This study employs the Long-Range Energy Alternatives Planning (LEAP) system to model energy consumption and carbon emissions for five major household appliances (air conditioners, refrigerators, washing machines, TVs, and water heaters) from 2022 to 2052. Three scenarios were analyzed: a Reference (REF) scenario (current trends), an Existing Policy Option (EPO) scenario (current energy-saving measures), and a Further Strengthening (FUR) scenario (enhanced efficiency measures). Key results show that by 2052, the EPO scenario achieves cumulative savings of 1074.8 billion kWh and reduces emissions by 580.7 million metric tons of CO2 equivalent compared to REF. The FUR scenario yields substantially greater benefits, demonstrating the significant potential of strengthened policies. This analysis underscores the critical role of improving appliance energy efficiency and provides vital insights for policymakers and stakeholders aiming to reduce residential sector emissions. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

20 pages, 2737 KiB  
Technical Note
Obtaining the Highest Quality from a Low-Cost Mobile Scanner: A Comparison of Several Pipelines with a New Scanning Device
by Marek Hrdina, Juan Alberto Molina-Valero, Karel Kuželka, Shinichi Tatsumi, Keiji Yamaguchi, Zlatica Melichová, Martin Mokroš and Peter Surový
Remote Sens. 2025, 17(15), 2564; https://doi.org/10.3390/rs17152564 - 23 Jul 2025
Abstract
The accurate measurement of the tree diameter is vital for forest inventories, urban tree quality assessments, the management of roadside and railway vegetation, and various other applications. It also plays a crucial role in evaluating tree growth dynamics, which are closely linked to [...] Read more.
The accurate measurement of the tree diameter is vital for forest inventories, urban tree quality assessments, the management of roadside and railway vegetation, and various other applications. It also plays a crucial role in evaluating tree growth dynamics, which are closely linked to tree health, structural stability, and vulnerability. Although a range of devices and methodologies are currently under investigation, the widespread adoption of laser scanners remains constrained by their high cost. This study therefore aimed to compare high-end laser scanners (Trimble TX8 and GeoSLAM ZEB Horizon) with cost-effective alternatives, represented by the Apple iPhone 14 Pro and the LA03 scanner developed by mapry Co., Ltd. (Tamba, Japan). It further sought to evaluate the feasibility of employing these more affordable devices, even for small-scale forest owners or managers. Given the growing availability of 3D-based forest inventory algorithms, a selection of such processing pipelines was used to assess the practical potential of the scanning devices. The tested low-cost device produced moderate results, achieving a tree detection rate of up to 78% and a relative root mean square error (rRMSE) of 19.7% in diameter at breast height (DBH) estimation. However, performance varied depending on the algorithms applied. In contrast, the high-end mobile laser scanning (MLS) and terrestrial laser scanning (TLS) systems outperformed the low-cost alternative across all metrics, with tree detection rates reaching up to 99% and DBH estimation rRMSEs as low as 5%. Nevertheless, the low-cost device may still be suitable for scanning small sample plots at a reduced cost and could potentially be deployed in larger quantities to support broader forest inventory initiatives. Full article
Show Figures

Figure 1

14 pages, 851 KiB  
Article
Evaluating Accuracy of Smartphone Facial Scanning System with Cone-Beam Computed Tomography Images
by Konstantinos Megkousidis, Elie Amm and Melih Motro
Bioengineering 2025, 12(8), 792; https://doi.org/10.3390/bioengineering12080792 - 23 Jul 2025
Abstract
Objectives: Facial soft tissue imaging is crucial in orthodontic treatment planning, and the structured light scanning technology found in the latest iPhone models constitutes a promising method. Currently, studies which evaluate the accuracy of smartphone-based three-dimensional (3D) facial scanners are scarce. This study [...] Read more.
Objectives: Facial soft tissue imaging is crucial in orthodontic treatment planning, and the structured light scanning technology found in the latest iPhone models constitutes a promising method. Currently, studies which evaluate the accuracy of smartphone-based three-dimensional (3D) facial scanners are scarce. This study compares smartphone scans with cone-beam computed tomography (CBCT) images. Materials and Methods: Three-dimensional images of 23 screened patients were captured with the camera of an iPhone 13 Pro Max and processed with the Scandy Pro application; CBCT scans were also taken as a standard of care. After establishing unique image pairs of the same patient, linear and angular measurements were compared between the images to assess the scanner’s two-dimensional trueness. Following the co-registration of the virtual models, a heat map was generated, and root mean square (RMS) deviations were calculated for quantitative assessment of 3D trueness. Precision was determined by comparing consecutive 3D facial scans of five participants, while intraobserver reliability was assessed by repeating measurements on five subjects after a two-week interval. Results: This study found no significant difference in soft tissue measurements between smartphone and CBCT images (p > 0.05). The mean absolute difference was 1.43 mm for the linear and 3.16° for the angular measurements. The mean RMS value was 1.47 mm. Intraobserver reliability and scanner precision were assessed, and the Intraclass Correlation Coefficients were found to be excellent. Conclusions: Smartphone facial scanners offer an accurate and reliable alternative to stereophotogrammetry systems, though clinicians should exercise caution when examining the lateral sections of those images due to inherent inaccuracies. Full article
(This article belongs to the Special Issue Orthodontic Biomechanics)
Show Figures

Figure 1

26 pages, 3580 KiB  
Article
Delineating Urban High–Risk Zones of Disease Transmission: Applying Tensor Decomposition to Trajectory Big Data
by Tianhua Lu and Wenjia Zhang
ISPRS Int. J. Geo-Inf. 2025, 14(8), 285; https://doi.org/10.3390/ijgi14080285 - 23 Jul 2025
Abstract
Risk zone delineation and mobility behavior control constitute critical measures in pandemic containment. Numerous studies utilize static demographic data or dynamic mobility data to calculate the high–risk zones present in cities; however, these studies fail to concurrently consider activity and mobility patterns of [...] Read more.
Risk zone delineation and mobility behavior control constitute critical measures in pandemic containment. Numerous studies utilize static demographic data or dynamic mobility data to calculate the high–risk zones present in cities; however, these studies fail to concurrently consider activity and mobility patterns of populations in both space and time, which results in many studies only being able to employ static geostatistical analytical methods, neglecting the transmission risks associated with human mobility. This study utilized the mobile phone signaling data of Shenzhen residents from 2019 to 2020 and developed a CP tensor decomposition algorithm to decompose the long-sequence spatiotemporal trajectory data to detect high risk zones in terms of detecting overlapped community structures. Tensor decomposition algorithms revealed community structures in 2020 and the overlapping regions among these communities. Based on the overlap in spatial distribution and the similarity in temporal rhythms of these communities, we identified regions with spatiotemporal co-location as high–risk zones. Furthermore, we calculated the degree of population mixing in these areas to indicate the level of risk. These areas could potentially lead to rapid virus spread across communities. The research findings address the shortcomings of currently used static geographic statistical methods in delineating risk zones, and emphasize the critical importance of integrating spatial and temporal dimensions within behavioral big data analytics. Future research should consider utilizing non-aggregated individual trajectories to construct tensors, enabling the inclusion of individual and environmental attributes. Full article
Show Figures

Figure 1

28 pages, 2495 KiB  
Article
Integration Strategies for Large-Scale Renewable Interconnections with Grid Forming and Grid Following Inverters, Capacitor Banks, and Harmonic Filters
by Soham Ghosh, Arpit Bohra, Sreejata Dutta and Saurav Verma
Energies 2025, 18(15), 3934; https://doi.org/10.3390/en18153934 (registering DOI) - 23 Jul 2025
Abstract
The transition towards a power system characterized by a reduced presence of synchronous generators (SGs) and an increased reliance on inverter-based resources (IBRs), including wind, solar photovoltaics (PV), and battery storage, presents new operational challenges, particularly when these sources exceed 50–60% of the [...] Read more.
The transition towards a power system characterized by a reduced presence of synchronous generators (SGs) and an increased reliance on inverter-based resources (IBRs), including wind, solar photovoltaics (PV), and battery storage, presents new operational challenges, particularly when these sources exceed 50–60% of the system’s demand. While current grid-following (GFL) IBRs, which are equipped with fast and rigid control systems, continue to dominate the inverter landscape, there has been a notable surge in research focused on grid-forming (GFM) inverters in recent years. This study conducts a comparative analysis of the practicality and control methodologies of GFM inverters relative to traditional GFL inverters from a system planning perspective. A comprehensive framework aimed at assisting system developers and consulting engineers in the grid-integration of wide-scale renewable energy sources (RESs), incorporating strategies for the deployment of inverters, capacitor banks, and harmonic filters, is proposed in this paper. The discussion includes an examination of the reactive power capabilities of the plant’s inverters and the provision of additional reactive power to ensure compliance with grid interconnection standards. Furthermore, the paper outlines a practical approach to assess the necessity for enhanced filtering measures to mitigate potential resonant conditions and achieve harmonic compliance at the installation site. The objective of this work is to offer useful guidelines and insights for the effective addition of RES into contemporary power systems. Full article
Show Figures

Figure 1

21 pages, 7005 KiB  
Article
Analysis of Woven Fabric Mechanical Properties in the Context of Sustainable Clothing Development Process
by Maja Mahnić Naglić, Slavenka Petrak and Antoneta Tomljenović
Polymers 2025, 17(15), 2013; https://doi.org/10.3390/polym17152013 - 23 Jul 2025
Abstract
This paper presents research in the field of computer-aided 3D clothing design, focusing on an investigation of three methods for determining the mechanical properties of woven fabrics and their impact on 3D clothing simulations in the context of sustainable apparel development. Five mechanical [...] Read more.
This paper presents research in the field of computer-aided 3D clothing design, focusing on an investigation of three methods for determining the mechanical properties of woven fabrics and their impact on 3D clothing simulations in the context of sustainable apparel development. Five mechanical parameters were analyzed: tensile elongation in the warp and weft directions, shear stiffness, bending stiffness, specific weight, and fabric thickness. These parameters were integrated into the CLO3D CAD software v.2025.0.408, using data obtained via the KES-FB system, the Fabric Kit protocol, and the AI-based tool, SEDDI Textura 2024. Simulations of women’s blouse and trousers were evaluated using dynamic tests and validated by real prototypes measured with the ARAMIS optical 3D system. Results show average differences between digital and real prototype deformation data up to 6% with an 8% standard deviation, confirming the high accuracy of 3D simulations based on the determined mechanical parameters of the real fabric sample. Notably, the AI-based method demonstrated excellent simulation results compared with real garments, highlighting its potential for accessible, sustainable, and scalable fabric digitization. Presented research is entirely in line with the current trends of digitization and sustainability in the textile industry. It contributes to the advancement of efficient digital prototyping workflows and emphasizes the importance of reliable mechanical characterization for predictive garment modeling. Full article
(This article belongs to the Special Issue Environmentally Friendly Textiles, Fibers and Their Composites)
Show Figures

Figure 1

23 pages, 780 KiB  
Review
A Standard Operating Procedure for Dual-Task Training to Improve Physical and Cognitive Function in Older Adults: A Scoping Review
by Luca Petrigna, Alessandra Amato, Alessandro Castorina and Giuseppe Musumeci
Brain Sci. 2025, 15(8), 785; https://doi.org/10.3390/brainsci15080785 - 23 Jul 2025
Abstract
Background/Objectives: Dual task (DT) training consists of practicing exercises while simultaneously performing a concurrent motor or cognitive task. This training modality seems to have beneficial effects on both domains. Various forms of DT training have been implemented for older adults in recent years, [...] Read more.
Background/Objectives: Dual task (DT) training consists of practicing exercises while simultaneously performing a concurrent motor or cognitive task. This training modality seems to have beneficial effects on both domains. Various forms of DT training have been implemented for older adults in recent years, but no official guidelines currently exist. This review sought to analyze the studies published on this topic in the last ten years and provide a standard operating procedure (SOP) for healthy older adults in this context. Methods: The review collected articles from PubMed, Web of Science, and Scopus, adopting a designated set of keywords. Selected manuscripts and relevant information were selected, extrapolated, including information related to the training frequency, intensity, time, and type, and secondary tasks adopted. The secondary tasks were grouped according to previously published studies, and the SOP was created based on the frequency of the parameters collected from the included articles. Results: A total of 44 studies were included in the review. Based on the results, the SOP recommends postural balance or resistance training as primary tasks, combined with a mental tracking task as a secondary component. Two 60-min sessions per week for at least 12 weeks are required to achieve measurable results. Conclusions: Despite heterogeneity in the literature reviewed, the findings support the proposal of a SOP to guide future research on DT training in healthy older adults. Given its feasibility and positive effects on both motor and cognitive functions, this type of training can also be implemented in everyday settings. Full article
Show Figures

Figure 1

29 pages, 14635 KiB  
Article
Pre- and Post-Self-Renovation Variations in Indoor Temperature: Methodological Pipeline and Cloud Monitoring Results in Two Small Residential Buildings
by Giacomo Chiesa and Paolo Carrisi
Energies 2025, 18(15), 3928; https://doi.org/10.3390/en18153928 - 23 Jul 2025
Abstract
The impacts of renovation actions on pre- and post-retrofitting building performances are complex to analyse, particularly small and potentially self-actuated actions, such as adding insulation layers to a cold roof slab or changing doors. These interventions are widespread in small residential houses and [...] Read more.
The impacts of renovation actions on pre- and post-retrofitting building performances are complex to analyse, particularly small and potentially self-actuated actions, such as adding insulation layers to a cold roof slab or changing doors. These interventions are widespread in small residential houses and cases where the owners are the residents. However, a large research gap currently remains regarding the impact of sustainable solutions on building performance. This study aims to address this issue by proposing a methodology based on commercial cloud monitoring solutions and middleware development that analyses and reports on the impact of such solutions to end users, allowing for an analysis of real variations in air temperature levels. The methodology is applied to two single/double-family residential houses, acting as demo cases for verification, across a multi-year time horizon. In both cases, measurements were conducted before and after typical limited renovation actions. Alongside the proposed methodology, descriptions of the smart solutions’ requirements are provided. The results mainly focus on temperature variations. Finally, the impact of the solutions on energy consumption was analysed for one of the buildings, and feedback was briefly provided by the users. Full article
Show Figures

Figure 1

19 pages, 1695 KiB  
Review
Temperature Monitoring in Metal Additive Manufacturing in the Era of Industry 4.0
by Aleksandar Mitrašinović, Teodora Đurđević, Jasmina Nešković and Milinko Radosavljević
Technologies 2025, 13(8), 317; https://doi.org/10.3390/technologies13080317 - 23 Jul 2025
Abstract
The field of metal additive manufacturing has witnessed significant growth in recent years, with technology offering the ability to produce complex geometries that are challenging to manufacture using the traditional methods. In situ monitoring and control of the manufacturing process are crucial for [...] Read more.
The field of metal additive manufacturing has witnessed significant growth in recent years, with technology offering the ability to produce complex geometries that are challenging to manufacture using the traditional methods. In situ monitoring and control of the manufacturing process are crucial for increasing the production capacity and improving the quality of manufactured parts. This article provides a comparative analysis of computational, indirect, and direct methods for in situ temperature monitoring during additive manufacturing of metal alloy components. Furthermore, it discusses the current status, recent improvements, and perspectives for in situ temperature measurements. The basic principles of thermal imaging, two-color pyrometry, and millimeter-wave radiometry are explored, highlighting their limitations for addressing challenges related to material emissivity and rapid changes in building material composition. Overcoming the challenges related to the inaccessibility of the chamber where the parts are formed, direct temperature measurements would allow for the integration of collected information into big data systems. Within the framework of Industry 4.0, this approach offers a viable alternative to the conventional metal shaping processes, improving the production capacity and part quality. This research aims to contribute to ongoing advancements in metal additive manufacturing and its potential to completely replace traditional metal casting practices in the Industry 4.0 era. Full article
Show Figures

Graphical abstract

14 pages, 1334 KiB  
Article
Optimisation of an nIR-Emitting Benzoporphyrin Pressure-Sensitive Paint Formulation
by Elliott J. Nunn, Louise S. Natrajan and Mark K. Quinn
Sensors 2025, 25(15), 4560; https://doi.org/10.3390/s25154560 - 23 Jul 2025
Abstract
The use of pressure-sensitive paints (PSPs), an optical oxygen sensing technique, to visualise and measure the surface pressure on vehicle models in wind tunnel testing is becoming increasingly prevalent. Porphyrins have long been the standard luminophore for PSP formulations, with the majority employing [...] Read more.
The use of pressure-sensitive paints (PSPs), an optical oxygen sensing technique, to visualise and measure the surface pressure on vehicle models in wind tunnel testing is becoming increasingly prevalent. Porphyrins have long been the standard luminophore for PSP formulations, with the majority employing the red-emitting platinum(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorphenyl)-porphyrin. nIR-emitting luminophores, such as Pt(II) tetraphenyl tetrabenzoporphyrins, possess distinct advantages over visible emitting luminophores. In particular, they have wider spectrally useful ‘windows’, facilitating the insertion of a secondary visible emitting temperature-sensitive luminophore to be used for internal calibration without spectral crosstalk that detrimentally impacts PSP performance. In this work, we explore the effect of changing the loading quantity of an nIR-emitting para-CF3 Pt(II) benzoporphyrin luminophore on the performance of PSP formulations. An optimal luminophore loading of 1.28% wt/wt benzoporphyrin luminophore to polystyrene binder was identified, resulting in a low temperature sensitivity at 100 kPa of 0.61%/K and a large pressure sensitivity at 293 K of 0.740%/kPa. These strong performance metrics, for a polystyrene-based PSP, demonstrate the efficacy of benzoporphyrin luminophores as an attractive luminophore option for the development of a new generation of high-performance PSP formulations that outperform current commercially available ones. Full article
(This article belongs to the Special Issue Colorimetric and Fluorescent Sensors and Their Application)
Show Figures

Figure 1

Back to TopTop