Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = cryogenic facility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2992 KB  
Article
Design of Cryogenic Control System for the Superconducting Module of the Injection Unit in the SHINE Tunnel
by Yi Wang, Geyang Jiang, Jiuce Sun, Zhengrong Ouyang, Lei Zhang, Yule Shen and Xuchun Ying
Cryo 2026, 2(1), 1; https://doi.org/10.3390/cryo2010001 - 19 Dec 2025
Viewed by 165
Abstract
As the largest cryogenic superconducting platform in China and even Asia, the Shanghai High-intensity Ultrafast X-ray Facility (SHINE) highly depends on the stable operation of 1.3 GHz superconducting accelerating modules in a 2 K superfluid helium environment. This paper elaborates on the key [...] Read more.
As the largest cryogenic superconducting platform in China and even Asia, the Shanghai High-intensity Ultrafast X-ray Facility (SHINE) highly depends on the stable operation of 1.3 GHz superconducting accelerating modules in a 2 K superfluid helium environment. This paper elaborates on the key control technologies developed and successfully applied to ensure the smooth aging process of superconducting modules in the cryogenic experiments of the SHINE injector section. To address the issue of thermal load fluctuations caused by the dynamic changes in RF power during the aging process, a dynamic power compensation algorithm based on real-time cavity pressure feedback was proposed and implemented. Meanwhile, a multi-variable coupled PID control strategy was adopted to achieve high-precision stability of the helium tank liquid level (±1%) and cavity pressure (±10 Pa). Experimental results show that this integrated control scheme effectively suppresses the risk of quenching caused by thermal disturbances, significantly improving the aging efficiency and operational reliability of the superconducting modules. This lays a solid technical foundation for the commissioning and long-term stable operation of the superconducting systems of SHINE and similar large-scale scientific facilities. Full article
Show Figures

Figure 1

18 pages, 12047 KB  
Article
Modeling Ice Detachment Events on Cryopumps During Space Propulsion Ground Testing
by Andreas Neumann
Aerospace 2025, 12(12), 1114; https://doi.org/10.3390/aerospace12121114 - 17 Dec 2025
Viewed by 173
Abstract
At DLR’s electric space propulsion vacuum test facility in Goettingen, spontaneous pressure rise events were observed, which led to interruptions of thruster testing. This study investigates the causes of four such events and presents a model that is able to simulate pressure rise [...] Read more.
At DLR’s electric space propulsion vacuum test facility in Goettingen, spontaneous pressure rise events were observed, which led to interruptions of thruster testing. This study investigates the causes of four such events and presents a model that is able to simulate pressure rise events due to xenon ice sheet detachment from operating cryogenic pumps. The model results show good agreement with the observed pressure curves and can reproduce the pressure rise slope, event duration, down slope, and maximum pressure during these events. The masses of the detached xenon ice sheets are in the range from 2 g to 0.4 kg, which is reasonable with respect to the amount of ice on cryopump cold plates. This first modeling step is based on a phenomenological approach, but the good results show that it is worth expanding and refining the model, e.g., by introducing more ice shape options, adding ice bonding layer properties, and adding other gases and physical condensate properties. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

14 pages, 5045 KB  
Article
Concertation of Anti-Reflective, Superhydrophobic Surface Based on Rational Assembly of Dual-Size Silica
by Lu Xu, Lei Niu, Shuqun Chen, Ting He, Junshu Wu, Jianbo Ai and Yongli Li
Materials 2025, 18(24), 5601; https://doi.org/10.3390/ma18245601 - 12 Dec 2025
Viewed by 381
Abstract
Silica-based multifunctional coatings hold great promise for applications in optical devices, lenses, and solar panels. Herein, we report a facile, low-temperature route to integrate super-hydrophobicity with high transparency and low haze. By precisely controlling particle gradation and applying fluorine passivation, a multi-scale structure [...] Read more.
Silica-based multifunctional coatings hold great promise for applications in optical devices, lenses, and solar panels. Herein, we report a facile, low-temperature route to integrate super-hydrophobicity with high transparency and low haze. By precisely controlling particle gradation and applying fluorine passivation, a multi-scale structure with micro-scale uniformity and nano-scale asperity was constructed. This unique architecture, combined with low surface energy, effectively reduces light scattering and enhances air trapping. Consequently, the coated glass achieves a high optical transmittance of 95.24% with a low haze of 0.97%, alongside a water contact angle of 153° and a sliding angle of 3°. The coating also exhibits distinct anti-reflection (an improvement of ~5.0% relative to the bare substrate) and self-cleaning properties. Furthermore, it demonstrates impressive robustness and durability, withstanding extreme conditions including cryogenic temperatures (−50 °C), hygrothermal environments, and long-term outdoor exposure. This work demonstrates the versatile potential of our strategy for fabricating highly transparent and superhydrophobic surfaces. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Graphical abstract

11 pages, 1824 KB  
Article
Correlation Development for Para-to-Ortho Hydrogen Catalytic Conversion in Vapor-Cooled Shields of Hydrogen Tanks
by Yiqi Zhao, Chuiju Meng and Yonghua Huang
Cryo 2025, 1(4), 14; https://doi.org/10.3390/cryo1040014 - 6 Nov 2025
Viewed by 547
Abstract
The cooling effect from the para-ortho hydrogen conversion (POC) combined with a vapor-cooled shield (VCS) and multi-layer insulation (MLI) can effectively extend the storage duration of liquid hydrogen in cryogenic tanks. However, there is currently no effective and straightforward empirical correlation available for [...] Read more.
The cooling effect from the para-ortho hydrogen conversion (POC) combined with a vapor-cooled shield (VCS) and multi-layer insulation (MLI) can effectively extend the storage duration of liquid hydrogen in cryogenic tanks. However, there is currently no effective and straightforward empirical correlation available for predicting the catalytic POC efficiency in VCS pipelines. This study focuses on the development of correlations for the catalytic conversion of para-hydrogen to ortho-hydrogen in pipelines, particularly in the context of cryogenic hydrogen storage systems. A model that incorporates the Langmuir adsorption characteristics of catalysts and introduces the concept of conversion efficiency to quantify the catalytic process’s performance is introduced. Experimental data were obtained in the temperature range of 141.9~229.9 K from a cryogenic hydrogen catalytic conversion facility, where the effects of temperature, pressure, and flow rate on the catalytic conversion efficiency were analyzed. Based on a validation against the experimental data, the proposed model offers a reliable method for predicting the cooling effects and optimizing the catalytic conversion process in VCS pipelines, which may contribute to the improvement of liquid hydrogen storage systems, enhancing both the efficiency and duration of storage. Full article
(This article belongs to the Special Issue Efficient Production, Storage and Transportation of Liquid Hydrogen)
Show Figures

Figure 1

12 pages, 2478 KB  
Review
Technology and Development of Hydrogen–Helium Cryogenics Created by Hong Chaosheng
by Zhongjun Hu
Cryo 2025, 1(3), 11; https://doi.org/10.3390/cryo1030011 - 30 Aug 2025
Viewed by 969
Abstract
Professor Hong Chaosheng, as the founding figure and pioneer of China’s hydrogen and helium cryogenic technology, played a pivotal role in advancing this field from its inception to global competitiveness. This paper systematically reviews the seven-decade-long cryogenic research trajectory of the Technical Institute [...] Read more.
Professor Hong Chaosheng, as the founding figure and pioneer of China’s hydrogen and helium cryogenic technology, played a pivotal role in advancing this field from its inception to global competitiveness. This paper systematically reviews the seven-decade-long cryogenic research trajectory of the Technical Institute of Physics and Chemistry, CAS (formerly the Cryogenic Technology Experimental Center), with particular emphasis on milestone scientific achievements and their significant applications. In the 1960s, the Institute’s breakthrough in long-piston-expander-precooled helium liquefaction technology provided critical support for China’s space technology and superconductivity research. Since the 21st century, building upon Professor Hong’s academic legacy, the Institute has successively overcome core technological challenges in developing high-speed helium turbine expanders, high-efficiency oil-flooded screw compressors, and superfluid helium temperature refrigeration systems. These innovations have yielded a complete series of large-scale cryogenic equipment with independent intellectual property rights. These advancements have been successfully applied in national megaprojects such as neutron sources and superconducting magnet testing facilities, with some technical parameters reaching internationally leading standards. Looking ahead, with the rapid development of quantum computing and fusion energy, China’s hydrogen–helium cryogenic technology will continue to optimize equipment performance while expanding application frontiers through enhanced international collaboration, thereby making greater contributions to cutting-edge scientific research and clean energy development. Full article
Show Figures

Figure 1

8 pages, 2061 KB  
Article
Flexible Cs3Cu2I5 Nanocrystal Thin-Film Scintillators for Efficient α-Particle Detection
by Yang Li, Xue Du, Silong Zhang, Bo Liu, Naizhe Zhao, Yapeng Zhang and Xiaoping Ouyang
Crystals 2025, 15(8), 716; https://doi.org/10.3390/cryst15080716 - 6 Aug 2025
Viewed by 1331
Abstract
Thin-film detection technology plays a significant role in particle physics, X-ray imaging and radiation monitoring. In this paper, the detection capability of a Cs3Cu2I5 thin-film scintillator toward α particles is investigated. The flexible thin-film scintillator is fabricated by [...] Read more.
Thin-film detection technology plays a significant role in particle physics, X-ray imaging and radiation monitoring. In this paper, the detection capability of a Cs3Cu2I5 thin-film scintillator toward α particles is investigated. The flexible thin-film scintillator is fabricated by a facile and cost-effective in situ strategy, exhibiting excellent scintillation properties. Upon α-particle excitation, the light yield of the Cs3Cu2I5 thin-film is 2400 photons/MeV, which greatly benefits its application for single-particle events detection. Moreover, it shows linear energy response within the range of 4.7–5.5 MeV and moderate decay time of 667 ns. We further explored the cryogenic scintillation performance of Cs3Cu2I5@PMMA film. As the temperature decreases from 300 K to 50 K, its light yield gradually increases to 1.3 fold of its original value, while its decay time remains almost unchanged. This scintillator film also shows excellent low-temperature stability and flexible operational stability. This work demonstrates the great potential of the Cs3Cu2I5@PMMA film for the practical utilization in α-particle detection application. Full article
Show Figures

Figure 1

20 pages, 3123 KB  
Article
Cryogenic Distribution System and Entropy-Based Analysis of Chosen Design Options for the Example of the Polish FEL Facility
by Tomasz Banaszkiewicz, Maciej Chorowski and Paweł Duda
Energies 2025, 18(13), 3554; https://doi.org/10.3390/en18133554 - 5 Jul 2025
Viewed by 678
Abstract
The Polish Free-Electron Laser (PolFEL), which is currently under construction in the National Centre for Nuclear Research in Świerk near Warsaw, will comprise an electron gun and from four to six cryomodules, each accommodating two nine-cell TESLA RF superconducting resonant cavities. To cool [...] Read more.
The Polish Free-Electron Laser (PolFEL), which is currently under construction in the National Centre for Nuclear Research in Świerk near Warsaw, will comprise an electron gun and from four to six cryomodules, each accommodating two nine-cell TESLA RF superconducting resonant cavities. To cool the superconducting resonant cavities, the cryomodules will be supplied with superfluid helium at a temperature of 2 K. Other requirements regarding the cooling power of PolFEL result from the need to cool the power couplers for the accelerating cryomodules (5 K) and thermal shields, which limit the heat inleaks due to radiation (40–80 K). The machine will utilize several thermodynamic states of helium, including two-phase superfluid helium, supercritical helium, and low-pressure helium vapours. Supercritical helium will be supplied from a cryoplant by a cryogenic distribution system (CDS)—transfer line and valve boxes—where it will be thermodynamically transformed into a superfluid state. This article presents the architecture of the CDS, discusses several design solutions that could have been decided on with the use of second law analysis, and presents the design methodology of the chosen CDS elements. Full article
Show Figures

Figure 1

42 pages, 6369 KB  
Review
Review of Post-Combustion Carbon Capture in Europe: Current Technologies and Future Strategies for Largest CO2-Emitting Industries
by Luísa Marques, Miguel Monteiro, Charles Cenci, Maria Mateus and José Condeço
Energies 2025, 18(13), 3539; https://doi.org/10.3390/en18133539 - 4 Jul 2025
Cited by 6 | Viewed by 6720
Abstract
Heavy industry is a significant contributor to CO2 global emissions, accounting for approximately 25% of the total. In Europe, the continent’s largest emitting industries, including steel, cement, and power generation, face significant decarbonization challenges due to multiple interrelated factors. Heavy industry must [...] Read more.
Heavy industry is a significant contributor to CO2 global emissions, accounting for approximately 25% of the total. In Europe, the continent’s largest emitting industries, including steel, cement, and power generation, face significant decarbonization challenges due to multiple interrelated factors. Heavy industry must achieve carbon neutrality by 2050, as outlined in the 13th United Nations Sustainable Goals. One strategy to achieve this goal involves Carbon Capture Utilization and Storage (CCUS) with post-combustion carbon capture (PCC) technologies playing a critical role. Key methods include absorption, which uses chemical solvents like amines; adsorption, employing solid sorbents; cyclic CO2 capture, such as calcium looping methods; cryogenic separation, which involves chilling flue gas to liquefy CO2; and membrane separation, leveraging polymeric materials. Each technology offers unique advantages and challenges, necessitating hybrid approaches and policy support for widespread adoption. In this sense, this review provides a comprehensive overview of the existing European pilot and demonstration units and projects, funded by the EU across several industries. It specifically focuses on PCC. This study examines 111 industrial facilities across Europe, documenting the PCC technologies deployed at plants of varying capacities, geographic locations, and operational stakeholders. The review further evaluates the techno-economic performance of these systems, assessing their potential to advance carbon neutrality in heavy industries. Full article
(This article belongs to the Special Issue Process Optimization of Carbon Capture Technology)
Show Figures

Figure 1

28 pages, 14197 KB  
Article
A Multidisciplinary Approach to Volumetric Neutron Source (VNS) Thermal Shield Design: Analysis and Optimisation of Electromagnetic, Thermal, and Structural Behaviours
by Fabio Viganò, Irene Pagani, Simone Talloni, Pouya Haghdoust, Giovanni Falcitelli, Ivan Maione, Lorenzo Giannini, Cesar Luongo and Flavio Lucca
Energies 2025, 18(13), 3305; https://doi.org/10.3390/en18133305 - 24 Jun 2025
Viewed by 742
Abstract
The Volumetric Neutron Source (VNS) is a pivotal facility proposed for advancing fusion nuclear technology, particularly for the qualification of breeding blanket systems, a key component of DEMO and future fusion reactors. This study focuses on the design and optimisation of the VNS [...] Read more.
The Volumetric Neutron Source (VNS) is a pivotal facility proposed for advancing fusion nuclear technology, particularly for the qualification of breeding blanket systems, a key component of DEMO and future fusion reactors. This study focuses on the design and optimisation of the VNS Thermal Shield, adopting a multidisciplinary approach to address its thermal and structural behaviours. The Thermal Shield plays a crucial role in protecting superconducting magnets and other cryogenic components by limiting heat transfer from higher-temperature regions of the tokamak to the cryostat, which operates at temperatures between 4 K and 20 K. To ensure both thermal insulation and structural integrity, multiple design iterations were conducted. These iterations aimed to reduce electromagnetic (EM) forces induced during magnet charge and discharge cycles by introducing strategic cuts and reinforcements in the shield design. The optimisation process included the evaluation of various aluminium alloys and composite materials to achieve a balance between rigidity and weight while maintaining structural integrity under EM and mechanical loads. Additionally, an integrated thermal study was performed to ensure effective temperature management, maintaining the shield at an operational temperature of around 80 K. Cooling channels were incorporated to homogenise temperature distribution, improving thermal stability and reducing thermal gradients. This comprehensive approach demonstrates the viability of advanced material solutions and design strategies for thermal and structural optimisation. The findings reinforce the importance of the VNS as a dedicated platform for testing and validating critical fusion technologies under operationally relevant conditions. Full article
(This article belongs to the Special Issue Advanced Simulations for Nuclear Fusion Energy Systems)
Show Figures

Figure 1

87 pages, 11054 KB  
Review
Advancing Hybrid Cryogenic Natural Gas Systems: A Comprehensive Review of Processes and Performance Optimization
by Bahram Ghorbani, Sohrab Zendehboudi and Noori M. Cata Saady
Energies 2025, 18(6), 1443; https://doi.org/10.3390/en18061443 - 14 Mar 2025
Cited by 5 | Viewed by 6146
Abstract
Recent research in the liquefied natural gas (LNG) industry has concentrated on reducing specific power consumption (SPC) during production, which helps to lower operating costs and decrease the carbon footprint. Although reducing the SPC offers benefits, it can complicate the system and increase [...] Read more.
Recent research in the liquefied natural gas (LNG) industry has concentrated on reducing specific power consumption (SPC) during production, which helps to lower operating costs and decrease the carbon footprint. Although reducing the SPC offers benefits, it can complicate the system and increase investment costs. This review investigates the thermodynamic parameters of various natural gas (NG) liquefaction technologies. It examines the cryogenic NG processes, including integrating NG liquid recovery plants, nitrogen rejection cycles, helium recovery units, and LNG facilities. It explores various approaches to improve hybrid NG liquefaction performance, including the application of optimization algorithms, mixed refrigerant units, absorption refrigeration cycles, diffusion–absorption refrigeration systems, auto-cascade absorption refrigeration processes, thermoelectric generator plants, liquid air cold recovery units, ejector refrigeration cycles, and the integration of renewable energy sources and waste heat. The review evaluates the economic aspects of hybrid LNG systems, focusing on specific capital costs, LNG pricing, and capacity. LNG capital cost estimates from academic sources (173.2–1184 USD/TPA) are lower than those in technical reports (486.7–3839 USD/TPA). LNG prices in research studies (0.2–0.45 USD/kg, 2024) are lower than in technical reports (0.3–0.7 USD/kg), based on 2024 data. Also, this review investigates LNG accidents in detail and provides valuable insights into safety protocols, risk management strategies, and the overall resilience of LNG operations in the face of potential hazards. A detailed evaluation of LNG plants built in recent years is provided, focusing on technological advancements, operational efficiency, and safety measures. Moreover, this study investigates LNG ports in the United States, examining their infrastructures, regulatory compliance, and strategic role in the global LNG supply chain. In addition, it outlines LNG’s current status and future outlook, focusing on key industry trends. Finally, it presents a market share analysis that examines LNG distribution by export, import, re-loading, and receiving markets. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

12 pages, 4890 KB  
Article
Cryogenic Facility for Prototyping ET-LF Payloads Using Conductive Cooling
by Marco Ricci, Eugenio Benedetti, Angelo Cruciani, Van Long Hoang, Benedetta Kalemi, Luca Naticchioni, Marco Orsini, Stefano Pirro, Paola Puppo, Piero Rapagnani, Fulvio Ricci, Emanuele Tofani and Ettore Majorana
Galaxies 2025, 13(1), 12; https://doi.org/10.3390/galaxies13010012 - 12 Feb 2025
Viewed by 1585
Abstract
Cooling down large test masses up to 200 kg, as foreseen for the Einstein Telescope, is a complex challenge combining cutting-edge technological achievements from different disciplines with the experience gained from both room-temperature and cryogenic-temperature detector development communities. We set up an apparatus [...] Read more.
Cooling down large test masses up to 200 kg, as foreseen for the Einstein Telescope, is a complex challenge combining cutting-edge technological achievements from different disciplines with the experience gained from both room-temperature and cryogenic-temperature detector development communities. We set up an apparatus designed to test cryogenic mechanical suspensions for the payload system. They should have high quality factors and enable sufficient heat extraction greater than 0.3 W. The facility is on a university campus where cryofluid servicing is not feasible. As a result, a system that incorporates conductive cooling technology was developed. The project has two main goals: validating crystalline suspensions in a realistic Einstein Telescope cryogenic payload and testing new solutions for radiative thermal shielding. No particular measures are planned for the vibration isolation system. Full article
Show Figures

Figure 1

18 pages, 2931 KB  
Article
Application ICP-OES to Multielement Analysis on Plastic Waste and Blends with Vacuum Gas Oil: Developing a Sample Preparation Protocol
by Laura Poirier, Hye-Kyung Timken and Francisco Lopez-Linares
Processes 2024, 12(11), 2339; https://doi.org/10.3390/pr12112339 - 24 Oct 2024
Cited by 1 | Viewed by 2641
Abstract
This paper introduces a new methodology for a routine metal analysis of plastic waste (PW) and PW blended with petroleum feedstock such as vacuum gas oil and VGO (PW/VGO). For such purposes, recycled polyethylene and polypropylene plastic were selected to mimic the potential [...] Read more.
This paper introduces a new methodology for a routine metal analysis of plastic waste (PW) and PW blended with petroleum feedstock such as vacuum gas oil and VGO (PW/VGO). For such purposes, recycled polyethylene and polypropylene plastic were selected to mimic the potential feeds to be integrated at the Fluid Catalytic Cracking unit (FCC) to produce valuable products. Elements such as P, Ca, Al, Mg, Na, Zn, B, Fe, Ti, and Si were included in the method development. Different sample preparation methods were evaluated, such as microwave-assisted acid digestion (MWAD) and dry/wet ashing, followed by a fusion of the ash with lithium borate flux. Some PW homogenization pretreatments, such as cryogenic grinding and hot press molding, were also covered. The finding of this work suggests that MWAD with HNO3 and H2O2 is adequate for both types of samples and is the quickest sample preparation; however, the sample needed to be homogenized, and recoveries for Si and Ti may be biased for PW due to the limited solubilities of these elements in the nitric acid media. Carbon removal is required before fusion sample preparation and analysis due to the amount of carbon in PW samples. The sample needed to be homogenized for wet ash fusion but not for the pre-ash (dry) method. A benefit to the damp ash pretreatment is that the ash for the sample was created in the same crucible used for fusion digestion, avoiding material loss during sample management. Fusion from wet ash or carbon removal allowed for better acid solubility for Si and Ti in PW. The results of the PW samples evaluated matched well with those of both sample preparation methodologies. For most elements, precision was <10% regardless of the sample preparation; however, Fe and P had some variation using wet ash fusion, possibly due to contamination in an open digestion system or variation due to being close to the method limit of quantification (LOQ). The methodology reported here is robust enough to be implemented as routine analysis in any laboratory facility. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Graphical abstract

13 pages, 5498 KB  
Article
Stimuli-Responsive Vesicles and Hydrogels Formed by a Single-Tailed Dynamic Covalent Surfactant in Aqueous Solutions
by Chunlin Xu, Na Sun, Huaixiu Li, Xingchen Han, Ailing Zhang and Panpan Sun
Molecules 2024, 29(21), 4984; https://doi.org/10.3390/molecules29214984 - 22 Oct 2024
Cited by 3 | Viewed by 1589
Abstract
Controlling the hierarchical self-assembly of surfactants in aqueous solutions has drawn much attention due to their broad range of applications, from targeted drug release, preparation of smart material, to biocatalysis. However, the synthetic procedures for surfactants with stimuli-responsive hydrophobic chains are complicated, which [...] Read more.
Controlling the hierarchical self-assembly of surfactants in aqueous solutions has drawn much attention due to their broad range of applications, from targeted drug release, preparation of smart material, to biocatalysis. However, the synthetic procedures for surfactants with stimuli-responsive hydrophobic chains are complicated, which restricts the development of surfactants. Herein, a novel single-tailed responsive surfactant, 1-methyl-3-(2-(4-((tetradecylimino) methyl) phenoxy) ethyl)-3-imidazolium bromides (C14PMimBr), was facilely fabricated in situ by simply mixing an aldehyde-functionalized imidazolium cation (3-(2-(4-formylphenoxy) ethyl)-1-methyl imidazolium bromide, BAMimBr) and aliphatic amine (tetradecylamine, TDA) through dynamic imine bonding. With increasing concentration, micelles, vesicles, and hydrogels were spontaneously formed by the hierarchical self-assembly of C14PMimBr in aqueous solutions without any additives. The morphologies of vesicles and hydrogels were characterized by cryogenic transmission electron microscopy and scanning electron microscopy. The mechanical properties and microstructure information of hydrogels were demonstrated by rheological measurement, X-ray diffraction, and density functional theory calculation. In addition, the vesicles could be disassembled and reassembled with the breakage and reformation of imine bonds by adding acid/bubbling CO2 and adding alkali. This work provides a simple method for constructing stimuli-responsive surfactant systems and shows great potential application in targeted drug release, drug delivery, and intelligent materials. Full article
(This article belongs to the Special Issue Amphiphilic Molecules, Interfaces and Colloids)
Show Figures

Graphical abstract

12 pages, 2932 KB  
Article
Temperature Dependence of the Sensitivity of PVDF Pyroelectric Sensors to THz Radiation: Towards Cryogenic Applications
by Artem N. Sinelnikov, Anatoly R. Melnikov, Yaroslav V. Getmanov, Darya A. Kolomeec, Evgeny V. Kalneus, Matvey V. Fedin and Sergey L. Veber
Sensors 2024, 24(17), 5808; https://doi.org/10.3390/s24175808 - 6 Sep 2024
Cited by 2 | Viewed by 2453
Abstract
The application of terahertz (THz) science in industrial technology and scientific research requires efficient THz detectors. Such detectors should be able to operate under various external conditions and conform to existing geometric constraints in the required application. Pyroelectric THz detectors are among the [...] Read more.
The application of terahertz (THz) science in industrial technology and scientific research requires efficient THz detectors. Such detectors should be able to operate under various external conditions and conform to existing geometric constraints in the required application. Pyroelectric THz detectors are among the best candidates. This is due to their versatility, outstanding performance, ease of fabrication, and robustness. In this paper, we propose a compact pyroelectric detector based on a bioriented poled polyvinylidene difluoride film coated with sputtered metal electrodes for in situ absorption measurement at cryogenic temperature. The detector design was optimized for the registration system of the electron paramagnetic resonance (EPR) endstation of the Novosibirsk Free Electron Laser facility. Measurements of the detector response to pulsed THz radiation at different temperatures and electrode materials showed that the response varies with both the temperature and the type of electrode material used. The maximum signal level corresponds to the temperature range of 10–40 K, in which the pyroelectric coefficient of the PVDF film also has a maximum value. Among the three coatings studied, namely indium tin oxide (ITO), Au, and Cu/Ni, the latter has the highest increase in sensitivity at low temperature. The possibility of using the detectors for in situ absorption measurement was exemplified using two typical molecular spin systems, which exhibited a transparency of 20–30% at 76.9 cm−1 and 5 K. Such measurements, carried out directly in the cryostat with the main recording system and sample fully configured, allow precise control of the THz radiation parameters at the EPR endstation. Full article
(This article belongs to the Special Issue Research Development in Terahertz and Infrared Sensing Technology)
Show Figures

Figure 1

15 pages, 3327 KB  
Article
A High–Throughput Molecular Dynamics Study for the Modeling of Cryogenic Solid Formation
by Simone Giusepponi, Francesco Buonocore, Massimo Celino, Andrea Iaboni, Antonio Frattolillo and Silvio Migliori
Crystals 2024, 14(8), 741; https://doi.org/10.3390/cryst14080741 - 20 Aug 2024
Viewed by 1380
Abstract
To predict the favorable thermodynamical conditions and characterize cryogenic pellet formations for applications in nuclear fusion reactors, a high–throughput molecular dynamics study based on a unified framework to simulate the growth process of cryogenic solids (molecular deuterium, neon, argon) under gas pressure have [...] Read more.
To predict the favorable thermodynamical conditions and characterize cryogenic pellet formations for applications in nuclear fusion reactors, a high–throughput molecular dynamics study based on a unified framework to simulate the growth process of cryogenic solids (molecular deuterium, neon, argon) under gas pressure have been designed. These elements are used in fusion nuclear plants as fuel materials and to reduce the damage risks for the plasma-facing components in case of a plasma disruption. The unified framework is based on the use of workflows that permit management in HPC facilities, the submission of a massive number of molecular dynamics simulations, and handle huge amounts of data. This simplifies a variety of operations for the user, allowing for significant time savings and efficient organization of the generated data. This approach permits the use of large-scale parallel simulations on supercomputers to reproduce the solid–gas equilibrium curves of cryogenic solids like molecular deuterium, neon, and argon, and to analyze and characterize the reconstructed solid phase in terms of the separation between initial and reconstructed solid slabs, the smoothness of the free surfaces and type of the crystal structure. These properties represent good indicators for the quality of the final materials and provide effective indications regarding the optimal thermodynamical conditions of the growing process. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

Back to TopTop