Review of Post-Combustion Carbon Capture in Europe: Current Technologies and Future Strategies for Largest CO2-Emitting Industries
Abstract
1. Introduction
2. Pilot and Demonstration Units of CO2 Post-Combustion Capture in Europe
2.1. Absorption Technology
2.1.1. Small-Scale Units of Absorption Technology
2.1.2. Medium-Scale Units of Absorption Technology
2.1.3. Large-Scale Units of Absorption Technology
2.1.4. Undisclosed-Scale Units of Absorption Technology
2.2. Adsorption Technology
2.2.1. Small-Scale Unit of Adsorption Technology
2.2.2. Large-Scale Units of Adsorption Technology
2.2.3. Undisclosed-Scale Units of Adsorption Technology
2.3. Adsorption–Desorption Technology
Undisclosed-Scale Units of Adsorption–Desorption Technology
2.4. Cryogenic Technology
Large-Scale Units of Cryogenic Technology
2.5. Membranes Technology
2.5.1. Small-Scale Unit of Membrane Technology
2.5.2. Large-Scale Unit of Membrane Technology
2.5.3. Undisclosed-Scale Units of Membrane Technology
3. Techno-Economical Assessment Studies on Post Combustion Carbon Capture
4. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Desport, L.; Andrade, C.; Corral, D.; Selosse, S. Feasibility, Conditions, and Opportunities for Achieving Net-Negative Emissions in the Global Cement Industry. Int. J. Greenh. Gas Control 2025, 141, 104280. [Google Scholar] [CrossRef]
- Lima, A.T.; Kirkelund, G.M.; Lu, Z.; Mao, R.; Kunther, W.; Rode, C.; Slabik, S.; Hafner, A.; Sameer, H.; Dürr, H.H.; et al. Mapping Circular Economy Practices for Steel, Cement, Glass, Brick, Insulation, and Wood—A Review for Climate Mitigation Modeling. Renew. Sustain. Energy Rev. 2024, 202, 114697. [Google Scholar] [CrossRef]
- Ye, H.; Liao, H.; Zheng, G.; Peng, Y. Industrialization, Environmental Externality, and Climate Mitigation Strategies. Econ. Model. 2024, 139, 106826. [Google Scholar] [CrossRef]
- Available online: https://www.ramboll.com/industrial/energy-intensive-industries (accessed on 4 April 2025).
- Hanson, E.; Nwakile, C.; Hammed, V.O. Carbon Capture, Utilization, and Storage (CCUS) Technologies: Evaluating the Effectiveness of Advanced CCUS Solutions for Reducing CO2 Emissions. Results Surf. Interfaces 2025, 18, 100381. [Google Scholar] [CrossRef]
- Moreaux, M.; Amigues, J.P.; van der Meijden, G.; Withagen, C. Carbon Capture: Storage vs. Utilization. J. Environ. Econ. Manag. 2024, 125, 102976. [Google Scholar] [CrossRef]
- Zhai, Y.; Huang, X. Bridging the Valley of Death for Early-Stage Climate Technology: A Holistic Approach in Carbon Capture, Utilization, and Storage. Nexus 2024, 1, 100032. [Google Scholar] [CrossRef]
- Storrs, K.; Lyhne, I.; Drustrup, R. A Comprehensive Framework for Feasibility of CCUS Deployment: A Meta-Review of Literature on Factors Impacting CCUS Deployment. Int. J. Greenh. Gas Control 2023, 125, 103878. [Google Scholar] [CrossRef]
- Bang, A.; Moreno, D.; Lund, H.; Nielsen, S. Regional CCUS Strategies in the Context of a Fully Decarbonized Society. J. Clean. Prod. 2024, 477, 143882. [Google Scholar] [CrossRef]
- Sheikhtajian, S.; Bagherinejad, J.; Mohammadi, E. Investment in CCUS under Technical Uncertainty Considering Investor’s Risk Aversion: An Exotic Compound Real-Options Approach. Int. J. Greenh. Gas Control 2024, 138, 104241. [Google Scholar] [CrossRef]
- Li, R.; Chen, Q.; Wang, Q. Emerging Topic Identification in Carbon Capture Utilization and Storage (CCUS) for Advancing Climate Action (SDG 13). Renew. Sustain. Energy Rev. 2025, 222, 115969. [Google Scholar] [CrossRef]
- Davoodi, S.; Al-Shargabi, M.; Wood, D.A.; Rukavishnikov, V.S.; Minaev, K.M. Review of Technological Progress in Carbon Dioxide Capture, Storage, and Utilization. Gas Sci. Eng. 2023, 117, 205070. [Google Scholar] [CrossRef]
- Greig, C.; Uden, S. The Value of CCUS in Transitions to Net-Zero Emissions. Electr. J. 2021, 34, 107004. [Google Scholar] [CrossRef]
- Marques, L.; Vieira, M.; Condeço, J.; Sousa, H.; Henriques, C.; Mateus, M. Review of Power-to-Liquid (PtL) Technology for Renewable Methanol (e-MeOH): Recent Developments, Emerging Trends and Prospects for the Cement Plant Industry. Energies 2024, 17, 5589. [Google Scholar] [CrossRef]
- Marques, L.; Vieira, M.; Condeço, J.; Henriques, C.; Mateus, M. A Mini-Review on Recent Developments and Improvements in CO2 Catalytic Conversion to Methanol: Prospects for the Cement Plant Industry. Energies 2024, 17, 5285. [Google Scholar] [CrossRef]
- Quang, D.V.; Milani, D.; Abu Zahra, M. A Review of Potential Routes to Zero and Negative Emission Technologies via the Integration of Renewable Energies with CO2 Capture Processes. Int. J. Greenh. Gas Control 2023, 124, 103862. [Google Scholar] [CrossRef]
- Wang, N.; Zhou, J.; Ren, J. Recent Advances in CO2 Capture and Utilization: From the Perspective of Process Integration and Optimization. Renew. Sustain. Energy Rev. 2025, 216, 115688. [Google Scholar] [CrossRef]
- Nakkeeran, K.; Victor, K. Grey and Blue Hydrogen: Insights into Production Technologies and Outlook on CO2-Free Alternatives. Sustain. Energy Technol. Assess. 2025, 75, 104222. [Google Scholar] [CrossRef]
- Singh, H.; Li, C.; Cheng, P.; Wang, X.; Liu, Q. A Critical Review of Technologies, Costs, and Projects for Production of Carbon-Neutral Liquid e-Fuels from Hydrogen and Captured CO2. Energy Adv. 2022, 1, 580–605. [Google Scholar] [CrossRef]
- Tasleem, S.; Bongu, C.S.; Krishnan, M.R.; Alsharaeh, E.H. Navigating the Hydrogen Prospect: A Comprehensive Review of Sustainable Source-Based Production Technologies, Transport Solutions, Advanced Storage Mechanisms, and CCUS Integration. J. Energy Chem. 2024, 97, 166–215. [Google Scholar] [CrossRef]
- Lu, H.; Xi, D.; Cheng, Y.F. Hydrogen Production in Integration with CCUS: A Realistic Strategy towards Net Zero. Energy 2025, 315, 134398. [Google Scholar] [CrossRef]
- Lagioia, G.; Spinelli, M.P.; Amicarelli, V. Blue and Green Hydrogen Energy to Meet European Union Decarbonisation Objectives. An Overview of Perspectives and the Current State of Affairs. Int. J. Hydrogen Energy 2023, 48, 1304–1322. [Google Scholar] [CrossRef]
- Xu, H.; Yu, L.; Chong, C.; Wang, F. A Comprehensive Review on Direct Air Carbon Capture (DAC) Technology by Adsorption: From Fundamentals to Applications. Energy Convers. Manag. 2024, 322, 119119. [Google Scholar] [CrossRef]
- Hou, R.; Yu, J.; Xie, J.; Gu, Y.; Wang, L.; Zhao, B.; Pan, Y. Membrane Technology for Carbon Capture Sequestration and Direct Air Capture—Current Status and Perspective. Sep. Purif. Technol. 2025, 360, 131077. [Google Scholar] [CrossRef]
- Béres, R.; Junginger, M.; Broek, M. van den Assessing the Feasibility of CO2 Removal Strategies in Achieving Climate-Neutral Power Systems: Insights from Biomass, CO2 Capture, and Direct Air Capture in Europe. Adv. Appl. Energy 2024, 14, 100166. [Google Scholar] [CrossRef]
- Mortezaei, K.; Amirlatifi, A.; Ghazanfari, E.; Vahedifard, F. Potential CO2 Leakage from Geological Storage Sites: Advances and Challenges. Environ. Geotech. 2019, 8, 3–27. [Google Scholar] [CrossRef]
- Rashid, M.I.; Yaqoob, Z.; Mujtaba, M.A.; Kalam, M.A.; Fayaz, H.; Qazi, A. Carbon Capture, Utilization and Storage Opportunities to Mitigate Greenhouse Gases. Heliyon 2024, 10, e25419. [Google Scholar] [CrossRef]
- Leung, D.Y.C.; Caramanna, G.; Maroto-Valer, M.M. An Overview of Current Status of Carbon Dioxide Capture and Storage Technologies. Renew. Sustain. Energy Rev. 2014, 39, 426–443. [Google Scholar] [CrossRef]
- El-Kady, A.H.; Amin, M.T.; Khan, F.; El-Halwagi, M.M. Analysis of CO2 Pipeline Regulations from a Safety Perspective for Offshore Carbon Capture, Utilization, and Storage (CCUS). J. Clean. Prod. 2024, 439, 140734. [Google Scholar] [CrossRef]
- Santos, R.; Sgouridis, S.; Alhajaj, A. Potential of CO2-Enhanced Oil Recovery Coupled with Carbon Capture and Storage in Mitigating Greenhouse Gas Emissions in the UAE. Int. J. Greenh. Gas Control 2021, 111, 103485. [Google Scholar] [CrossRef]
- Su, X.; Liu, P.; Mei, Y.; Qiu, J. The Impact of Carbon Capture, Utilization, and Storage (CCUS) Projects on Environmental Protection, Economic Development, and Social Equity. J. Clean. Prod. 2024, 482, 144218. [Google Scholar] [CrossRef]
- Rui, Z.; Zeng, L.; Dindoruk, B. Challenges in the Large-Scale Deployment of CCUS. Engineering 2025, 44, 17–20. [Google Scholar] [CrossRef]
- Li, C.; Yi, N.; Fang, M.; Yu, X.; Gao, J.; Gu, Y.; Lu, S.; Wang, T.; Wang, Q. Solvent Emissions Control in Large Scale Chemical Absorption CO2 Capture Plant. Int. J. Greenh. Gas Control 2021, 111, 103444. [Google Scholar] [CrossRef]
- Ferrara, G.; Lanzini, A.; Leone, P.; Ho, M.T.; Wiley, D.E. Exergetic and Exergoeconomic Analysis of Post-Combustion CO2 Capture Using MEA-Solvent Chemical Absorption. Energy 2017, 130, 113–128. [Google Scholar] [CrossRef]
- Sahraei, M.H.; Ricardez-Sandoval, L.A. Simultaneous Design and Control of the MEA Absorption Process of a CO2 Capture Plant. Energy Procedia 2014, 63, 1601–1607. [Google Scholar] [CrossRef]
- Nittaya, T.; Douglas, P.L.; Croiset, E.; Ricardez-Sandoval, L.A. Dynamic Modelling and Controllability Studies of a Commercial-Scale MEA Absorption Processes for CO2 Capture from Coal-Fired Power Plants. Energy Procedia 2014, 63, 1595–1600. [Google Scholar] [CrossRef]
- Cheng, S.; Zheng, Y.; Li, G.; Gao, J.; Li, R.; Yue, T. Research Progress on Phase Change Absorbents for CO2 Capture in Industrial Flue Gas: Principles and Application Prospects. Sep. Purif. Technol. 2025, 354, 129296. [Google Scholar] [CrossRef]
- Marques, L.M.; Carrott, P.J.M.; Ribeiro Carrott, M.M.L. Amine-Modified Carbon Aerogels for CO2 Capture. Adsorpt. Sci. Technol. 2013, 31, 223–232. [Google Scholar] [CrossRef]
- Soo, X.Y.D.; Lee, J.J.C.; Wu, W.Y.; Tao, L.; Wang, C.; Zhu, Q.; Bu, J. Advancements in CO2 Capture by Absorption and Adsorption: A Comprehensive Review. J. CO2 Util. 2024, 81, 102727. [Google Scholar] [CrossRef]
- Lin, L.; Han, S.; Meng, F.; Li, J.; Chen, K.; Hu, E.; Jiang, J. The Influence of Pore Size and Pore Structure of Silica-Based Material on the Amine-Modified Adsorbent for CO2 Capture. Sep. Purif. Technol. 2024, 340, 126735. [Google Scholar] [CrossRef]
- Song, T.; Zhao, H.; Hu, Y.; Sun, N.; Zhang, H. Facile Assembly of Mesoporous Silica Nanoparticles with Hierarchical Pore Structure for CO2 Capture. Chin. Chem. Lett. 2019, 30, 2347–2350. [Google Scholar] [CrossRef]
- Aziz, M.A.A.; Hitam, C.N.C. Mesoporous Silica Nanoparticles for CO2 Capture and Conversion. Nanomater. Carbon. Dioxide Capture Convers. Technol. 2023, 333–359. [Google Scholar] [CrossRef]
- Wang, H.C.; Lu, C.; Bai, H.; Hwang, J.F.; Lee, H.H.; Chen, W.; Kang, Y.; Chen, S.T.; Su, F.; Kuo, S.C.; et al. Pilot-Scale Production of Mesoporous Silica-Based Adsorbent for CO2 Capture. Appl. Surf. Sci. 2012, 258, 6943–6951. [Google Scholar] [CrossRef]
- Lin, L.Y.; Bai, H. Facile and Surfactant-Free Route to Mesoporous Silica-Based Adsorbents from TFT-LCD Industrial Waste Powder for CO2 Capture. Microporous Mesoporous Mater. 2013, 170, 266–273. [Google Scholar] [CrossRef]
- Whaieb, A.H.; Jasim, F.T.; Abdulrahman, A.A.; Gheni, S.A.; Rizwanul Fattah, I.M.; Karakullukcu, N.T. Tailoring Zeolites for Enhanced Post-Combustion CO2 Capture: A Critical Review. Curr. Res. Green Sustain. Chem. 2025, 10, 100451. [Google Scholar] [CrossRef]
- Hu, P.; Oishi, R.; Ya, H.; Yonezawa, Y.; Matsukura, M.; Iyoki, K.; Okubo, T.; Wakihara, T. Development of Zeolite Adsorbent with Low Water Sensitivity for CO2 Capture. Chem. Eng. J. 2025, 508, 161054. [Google Scholar] [CrossRef]
- Henrotin, A.; Heymans, N.; Duprez, M.E.; Mouchaham, G.; Serre, C.; Wong, D.; Robinson, R.; Mulrooney, D.; Casaban, J.; De Weireld, G. Lab-Scale Pilot for CO2 Capture Vacuum Pressure Swing Adsorption: MIL-160(Al) vs Zeolite 13X. Carbon Capture Sci. Technol. 2024, 12, 100224. [Google Scholar] [CrossRef]
- Bahmanzadegan, F.; Ghaemi, A. Exploring the Effect of Zeolite’s Structural Parameters on the CO2 Capture Efficiency Using RSM and ANN Methodologies. Case Stud. Chem. Environ. Eng. 2024, 9, 100595. [Google Scholar] [CrossRef]
- Shao, J.; Wang, Y.; Liu, C.; Xiao, Q.; Demir, M.; Al Mesfer, M.K.; Danish, M.; Wang, L.; Hu, X. Advanced Microporous Carbon Adsorbents for Selective CO2 Capture: Insights into Heteroatom Doping and Pore Structure Optimization. J. Anal. Appl. Pyrolysis 2025, 186, 106946. [Google Scholar] [CrossRef]
- Ba, Y.Q.; Wang, Y.S.; Li, T.Y.; Zheng, Z.; Hao, G.P.; Lu, A.H. Fine Tuning CO2 Adsorption and Diffusion Behaviors in Ultra-Microporous Carbons for Favorable CO2 Capture at Moderate Temperature. Sustain. Chem. Clim. Action 2023, 2, 100015. [Google Scholar] [CrossRef]
- Cheng, Z.; Liu, X.; Diao, R.; Qi, F.; Ma, P. Structural Regulation of Ultra-Microporous Biomass-Derived Carbon Materials Induced by Molten Salt Synergistic Activation and Its Application in CO2 Capture. Chem. Eng. J. 2024, 486, 150227. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Gao, Q.; Sun, N.; Wei, W. Robust Nitrogen-Doped Microporous Hollow Carbon Spheres for Energy-Efficient CO2 Capture from Flue Gas. J. CO2 Util. 2023, 75, 102570. [Google Scholar] [CrossRef]
- Duran-Jimenez, G.; Rodriguez, J.; Stevens, L.; Altarawneh, S.; Batchelor, A.; Jiang, L.; Dodds, C. Single-Step Preparation of Activated Carbons from Pine Wood, Olive Stones and Nutshells by KOH and Microwaves: Influence of Ultra-Microporous for High CO2 Capture. Chem. Eng. J. 2024, 499, 156135. [Google Scholar] [CrossRef]
- Marques, L.M.; Carrott, P.J.M.; Carrott, R. Carbon Aerogel Used in CO2 Capture. Bol. Grupo Esp. Carbon. 2016, 40, 9–12. Available online: https://www.gecarbon.org/boletines/articulos/BoletinGEC_040-art2.pdf (accessed on 4 April 2025).
- Shen, Y.; Wu, Y. Review on Synthesis of Carbon Aerogels for CO2 Capture. Fuel 2025, 387, 134370. [Google Scholar] [CrossRef]
- Khan, M.A.; Javed, A.H.; Qammar, M.; Hafeez, M.; Arshad, M.; Zafar, M.I.; Aldawsari, A.M.; Shah, A.; Rehman, Z.U.; Iqbal, N. Nitrogen-Rich Mesoporous Carbon for High Temperature Reversible CO2 Capture. J. CO2 Util. 2021, 43, 101375. [Google Scholar] [CrossRef]
- Ekanayake, U.G.M.; Rahmati, S.; Zhou, R.; Zhou, R.; Cullen, P.J.; O’Mullane, A.P.; MacLeod, J.; Ostrikov, K. Power-to-Decarbonization: Mesoporous Carbon-MgO Nanohybrid Derived from Plasma-Activated Seawater Salt-Loaded Biomass for Efficient CO2 Capture. J. CO2 Util. 2021, 53, 101711. [Google Scholar] [CrossRef]
- Zhao, P.; Yin, Y.; Cheng, W.; Xu, X.; Yang, D.; Yuan, W. Development of Facile Synthesized Mesoporous Carbon Composite Adsorbent for Efficient CO2 Capture. J. CO2 Util. 2021, 50, 101612. [Google Scholar] [CrossRef]
- Sani, S.; Liu, X.; Li, M.; Stevens, L.; Sun, C. Synthesis and Characterization of Three-Dimensional Interconnected Large-Pore Mesoporous Cellular Lignin Carbon Materials and Their Potential for CO2 Capture. Microporous Mesoporous Mater. 2023, 347, 112334. [Google Scholar] [CrossRef]
- Shi, Z.; Li, X.; Yao, X.; Zhang, Y.B. MOF Adsorbents Capture CO2 on an Industrial Scale. Sci. Bull. 2022, 67, 885–887. [Google Scholar] [CrossRef]
- Xuan, K.; Zhong, L.; Othman, R.M.; Lithoxoos, G.P.; Almansour, F.; Shakhs, A.N.; Liu, Y.; Zhu, X.; Duan, N.; Sun, X.; et al. On CO2 Capture Capacity and Mechanisms for Zeolite Templated Carbon, MOF-199, and 13X Zeolite in Dry and Humid Conditions. Sep. Purif. Technol. 2025, 363, 132080. [Google Scholar] [CrossRef]
- Chen, X.; Quan, H.; Zhou, Z.; Zhang, X.; Hu, Y.; Huang, Z. Defect-Controlled Confined Growth of Nano-MOFs to Prepare Materials with Hierarchical Micro/Mesoporous Structures for Efficient CO2 Capture. J. Environ. Chem. Eng. 2024, 12, 114634. [Google Scholar] [CrossRef]
- Kazemi, A.; Pordsari, M.A.; Tamtaji, M.; Manteghi, F.; Ghaemi, A.; Rohani, S.; Goddard, W.A. Environmentally Friendly Synthesis and Morphology Engineering of Mixed-Metal MOF for Outstanding CO2 Capture Efficiency. Chem. Eng. J. 2025, 505, 158951. [Google Scholar] [CrossRef]
- Peh, S.B.; Zhao, D.; Jiang, J.; Farooq, S.; Zhao, D. Direct Contact TSA Cycle Based on a Hydrophobic MOF Sorbent for Post-Combustion CO2 Capture from Wet Flue Gas. Chem. Eng. Sci. 2025, 301, 120744. [Google Scholar] [CrossRef]
- Ji, Y.; Xu, W.; Chen, A.; Du, J.; Hou, S. Porous Carbon Materials for Enhanced Carbon Dioxide Capture toward Post-Combustion: Innovative Application and Future Prospects. Mater. Today Energy 2025, 47, 101746. [Google Scholar] [CrossRef]
- Kong, M.; Song, L.; Liao, H.; Zhang, S.; Wang, Y.; Deng, X.; Feng, W. A Review on Development of Post-Combustion CO2 Capture Technologies: Performance of Carbon-Based, Zeolites and MOFs Adsorbents. Fuel 2024, 371, 132103. [Google Scholar] [CrossRef]
- Mota, S.M.; Marques, L.M.; Teixeira, P.; Pinheiro, C.I.C.; Matos, H.A. Ca-Looping for CO2 Capture with CaO-Based Extrudates Using a Real Flue Gas from a Cement Industry. In Proceedings of the 16th Greenhouse Gas Control Technologies Conference (GHGT-16), Lyon, France, 23–27 October 2022. [Google Scholar] [CrossRef]
- Marques, L.M.; Mota, S.M.; Teixeira, P.; Pinheiro, C.I.C.; Matos, H.A. Ca-Looping Process Using Wastes of Marble Powders and Limestones for CO2 Capture from Real Flue Gas in the Cement Industry. J. CO2 Util. 2023, 71, 102450. [Google Scholar] [CrossRef]
- Marques, L.M.; Mota, S.M.; Teixeira, P.; Mateus, M.; Pinheiro, C.I.C. Decarbonisation of Cement Industry: Calcium Looping with White Mud and Limestone as CaO-Based Sorbents for Industrial Flue Gas Treatment. Chem. Eng. Process.-Process Intensif. 2025, 213, 110290. [Google Scholar] [CrossRef]
- Dieter, H.; Bidwe, A.R.; Varela-Duelli, G.; Charitos, A.; Hawthorne, C.; Scheffknecht, G. Development of the Calcium Looping CO2 Capture Technology from Lab to Pilot Scale at IFK, University of Stuttgart. Fuel 2014, 127, 23–37. [Google Scholar] [CrossRef]
- Shen, M.; Tong, L.; Yin, S.; Liu, C.; Wang, L.; Feng, W.; Ding, Y. Cryogenic Technology Progress for CO2 Capture under Carbon Neutrality Goals: A Review. Sep. Purif. Technol. 2022, 299, 121734. [Google Scholar] [CrossRef]
- Asgharian, H.; Iov, F.; Araya, S.S.; Pedersen, T.H.; Nielsen, M.P.; Baniasadi, E.; Liso, V. A Review on Process Modeling and Simulation of Cryogenic Carbon Capture for Post-Combustion Treatment. Energies 2023, 16, 1855. [Google Scholar] [CrossRef]
- Kim, Y.; Moon, I.; Kim, J.; Lee, J. Renewable Natural Gas Value Chain Based on Cryogenic Carbon Capture, Utilization and Storage, and Power-to-Gas for a Net-Zero CO2 Economy. Renew. Sustain. Energy Rev. 2025, 212, 115425. [Google Scholar] [CrossRef]
- Wanison, R.; Hadi Syahputra, W.N.; Kammuang-lue, N.; Sakulchangsatjatai, P.; Terdtoon, P.; Tippayawong, N.; Suttakul, P.; Mona, Y. A Review of Cryogenic Carbon Capture Research: Experimental Studies, Simulations, and Application Potential. Therm. Sci. Eng. Prog. 2025, 61, 103562. [Google Scholar] [CrossRef]
- Du, S.; Qiu, G.; Li, Q.; Jiang, L.; Cai, W. Cryogenic Desublimation Carbon Capture Technology: Mechanisms and Applications. Sep Purif Technol 2025, 375, 133677. [Google Scholar] [CrossRef]
- Dai, Z.; Deng, L. Membranes for CO2 Capture and Separation: Progress in Research and Development for Industrial Applications. Sep. Purif. Technol. 2024, 335, 126022. [Google Scholar] [CrossRef]
- Kárászová, M.; Zach, B.; Petrusová, Z.; Červenka, V.; Bobák, M.; Šyc, M.; Izák, P. Post-Combustion Carbon Capture by Membrane Separation, Review. Sep. Purif. Technol. 2020, 238, 116448. [Google Scholar] [CrossRef]
- Chang, P.T.; Ng, Q.H.; Oh, P.C.; Low, S.C. Advanced Dual-Wetting Membrane for Enhanced CO2 Capture: Asymmetric Hydrophobic and CO2-Philic Thin Film in Membrane Gas Absorption. J. Ind. Eng. Chem. 2025, 149, 355–365. [Google Scholar] [CrossRef]
- Bharatee, R.K.; Quaff, A.R.; Jaiswal, S.K. Advances in Perovskite Membranes for Carbon Capture & Utilization: A Sustainable Approach to CO2 Emissions Reduction—A Review. J. Environ. Manag. 2025, 380, 124924. [Google Scholar] [CrossRef]
- Zhao, B.; Liang, C.; Wang, W.; Li, S.; Zhang, S. Coating and Thermal Polymerization of Polyethylene Oxide-Based Polymers on Hollow Fiber Membranes for Post-Combustion CO2 Capture. Sep. Purif. Technol. 2025, 364, 132358. [Google Scholar] [CrossRef]
- Scholes, C.A.; Stevens, G.W.; Kentish, S.E. Membrane Gas Separation Applications in Natural Gas Processing. Fuel 2012, 96, 15–28. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, Y.; Wang, Q. Coupled CO2 Absorption and Mineralization with Low-Concentration Monoethanolamine. Energy 2022, 241, 122524. [Google Scholar] [CrossRef]
- Wang, P.; Liu, Z.; Pan, Z.; González-Arias, J.; Shang, L.; Wang, Y.; Zhang, Z. Advances in Life Cycle Assessment of Chemical Absorption-Based Carbon Capture Technologies. Sep. Purif. Technol. 2024, 346, 127252. [Google Scholar] [CrossRef]
- Carbone, C.; Ferrario, D.; Lanzini, A.; Stendardo, S.; Agostini, A. Evaluating the Carbon Footprint of Cement Plants Integrated With the Calcium Looping CO2 Capture Process. Front. Sustain. 2022, 3, 809231. [Google Scholar] [CrossRef]
- Colelli, G.; Chacartegui, R.; Ortiz, C.; Carro, A.; Arena, A.P.; Verda, V. Life Cycle and Environmental Assessment of Calcium Looping (CaL) in Solar Thermochemical Energy Storage. Energy Convers. Manag. 2022, 257, 115428. [Google Scholar] [CrossRef]
- Ghiat, I.; Banu, A.; Bicer, Y.; Amhamed, A.I.; Al-Ansari, T. Circularity within Carbon Capture Networks: A Review of Capture and Utilization Technologies. J. CO2 Util. 2025, 95, 103075. [Google Scholar] [CrossRef]
- Silva Junior, G.B.; Castro-Gomes, J.; Magrinho, M. Carbon Capture and Utilisation Technologies: A Systematic Analysis of Innovative Applications and Supercritical CO2 Viability Strategies. J. CO2 Util. 2025, 97, 103115. [Google Scholar] [CrossRef]
- Malehmirchegini, L.; Chapman, A.J. Strategies for Achieving Carbon Neutrality within the Chemical Industry. Renew. Sustain. Energy Rev. 2025, 217, 115762. [Google Scholar] [CrossRef]
- Danieli, S.; Neto, J.S.A.; Soares, E.G.; Oliveira, T.F.; Brito, B.L.F.; Kirchheim, A.P. Shaping a Sustainable Path: Exploring Opportunities and Challenges in Carbon Capture and Utilization in Cement and Concrete Industry. CEMENT 2025, 19, 100135. [Google Scholar] [CrossRef]
- Baskaran, D.; Saravanan, P.; Nagarajan, L.; Byun, H.S. An Overview of Technologies for Capturing, Storing, and Utilizing Carbon Dioxide: Technology Readiness, Large-Scale Demonstration, and Cost. Chem. Eng. J. 2024, 491, 151998. [Google Scholar] [CrossRef]
- Litheko, A.; Oboirien, B.; Patel, B. Life Cycle Assessment of Power-to-Gas (PtG) Technology—Evaluation of System Configurations of Renewable Hydrogen and Methane Production. Sustain. Energy Technol. Assess. 2023, 60, 103527. [Google Scholar] [CrossRef]
- Nemmour, A.; Inayat, A.; Janajreh, I.; Ghenai, C. Green Hydrogen-Based E-Fuels (E-Methane, E-Methanol, E-Ammonia) to Support Clean Energy Transition: A Literature Review. Int. J. Hydrogen Energy 2023, 48, 29011–29033. [Google Scholar] [CrossRef]
- Choe, C.; Cheon, S.; Kim, H.; Lim, H. Mitigating Climate Change for Negative CO2 Emission via Syngas Methanation: Techno-Economic and Life-Cycle Assessments of Renewable Methane Production. Renew. Sustain. Energy Rev. 2023, 185, 113628. [Google Scholar] [CrossRef]
- Kiani, A.; Dubois, L.; Chauvy, R.; Lippi, R.; Daiyan, R. Renewable Methane Production. Encycl. Sustain. Technol. 2024, 3, 313–330. [Google Scholar] [CrossRef]
- Bos, M.J.; Kersten, S.R.A.; Brilman, D.W.F. Wind Power to Methanol: Renewable Methanol Production Using Electricity, Electrolysis of Water and CO2 Air Capture. Appl. Energy 2020, 264, 114672. [Google Scholar] [CrossRef]
- Galindo Cifre, P.; Badr, O. Renewable Hydrogen Utilisation for the Production of Methanol. Energy Convers. Manag. 2007, 48, 519–527. [Google Scholar] [CrossRef]
- Panzone, C.; Philippe, R.; Chappaz, A.; Fongarland, P.; Bengaouer, A. Power-to-Liquid Catalytic CO2 Valorization into Fuels and Chemicals: Focus on the Fischer-Tropsch Route. J. CO2 Util. 2020, 38, 314–347. [Google Scholar] [CrossRef]
- Blay-Roger, R.; Nawaz, M.A.; Baena-Moreno, F.M.; Bobadilla, L.F.; Reina, T.R.; Odriozola, J.A. Tandem Catalytic Approaches for CO2 Enriched Fischer-Tropsch Synthesis. Prog. Energy Combust. Sci. 2024, 103, 101159. [Google Scholar] [CrossRef]
- Sadhukhan, J.; Fisher, O.J.; Cummings, B.; Xuan, J. Novel Comprehensive Life Cycle Assessment (LCA) of Sustainable Flue Gas Carbon Capture and Utilization (CCU) for Surfactant and Fuel via Fischer-Tropsch Synthesis. J. CO2 Util. 2025, 92, 103013. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, L.; Park, H.G.; Min, J.E.; Min, H.K.; Kim, J.R.; Zhang, C.; Jun, K.W.; Kim, S.K. Valorizing Tail Gas for Superior Hydrocarbon Output in CO2-Based Fischer-Tropsch Synthesis. Chem. Eng. J. 2025, 503, 158531. [Google Scholar] [CrossRef]
- Aleaziz, F.; Tahouni, N.; Panjeshahi, M.H. Design and Analysis of a CO2-to-Olefins Process, Using Renewable Energy. Energy Convers. Manag. 2025, 324, 119277. [Google Scholar] [CrossRef]
- Okoye-Chine, C.G.; Mbuya, C.O.L.; Shiba, N.C.; Otun, K.O. Effective Catalysts for Hydrogenation of CO2 into Lower Olefins: A Review. Carbon. Capture Sci. Technol. 2024, 13, 100251. [Google Scholar] [CrossRef]
- Cuevas-Castillo, G.A.; Michailos, S.; Akram, M.; Hughes, K.; Ingham, D.; Pourkashanian, M. Techno Economic and Life Cycle Assessment of Olefin Production through CO2 Hydrogenation within the Power-to-X Concept. J. Clean. Prod. 2024, 469, 143143. [Google Scholar] [CrossRef]
- Han, S.; Kim, J.H.; Singh, R.K.; Shah, S.P. CO2 Utilization for Cementitious Materials—A Review. KSCE J. Civ. Eng. 2025, 29, 100227. [Google Scholar] [CrossRef]
- Zhang, D.; Feng, B.; Jaworska, B.; Ellis, B.R.; Fancy, S.; Sick, V.; Li, V.C. Pilot-Scale Validation of CO2 Utilization for Greener and Tougher Infrastructure through Carbonation Curing of Bendable Concrete. J. Clean. Prod. 2025, 491, 144845. [Google Scholar] [CrossRef]
- Wang, L.; Fan, Y. Carbon Sequestration Technology in Concrete: A Review of Mechanism, Application and Optimization Strategy. J. Build. Eng. 2025, 102, 111862. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, H.; Miao, E.; Wang, Y.; Zhang, T.; Xiao, Y.; Liu, Z.; Ma, J.; Xiong, Z.; Zhao, Y.; et al. Accelerated CO2 Mineralization Technology Using Fly Ash as Raw Material: Recent Research Advances. Chem. Eng. J. 2024, 488, 150676. [Google Scholar] [CrossRef]
- Liu, W.; Teng, L.; Rohani, S.; Qin, Z.; Zhao, B.; Xu, C.C.; Ren, S.; Liu, Q.; Liang, B. CO2 Mineral Carbonation Using Industrial Solid Wastes: A Review of Recent Developments. Chem. Eng. J. 2021, 416, 129093. [Google Scholar] [CrossRef]
- Ostovari, H.; Kuhrmann, L.; Mayer, F.; Minten, H.; Bardow, A. Towards a European Supply Chain for CO2 Capture, Utilization, and Storage by Mineralization: Insights from Cost-Optimal Design. J. CO2 Util. 2023, 72, 102496. [Google Scholar] [CrossRef]
- Guo, Y.; Luo, L.; Liu, T.; Hao, L.; Li, Y.; Liu, P.; Zhu, T. A Review of Low-Carbon Technologies and Projects for the Global Cement Industry. J. Environ. Sci. 2024, 136, 682–697. [Google Scholar] [CrossRef]
- Barbhuiya, S.; Bhusan Das, B.; Adak, D. Roadmap to a Net-Zero Carbon Cement Sector: Strategies, Innovations and Policy Imperatives. J. Environ. Manag. 2024, 359, 121052. [Google Scholar] [CrossRef]
- Obobisa, E.S.; Ahakwa, I. Stimulating the Adoption of Green Technology Innovation, Clean Energy Resources, Green Finance, and Environmental Taxes: The Way to Achieve Net Zero CO2 Emissions in Europe? Technol. Forecast. Soc. Change 2024, 205, 123489. [Google Scholar] [CrossRef]
- Wulf, C.; Zapp, P.; Schreiber, A. Review of Power-to-X Demonstration Projects in Europe. Front. Energy Res. 2020, 8, 191. [Google Scholar] [CrossRef]
- Wulf, C.; Linßen, J.; Zapp, P. Review of Power-to-Gas Projects in Europe. Energy Procedia 2018, 155, 367–378. [Google Scholar] [CrossRef]
- Wang, R. Status and Perspectives on CCUS Clusters and Hubs. Unconv. Resour. 2024, 4, 100065. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, S.; Chen, Z.; Liu, D.; Wang, Y.; Zhong, Z.; Wu, Y. Promoting the Sustainable Development of CCUS Projects: A Multi-Source Data-Driven Location Decision Optimization Framework. Sustain. Cities Soc. 2024, 114, 105754. [Google Scholar] [CrossRef]
- Nessi, E.; Papadopoulos, A.I.; Seferlis, P. A Review of Research Facilities, Pilot and Commercial Plants for Solvent-Based Post-Combustion CO2 Capture: Packed Bed, Phase-Change and Rotating Processes. Int. J. Greenh. Gas Control 2021, 111, 103474. [Google Scholar] [CrossRef]
- Tatarczuk, A.; Szega, M.; Billig, T.; Więcław-Solny, L.; Zdeb, J. Techno-Economic Analysis of Heat Integrated Stripper Application in Chemical Absorption Process for CO2 Capture: Insights from Pilot Plant Studies. Energy 2025, 319, 134995. [Google Scholar] [CrossRef]
- Liu, L.; Fang, M.; Xu, S.; Wang, J.; Guo, D. Development and Testing of a New Post-Combustion CO2 Capture Solvent in Pilot and Demonstration Plant. Int. J. Greenh. Gas Control 2022, 113, 103513. [Google Scholar] [CrossRef]
- Holz, F.; Scherwath, T.; Crespo del Granado, P.; Skar, C.; Olmos, L.; Ploussard, Q.; Ramos, A.; Herbst, A. A 2050 Perspective on the Role for Carbon Capture and Storage in the European Power System and Industry Sector. Energy Econ. 2021, 104, 105631. [Google Scholar] [CrossRef]
- Hanifa, M.; Agarwal, R.; Sharma, U.; Thapliyal, P.C.; Singh, L.P. A Review on CO2 Capture and Sequestration in the Construction Industry: Emerging Approaches and Commercialised Technologies. J. CO2 Util. 2023, 67, 102292. [Google Scholar] [CrossRef]
- Supriya; Chaudhury, R.; Sharma, U.; Thapliyal, P.C.; Singh, L.P. Low-CO2 Emission Strategies to Achieve Net Zero Target in Cement Sector. J. Clean. Prod. 2023, 417, 137466. [Google Scholar] [CrossRef]
- Kumar, A.; Tiwari, A.K.; Milani, D. Decarbonizing Hard-to-Abate Heavy Industries: Current Status and Pathways towards Net-Zero Future. Process Saf. Environ. Prot. 2024, 187, 408–430. [Google Scholar] [CrossRef]
- Frattini, L.; Becattini, V.; Mazzotti, M. Main Current Legal and Regulatory Frameworks for Carbon Dioxide Capture, Transport, and Storage in the European Economic Area. Int. J. Greenh. Gas Control 2024, 136, 104172. [Google Scholar] [CrossRef]
- Nath, F.; Mahmood, M.N.; Yousuf, N. Recent Advances in CCUS: A Critical Review on Technologies, Regulatory Aspects and Economics. Geoenergy Sci. Eng. 2024, 238, 212726. [Google Scholar] [CrossRef]
- Ali Awan, M.M.; Din Kirmani, F.U. Achieving Low-Carbon Future through CO2 Storage: A Comprehensive Review of Global Projects and Policies. Pet. Res. 2025, in press. [Google Scholar] [CrossRef]
- Popielak, P.; Majchrzak-Kucęba, I.; Wawrzyńczak, D. Climate Change Mitigation with CCUS—A Case Study with Benchmarking for Selected Countries in Adapting the European Union’s Green Deal. Int. J. Greenh. Gas Control 2024, 132, 104057. [Google Scholar] [CrossRef]
- Chang, S.F.; Chiu, H.H.; Jao, H.S.; Shang, J.; Lin, Y.J.; Yu, B.Y. Comprehensive Evaluation of Various CO2 Capture Technologies through Rigorous Simulation: Economic, Equipment Footprint, and Environmental Analysis. Carbon. Capture Sci. Technol. 2025, 14, 100342. [Google Scholar] [CrossRef]
- Bilgili, M.; Tokmakci, M. Climate Change and Trends in Europe and Globally over the Period 1970–2023. Phys. Chem. Earth Parts A/B/C 2025, 139, 103928. [Google Scholar] [CrossRef]
- Adun, H.; Ampah, J.D.; Bamisile, O.; Ozsahin, D.U.; Staffell, I. Sustainability Implications of Different Carbon Dioxide Removal Technologies in the Context of Europe’s Climate Neutrality Goal. Sustain. Prod. Consum. 2024, 47, 598–616. [Google Scholar] [CrossRef]
- Gowd, S.C.; Ganeshan, P.; Vigneswaran, V.S.; Hossain, M.S.; Kumar, D.; Rajendran, K.; Ngo, H.H.; Pugazhendhi, A. Economic Perspectives and Policy Insights on Carbon Capture, Storage, and Utilization for Sustainable Development. Sci. Total Environ. 2023, 883, 163656. [Google Scholar] [CrossRef]
- Available online: https://life-datahub.eismea.eu/?p=83706 (accessed on 16 April 2025).
- Available online: https://www.go4zero.com/fr (accessed on 16 April 2025).
- Available online: https://network.bellona.org/content/uploads/sites/3/2020/10/Longship-Briefing_Bellona-1.pdf (accessed on 16 April 2025).
- Available online: https://www.carbonrecycling.is/projects#project-goplant (accessed on 16 April 2025).
- Available online: https://www.ineos.com/news/shared-news/inovyn-to-play-vital-role-in-ambitious-power-to-methanol-project-to-produce-sustainable-methanol-and-reduce-co2-in-antwerp/ (accessed on 16 April 2025).
- Available online: https://www.pyroco2.eu/ (accessed on 16 April 2025).
- Available online: https://www.leilac.com/project-leilac-1/ (accessed on 16 April 2025).
- Available online: https://tatachemicalseurope.com/carbon-capture-and-utilisation/ (accessed on 16 April 2025).
- Available online: https://ec.europa.eu/assets/cinea/project_fiches/innovation_fund/101132998.pdf (accessed on 16 April 2025).
- Available online: https://database.co2value.eu/projects/282 (accessed on 16 April 2025).
- Available online: https://database.co2value.eu/projects/218 (accessed on 16 April 2025).
- Available online: https://www.leilac.com/project-leilac-2/ (accessed on 16 April 2025).
- Available online: https://www.avr.nl/en/first-tons-of-co2-captured-from-residual-waste-supplied-to-greenhouse-horticulture/ (accessed on 16 April 2025).
- Available online: https://capturi.slb.com/projects/twence-ccu (accessed on 16 April 2025).
- Available online: http://www.steelanol.eu/en (accessed on 16 April 2025).
- Available online: https://www.methanex.com/about-us/global-locations/ (accessed on 16 April 2025).
- Available online: https://ec.europa.eu/assets/cinea/project_fiches/innovation_fund/101133015.pdf (accessed on 16 April 2025).
- Available online: https://database.co2value.eu/projects/145 (accessed on 16 April 2025).
- Available online: https://www.globalcement.com/news/item/13070-holcim-croatia-to-upgrade-koromacno-cement-plant-for-low-carbon-cement-production (accessed on 16 April 2025).
- Available online: https://www.brevikccs.com/en (accessed on 16 April 2025).
- Available online: https://www.fortum.com/no/media/2021/03/norways-fortum-oslo-varme-ccs-project-makes-shortlist-eu-innovation-funding (accessed on 16 April 2025).
- Available online: https://www.cemexventures.com/deep-dive-etfuels/ (accessed on 16 April 2025).
- Available online: https://capturi.slb.com/projects/ (accessed on 16 April 2025).
- Available online: https://database.co2value.eu/projects/244 (accessed on 16 April 2025).
- Available online: https://www.equinor.com/news/archive/2008/04/23/CarbonStorageStartedOnSnhvit (accessed on 16 April 2025).
- Available online: https://www.carbonclean.com/en/press-releases/lafargeholcim-and-carbon-clean-to-develop-large-scale-ccus-plant (accessed on 16 April 2025).
- Available online: https://aalborgportlandholding.com/en/media/whats-new/consencus-innovation-and-collaboration-carbon-capture-utilisation-and-storage (accessed on 16 April 2025).
- Available online: https://www.cemnet.com/News/story/173076/heidelbergcement-s-anrav-project-wins-eu-innovation-funding.html (accessed on 16 April 2025).
- Available online: https://iogpeurope.org/wp-content/uploads/2024/03/Map-CO2-Storage-Projects-in-Europe.pdf (accessed on 16 April 2025).
- Available online: https://www.holcim.com/what-we-do/green-operations/ccus (accessed on 16 April 2025).
- Available online: https://totalenergies.com/projects/carbon-capture-and-storage/northern-lights-first-major-carbon-capture-and-storage-project (accessed on 16 April 2025).
- Available online: https://newsroom.portofantwerpbruges.com/en (accessed on 16 April 2025).
- Available online: https://www.heidelbergmaterials.com/en/pr-02-06-2021 (accessed on 16 April 2025).
- Available online: https://www.netzeroteesside.co.uk/ (accessed on 16 April 2025).
- Available online: https://horisontenergi.no/projects/barents-blue/ (accessed on 16 April 2025).
- Available online: https://www.porthosco2.nl/en/ (accessed on 16 April 2025).
- Available online: https://ukccsrc.ac.uk/sites/default/files/documents/event/Stephen-kerr-calendonia.pdf (accessed on 16 April 2025).
- Available online: https://humberzero.co.uk/ (accessed on 16 April 2025).
- Available online: https://ravennaccs.com/en-IT/home (accessed on 16 April 2025).
- Available online: https://ifrf.net/ifrf-blog/vattenfall-investigates-sale-of-magnum-power-plant-in-the-netherlands/ (accessed on 16 April 2025).
- Available online: https://climate.ec.europa.eu/document/download/5c3a41d2-5c3b-40f6-92c4-712a04cdffc4_en?filename=if_pf_2022_go4_en_0.pdf (accessed on 16 April 2025).
- Available online: https://www.ineos.com/news/ineos-group/ineos-led-consortium-announces-breakthrough-in-carbon-capture-and-storage/ (accessed on 16 April 2025).
- Available online: https://hynet.co.uk/ (accessed on 16 April 2025).
- Available online: https://www.heidelbergmaterials.co.uk/en/news-and-events/hanson-joins-hynet-north-west-consortium (accessed on 16 April 2025).
- Available online: https://www.thesolentcluster.com/about/ (accessed on 16 April 2025).
- Available online: https://climate.ec.europa.eu/document/download/0b0c09d5-4b1d-4ad3-abe7-57e68a53a0c2_en?filename=if_pf_2022_sharc_en.pdf (accessed on 16 April 2025).
- Available online: https://eco2fuel-project.eu/ (accessed on 2 May 2025).
- Available online: https://www.carbongreenproject.com/ (accessed on 16 April 2025).
- Available online: https://www.holcim.com/media/media-releases/eu-innovation-fund-cleantech-france (accessed on 16 April 2025).
- Available online: https://www.vicat.com/news/vicat-accelerates-its-circular-economy-drive-co2ntainer-system (accessed on 16 April 2025).
- Available online: https://belgium.arcelormittal.com/en/arcelormittal-and-lanzatech-break-ground-on-e150million-project-to-revolutionise-blast-furnace-carbon-emissions-capture/ (accessed on 16 April 2025).
- Available online: https://www.ebn.nl/en/news/athos-project-ends-after-tata-steel-decision/ (accessed on 16 April 2025).
- Available online: https://prisma.hw.ac.uk/ (accessed on 16 April 2025).
- Available online: https://cinea.ec.europa.eu/featured-projects/fresme_en (accessed on 16 April 2025).
- Available online: https://database.co2value.eu/projects/11 (accessed on 16 April 2025).
- Available online: https://capturi.slb.com/projects/technology-centre-mongstad (accessed on 16 April 2025).
- Available online: https://flite.eu/about/ (accessed on 16 April 2025).
- Available online: https://database.co2value.eu/projects/135 (accessed on 16 April 2025).
- Nema, A.; Kumar, A.; Warudkar, V. An In-Depth Critical Review of Different Carbon Capture Techniques: Assessing Their Effectiveness and Role in Reducing Climate Change Emissions. Energy Convers. Manag. 2025, 323, 119244. [Google Scholar] [CrossRef]
- Rezaei, S.; Liu, A.; Hovington, P. Emerging Technologies in Post-Combustion Carbon Dioxide Capture & Removal. Catal. Today 2023, 423, 114286. [Google Scholar] [CrossRef]
- Elehinafe, F.B.; Aondoakaa, E.A.; Akinyemi, A.F.; Agboola, O.; Okedere, O.B. Separation Processes for the Treatment of Industrial Flue Gases—Effective Methods for Global Industrial Air Pollution Control. Heliyon 2024, 10, e32428. [Google Scholar] [CrossRef]
- Lin, F.; Wang, Z.; Zhang, Z.; He, Y.; Zhu, Y.; Shao, J.; Yuan, D.; Chen, G.; Cen, K. Flue Gas Treatment with Ozone Oxidation: An Overview on NOx, Organic Pollutants, and Mercury. Chem. Eng. J. 2020, 382, 123030. [Google Scholar] [CrossRef]
- Ampomah, W.; Morgan, A.; Koranteng, D.O.; Nyamekye, W.I. CCUS Perspectives: Assessing Historical Contexts, Current Realities, and Future Prospects. Energies 2024, 17, 4248. [Google Scholar] [CrossRef]
- Zhang, S.; Cai, W.; Zheng, X.; Lv, X.; An, K.; Cao, Y.; Cheng, H.S.; Dai, J.; Dong, X.; Fan, S.; et al. Global Readiness for Carbon Neutrality: From Targets to Action. Environ. Sci. Ecotechnol. 2025, 25, 100546. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Otitoju, O.; Gao, H.; Liang, Z.; Wang, M. Techno-Economic Analysis and Optimisation of Piperazine-Based Post-Combustion Carbon Capture and CO2 Compression Process for Large-Scale Biomass-Fired Power Plants through Simulation. Fuel 2025, 381, 133340. [Google Scholar] [CrossRef]
- Wang, Y. Techno-Economic Assessment of Hybrid Post-Combustion Carbon Capture Systems in Coal-Fired Power Plants and Steel Plants. Ph.D Thesis, RWTH Aachen University, Aachen, Germany, 2020. [Google Scholar]
- Adam, R.; Ozarisoy, B. Techno-Economic Analysis of State-of-the-Art Carbon Capture Technologies and Their Applications: Scient Metric Review. Encyclopedia 2023, 3, 1270–1305. [Google Scholar] [CrossRef]
- Available online: https://cordis.europa.eu/project/id/101022487 (accessed on 3 April 2025).
- Available online: https://cordis.europa.eu/project/id/101022484 (accessed on 3 April 2025).
- Available online: https://database.co2value.eu/projects/185 (accessed on 3 April 2025).
- Available online: https://cordis.europa.eu/project/id/838031 (accessed on 3 April 2025).
- Available online: https://www.kva-linth.ch/ (accessed on 3 April 2025).
- Available online: https://decarbconnect.com/project/capture-to-use-cap2u/ (accessed on 3 April 2025).
- Available online: https://www.tklmethanol.es/ (accessed on 3 April 2025).
- Available online: https://tcmda.com/ (accessed on 3 April 2025).
- Available online: https://cordis.europa.eu/project/id/641185 (accessed on 3 April 2025).
- Available online: https://upcatalyst.com/projects/ (accessed on 3 April 2025).
- Available online: https://www.rpsgroup.com/projects/norcem-carbon-capture-and-storage-project-brevik-norway/ (accessed on 3 April 2025).
- Available online: https://www.rohrdorfer.eu/pilot-plant-direct-co2-electrolysis-to-formic-acid/ (accessed on 3 April 2025).
- Wiecław-Solny, L.; Tatarczuk, A.; Stec, M.; Krótki, A. Advanced CO2 Capture Pilot Plant at Tauron’s Coal-Fired Power Plant: Initial Results and Further Opportunities. Energy Procedia 2014, 63, 6318–6322. [Google Scholar] [CrossRef]
- Available online: https://www.rwe.com/en/research-and-development/rwe-innovation-centre/co2-utilisation-and-integrated-energy/carbon-capture/ (accessed on 3 April 2025).
- Available online: https://cordis.europa.eu/project/id/768583 (accessed on 3 April 2025).
- Available online: https://cordis.europa.eu/project/id/884266/es (accessed on 3 April 2025).
- Zanco, S.E.; Pérez-Calvo, J.-F.; Gasós, A.; Cordiano, B.; Becattini, V.; Mazzotti, M. Postcombustion CO2 Capture: A Comparative Techno-Economic Assessment of Three Technologies Using a Solvent, an Adsorbent, and a Membrane. ACS Eng. Au 2021, 1, 50–72. [Google Scholar] [CrossRef]
- Peh, S.B.; Farooq, S.; Zhao, D. Techno-Economic Analysis of MOF-Based Adsorption Cycles for Postcombustion CO2 Capture from Wet Flue Gas. Chem. Eng. Sci. 2023, 268, 118390. [Google Scholar] [CrossRef]
- Available online: https://carmof.eu/ (accessed on 4 April 2025).
- Available online: https://c4u-project.eu/ (accessed on 4 April 2025).
- Available online: https://nuadaco2.com/ (accessed on 4 April 2025).
- Available online: https://database.co2value.eu/projects/210 (accessed on 4 April 2025).
- Available online: https://capture-resources.be/projects/catco2re (accessed on 4 April 2025).
- Available online: https://cordis.europa.eu/project/id/837975 (accessed on 4 April 2025).
- Amorim, A.; Filipe, R.M.; Matos, H.A. Analysis of Integrated Calcium Looping Alternatives in a Cement Plant. Chem. Eng. Sci. 2025, 313, 121709. [Google Scholar] [CrossRef]
- Daniel, T.; Masini, A.; Milne, C.; Nourshagh, N.; Iranpour, C.; Xuan, J. Techno-Economic Analysis of Direct Air Carbon Capture with CO2 Utilisation. Carbon. Capture Sci. Technol. 2022, 2, 100025. [Google Scholar] [CrossRef]
- Available online: https://www.est.tu-darmstadt.de/forschung_est/projekte_est/abgeschlossene_projekte_rd_est/cooretec___lisa_rd_est.en.jsp (accessed on 7 April 2025).
- Available online: https://www.est.tu-darmstadt.de/forschung_est/projekte_est/abgeschlossene_projekte_rd_est/cooretec___lisa_ii_rd_est.en.jsp (accessed on 7 April 2025).
- Available online: https://cordis.europa.eu/project/id/241302 (accessed on 7 April 2025).
- Available online: https://www.est.tu-darmstadt.de/forschung_est/projekte_est/abgeschlossene_projekte_rd_est/eu_rfcs___carina_rd_est.en.jsp (accessed on 7 April 2025).
- Available online: https://act-anica.eu/ (accessed on 7 April 2025).
- Available online: https://op.europa.eu/en/publication-detail/-/publication/f24545b2-9c46-11e8-a408-01aa75ed71a1 (accessed on 7 April 2025).
- Available online: https://cordis.europa.eu/project/id/608578 (accessed on 7 April 2025).
- Available online: https://www.sintef.no/globalassets/project/tccs-10/dokumenter/b2/abanadesflexicalfinal.pptx.pdf (accessed on 7 April 2025).
- Available online: https://cordis.europa.eu/project/id/764816 (accessed on 7 April 2025).
- Available online: https://cordis.europa.eu/project/id/101075416 (accessed on 7 April 2025).
- Hoeger, C.; Burt, S.; Baxter, L. Cryogenic Carbon CaptureTM Technoeconomic Analysis; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Luberti, M.; Ballini, E.; Capocelli, M. Unveiling the Potential of Cryogenic Post-Combustion Carbon Capture: From Fundamentals to Innovative Processes. Energies 2024, 17, 2673. [Google Scholar] [CrossRef]
- Available online: https://kairosatc.eu/ (accessed on 8 April 2025).
- Available online: https://elyse.energy/en/our-projects/em-rhone (accessed on 8 April 2025).
- Available online: https://www.lhoist.com/en/calcc (accessed on 8 April 2025).
- Available online: https://www.holcim.com/what-we-do/green-operations/ccus/kodeco (accessed on 8 April 2025).
- Available online: https://ifestos.eu/ (accessed on 8 April 2025).
- Available online: https://www.airliquide.com/group/press-releases-news/2024-10-24/air-liquide-and-cementir-holding-group-receive-support-european-innovation-fund-carbon-capture-and (accessed on 8 April 2025).
- Gkotsis, P.; Peleka, E.; Zouboulis, A. Membrane-Based Technologies for Post-Combustion CO2 Capture from Flue Gases: Recent Progress in Commonly Employed Membrane Materials. Membranes 2023, 13, 898. [Google Scholar] [CrossRef]
- Montañés, R.M.; Riboldi, L.; Roussanaly, S.; Ouassou, A.; Subraveti, S.G.; Anantharaman, R. Techno-Economic Assessment of the Hybrid Adsorption-Membrane Concept for Post-Combustion CO2 Capture from Industry Flue Gases. In Proceedings of the 16th Greenhouse Gas Control Technologies Conference (GHGT-16), Lyon, France, 23–27 October 2022. [Google Scholar]
- Available online: https://cordis.europa.eu/project/id/760884 (accessed on 9 April 2025).
- Available online: https://coolplanettech.com/ (accessed on 9 April 2025).
- Available online: https://database.co2value.eu/projects/32 (accessed on 9 April 2025).
- Available online: https://anr.fr/Project-ANR-13-SEED-0003 (accessed on 9 April 2025).
- Shyam, A.; Ahmed, K.R.A.; Kumar, J.P.N.; Iniyan, S.; Goic, R. Path of Carbon Dioxide Capture Technologies: An Overview. Next Sustain. 2025, 6, 100118. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, H.; Xu, J.; Zhang, X. Advancements and Challenges in Chemical Absorption Technologies for Shipborne Carbon Capture Applications: Absorbent Development, Improvement of Absorption Towers, and System Integration. J. Energy Chem. 2025, 106, 880–910. [Google Scholar] [CrossRef]
- Wang, J.; Huang, L.; Yang, R.; Zhang, Z.; Wu, J.; Gao, Y.; Wang, Q.; O’Hare, D.; Zhong, Z. Recent Advances in Solid Sorbents for CO2 Capture and New Development Trends. Energy Environ. Sci. 2014, 7, 3478–3518. [Google Scholar] [CrossRef]
- Christensen, C.S.Q.; Hansen, N.; Motadayen, M.; Lock, N.; Henriksen, M.L.; Quinson, J. A Review of Metal-Organic Frameworks and Polymers in Mixed Matrix Membranes for CO2 Capture. Beilstein J. Nanotechnol. 2025, 16, 155–186. [Google Scholar] [CrossRef]
- Yin, Y.; Liu, Q.; Xiao, M.; Gao, H.; Jin, B.; Liang, Z. Enhancing CO2 Capture Performance by Changing Membrane Fiber Arrangement in Multi-Fiber Membrane Contactors. J. Environ. Chem. Eng. 2025, 13, 115562. [Google Scholar] [CrossRef]
- Shu, G.; Liu, B.; Tian, H.; Li, L.; Sun, R.; Wang, X. A Cryogenic CO2 Capture System Coupled with Boil-off Gas Re-Liquefaction for LNG Carriers. Sep. Purif. Technol. 2025, 362, 131783. [Google Scholar] [CrossRef]
- Zhao, L.; Primabudi, E.; Stolten, D. Investigation of a Hybrid System for Post-Combustion Capture. Energy Procedia 2014, 63, 1756–1772. [Google Scholar] [CrossRef]
- Ilea, F.M.; Cormos, A.M.; Cristea, V.M.; Cormos, C.C. Hybrid Advanced Control Strategy for Post-Combustion Carbon Capture Plant by Integrating PI and Model-Based Approaches. Energies 2024, 17, 2886. [Google Scholar] [CrossRef]
- Available online: https://toweringskills.com/financial-analysis/cost-indices/ (accessed on 29 January 2025).
- Subramani, A. Techno-Economic Assessment of a Post-Combustion CO2 Capture Unit in SCA Östrand Pulp Mill. Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2022. [Google Scholar]
- Kamolov, A.; Turakulov, Z.; Furda, P.; Variny, M.; Norkobilov, A.; Fallanza, M. Techno-Economic Feasibility Analysis of Post-Combustion Carbon Capture in an NGCC Power Plant in Uzbekistan. Clean. Technol. 2024, 6, 1357–1388. [Google Scholar] [CrossRef]
- Subraveti, S.G.; Roussanaly, S.; Anantharaman, R.; Riboldi, L.; Rajendran, A. Techno-Economic Assessment of Optimised Vacuum Swing Adsorption for Post-Combustion CO2 Capture from Steam-Methane Reformer Flue Gas. Sep. Purif. Technol. 2021, 256, 117832. [Google Scholar] [CrossRef]
- Fu, C.; Roussanaly, S.; Jordal, K.; Anantharaman, R. Techno-Economic Analyses of the CaO/CaCO3 Post-Combustion CO2 Capture From NGCC Power Plants. Front. Chem. Eng. 2020, 2, 596417. [Google Scholar] [CrossRef]
- Rubinaccio, D. Techno-Economic Analysis of a Cryogenic Carbon Capture Plant Applied to Cement Production. Master’s Thesis, University of Padua, Padua, Italy, 2024. [Google Scholar]
- Micari, M.; Dakhchoune, M.; Agrawal, K.V. Techno-Economic Assessment of Postcombustion Carbon Capture Using High-Performance Nanoporous Single-Layer Graphene Membranes. J. Membr. Sci. 2021, 624, 119103. [Google Scholar] [CrossRef]
- Zentou, H.; Hoque, B.; Abdalla, M.A.; Saber, A.F.; Abdelaziz, O.Y.; Aliyu, M.; Alkhedhair, A.M.; Alabduly, A.J.; Abdelnaby, M.M. Recent Advances and Challenges in Solid Sorbents for CO2 Capture. Carbon. Capture Sci. Technol. 2025, 15, 100386. [Google Scholar] [CrossRef]
- Trinca, A.; Vilardi, G.; Verdone, N. Hybrid Hydro-Pyrometallurgy Route for Green Steel: Design and Cost Analysis of Innovative and Negative Carbon Dioxide Emissions Industrial-Scale Plants with Different Iron Ore Grades. Energy Convers. Manag. 2025, 332, 119776. [Google Scholar] [CrossRef]
- Sunny, N.; Bernardi, A.; Danaci, D.; Bui, M.; Gonzalez-Garay, A.; Chachuat, B. A Pathway Towards Net-Zero Emissions in Oil Refineries. Front. Chem. Eng. 2022, 4, 804163. [Google Scholar] [CrossRef]
Subramani [258] | Subramani [258] | Kamolov et al. [259] | Ren et al. [196] | Subraveti et al. [260] | Fu et al. [261] | |
---|---|---|---|---|---|---|
Economic Data | ||||||
CAPEX|EUR/ton | 30.12–38.10 | 11.13–13.16 | 19.75 | 7.93–10.69 | 55.74 | 31.56 |
OPEX|EUR/ton | 30.12–38.10 | 25.09–26.98 | 39.62 | 49.60–58.96 | 42.07 | 65.36 |
Electricity cost|MEUR/year | 6.66 | 11.46 | 34.58 | 163.54–214.93 | 28.56 | n/a |
Raw materials cost|MEUR/year | 3.11 | 7.05 | 6.8 | 1.34–5.14 | 3.2 | 4.74 |
Utilities cost|MEUR/year | 23.29 | 18.61 | 0.13 | 20.60–24.50 | 0.14 | 64.02 |
Capture equipment cost|MEUR | 437.31 | 127.9 | n/a | 192.84–242.04 | 71.71 | 302.32 |
LCOE|EUR/MWh | n/a | n/a | 72.07 | n/a | n/a | 86.46–89.58 |
Process Data | ||||||
Capture technology | Absorption_CAP | Absorption_MEA | Absorption_MEA | Absorption_MEA | Adsorption | CaL |
CO2 capture|kton/year | 2030.64 | 2030.64 | 1048.00 | 2854.57 | 1140 | 3546.42 |
Capture rate|% | 90 | 90 | 90 | n/a | n/a | 92 |
Energy Data | ||||||
Global energy efficiency|% | n/a | n/a | 46.8 | 24.84–27.97 | n/a | n/a |
Energy consumption 1|GJ/ton | 2.18–2.30 | 3.50–3.97 | 3.97 | n/a | n/a | n/a |
Energy penalty 2|% | n/a | n/a | 16.12 | 22–31 | n/a | n/a |
Environment Data | ||||||
Carbon tax|EUR/ton | 10–120 | 10–120 | n/a | n/a | n/a | n/a |
Carbon emission|ton/MWh | n/a | n/a | n/a | n/a | 0.38 | n/a |
CO2 capture price|EUR/ton | 79.27–87.95 | 40.18–44.52 | 59.38 3 | 55.79–67.56 | 73.00–104.90 | 101.96–112.63 |
Rubinaccio [262] | Micari et al. [263] | Wang [197] | Wang [197] | Wang [197] | ||
Economic Data | ||||||
CAPEX|EUR/ton | 10.14 | n/a | 17.89 | 23.25 | 14.26 | |
OPEX|EUR/ton | 7.06 | n/a | 34.57 | 27.06 | 33.23 | |
Electricity cost|MEUR/year | 25.89 | n/a | 5.46 | 118.38 | 7.01 | |
Raw materials cost|MEUR/year | 5.00 | n/a | 11.8 | n/a | 16.55 | |
Utilities cost|MEUR/year | 6.07 | n/a | 5.46 | 1.3 | 7.01 | |
Capture equipment cost|MEUR | 47.35 | n/a | 83.71 | 92.34 | 52.32 | |
LCOE|EUR/MWh | n/a | n/a | 114.82 | 128.49 | 115.09 | |
Process Data | ||||||
Capture technology | Cryogenic | Membrane | Hybrid | Membrane | Absorption|MEA | |
CO2 capture|kton/year | 894.81 | 500.00 | 3497.86 | 3497.86 | 3497.86 | |
Capture rate|% | 90 | n/a | 90 | 90 | 90 | |
Energy Data | ||||||
Global energy efficiency|% | n/a | n/a | n/a | n/a | n/a | |
Energy consumption 1|GJ/ton | n/a | 1.37 | n/a | n/a | 3.60–4.00 | |
Energy penalty 2|% | 1.10 4 | 1.24–1.53 5 | n/a | n/a | n/a | |
Environment Data | ||||||
Carbon tax|EUR/ton | n/a | n/a | 0–70 | 0–70 | 0–70 | |
Carbon emission|ton/MWh | n/a | n/a | 0.532 | 0.532 | 0.532 | |
CO2 capture price|EUR/ton | 64.71–123.57 | 36.56–47.39 | 45.26 | 54.26 | 43.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, L.; Monteiro, M.; Cenci, C.; Mateus, M.; Condeço, J. Review of Post-Combustion Carbon Capture in Europe: Current Technologies and Future Strategies for Largest CO2-Emitting Industries. Energies 2025, 18, 3539. https://doi.org/10.3390/en18133539
Marques L, Monteiro M, Cenci C, Mateus M, Condeço J. Review of Post-Combustion Carbon Capture in Europe: Current Technologies and Future Strategies for Largest CO2-Emitting Industries. Energies. 2025; 18(13):3539. https://doi.org/10.3390/en18133539
Chicago/Turabian StyleMarques, Luísa, Miguel Monteiro, Charles Cenci, Maria Mateus, and José Condeço. 2025. "Review of Post-Combustion Carbon Capture in Europe: Current Technologies and Future Strategies for Largest CO2-Emitting Industries" Energies 18, no. 13: 3539. https://doi.org/10.3390/en18133539
APA StyleMarques, L., Monteiro, M., Cenci, C., Mateus, M., & Condeço, J. (2025). Review of Post-Combustion Carbon Capture in Europe: Current Technologies and Future Strategies for Largest CO2-Emitting Industries. Energies, 18(13), 3539. https://doi.org/10.3390/en18133539