Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (199)

Search Parameters:
Keywords = critical gas velocity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1671 KiB  
Article
Study on Critical Gas Flow Velocity to Prevent Sulfur Particle Deposition in Vertical Wells Considering Adhesive Forces
by Lianjin Zhang, Dong Hui, Tao Li, Wei Liu, Ruiduo Zhang, Mengfei Zhou and Shan Yuan
Processes 2025, 13(8), 2380; https://doi.org/10.3390/pr13082380 - 27 Jul 2025
Viewed by 276
Abstract
Sulfur particle deposition and wellbore blockage significantly hinder the productivity of high-sulfur gas wells, necessitating accurate prediction of the critical gas flow velocity to prevent deposition. This study presents a comprehensive force-based model to determine the critical gas flow velocity in vertical wells, [...] Read more.
Sulfur particle deposition and wellbore blockage significantly hinder the productivity of high-sulfur gas wells, necessitating accurate prediction of the critical gas flow velocity to prevent deposition. This study presents a comprehensive force-based model to determine the critical gas flow velocity in vertical wells, explicitly incorporating adhesion, boundary layer effects, and particle detachment mechanisms. Through detailed analysis, the forces acting on sulfur particles of varying sizes and flow velocities, as well as the key factors influencing the critical gas flow velocity, were examined. The results demonstrated strong agreement with the experimental data, with a mean absolute percentage error of 6%, while revealing significant deviations from the conventional critical gas suspension velocity, validating the model’s enhanced accuracy and its necessity. This study identified adhesive forces as dominant for small particles (<100 µm) at low velocities (≤10 m/s), whereas gravitational and inertial forces prevailed for larger particles. Key parameters such as the particle size, sphericity, Hamaker constant, friction coefficient, and rolling arm length ratio critically influenced the deposition velocity and detachment mechanisms. These findings provide fundamental insights into sulfur deposition dynamics and establish a scientific basis for optimizing wellbore operations to mitigate sulfur accumulation and improve production efficiency in high-sulfur gas wells. Full article
(This article belongs to the Topic Petroleum and Gas Engineering, 2nd edition)
Show Figures

Figure 1

17 pages, 6623 KiB  
Article
Numerical Study on Flow Field Optimization and Wear Mitigation Strategies for 600 MW Pulverized Coal Boilers
by Lijun Sun, Miao Wang, Peian Chong, Yunhao Shao and Lei Deng
Energies 2025, 18(15), 3947; https://doi.org/10.3390/en18153947 - 24 Jul 2025
Viewed by 173
Abstract
To compensate for the instability of renewable energy sources during China’s energy transition, large thermal power plants must provide critical operational flexibility, primarily through deep peaking. To investigate the combustion performance and wear and tear of a 600 MW pulverized coal boiler under [...] Read more.
To compensate for the instability of renewable energy sources during China’s energy transition, large thermal power plants must provide critical operational flexibility, primarily through deep peaking. To investigate the combustion performance and wear and tear of a 600 MW pulverized coal boiler under deep peaking, the gas–solid flow characteristics and distributions of flue gas temperature, wall heat flux, and wall wear rate in a 600 MW tangentially fired pulverized coal boiler under variable loads (353 MW, 431 MW, 519 MW, and 600 MW) are investigated in this study employing computational fluid dynamics numerical simulation method. Results demonstrate that increasing the boiler load significantly amplifies gas velocity, wall heat flux, and wall wear rate. The maximum gas velocity in the furnace rises from 20.9 m·s−1 (353 MW) to 37.6 m·s−1 (600 MW), with tangential airflow forming a low-velocity central zone and high-velocity peripheral regions. Meanwhile, the tangential circle diameter expands by ~15% as the load increases. The flue gas temperature distribution exhibits a “low-high-low” profile along the furnace height. As the load increases from 353 MW to 600 MW, the primary combustion zone’s peak temperature rises from 1750 K to 1980 K, accompanied by a ~30% expansion in the coverage area of the high-temperature zone. Wall heat flux correlates strongly with temperature distribution, peaking at 2.29 × 105 W·m−2 (353 MW) and 2.75 × 105 W·m−2 (600 MW) in the primary combustion zone. Wear analysis highlights severe erosion in the economizer due to elevated flue gas velocities, with wall wear rates escalating from 3.29 × 10−7 kg·m−2·s−1 (353 MW) to 1.23 × 10−5 kg·m−2·s−1 (600 MW), representing a 40-fold increase under full-load conditions. Mitigation strategies, including ash removal optimization, anti-wear covers, and thermal spray coatings, are proposed to enhance operational safety. This work provides critical insights into flow field optimization and wear management for large-scale coal-fired boilers under flexible load operation. Full article
Show Figures

Figure 1

20 pages, 5671 KiB  
Article
Evaluation of Proppant Placement Efficiency in Linearly Tapering Fractures
by Xiaofeng Sun, Liang Tao, Jinxin Bao, Jingyu Qu, Haonan Yang and Shangkong Yao
Geosciences 2025, 15(7), 275; https://doi.org/10.3390/geosciences15070275 - 21 Jul 2025
Viewed by 183
Abstract
With growing reliance on hydraulic fracturing to develop tight oil and gas reservoirs characterized by low porosity and permeability, optimizing proppant transport and placement has become critical to sustaining fracture conductivity and production. However, how fracture geometry influences proppant distribution under varying field [...] Read more.
With growing reliance on hydraulic fracturing to develop tight oil and gas reservoirs characterized by low porosity and permeability, optimizing proppant transport and placement has become critical to sustaining fracture conductivity and production. However, how fracture geometry influences proppant distribution under varying field conditions remains insufficiently understood. This study employed computational fluid dynamics to investigate proppant transport and placement in hydraulic fractures of which the aperture tapers linearly along their length. Four taper rate models (δ = 0, 1/1500, 1/750, and 1/500) were analyzed under a range of operational parameters: injection velocities (1.38–3.24 m/s), sand concentrations (2–8%), proppant particle sizes (0.21–0.85 mm), and proppant densities (1760–3200 kg/m3). Equilibrium proppant pack height was adopted as the key metric for pack morphology. The results show that increasing injection rate and taper rate both serve to lower pack heights and enhance downstream transport, while a higher sand concentration, larger particle size, and greater density tend to raise pack heights and promote more stable pack geometries. In tapering fractures, higher δ values amplify flow acceleration and turbulence, yielding flatter, “table-top” proppant distributions and extended placement lengths. Fine, low-density proppants more readily penetrate to the fracture tip, whereas coarse or dense particles form taller inlet packs but can still be carried farther under high taper conditions. These findings offer quantitative guidance for optimizing fracture geometry, injection parameters, and proppant design to improve conductivity and reduce sand-plugging risk in tight formations. These insights address the challenge of achieving effective proppant placement in complex fractures and provide quantitative guidance for tailoring fracture geometry, injection parameters, and proppant properties to improve conductivity and mitigate sand plugging risks in tight formations. Full article
Show Figures

Figure 1

17 pages, 2902 KiB  
Article
Analysis of Sand Production Mechanisms in Tight Gas Reservoirs: A Case Study from the Wenxing Gas Area, Northwestern Sichuan Basin
by Qilin Liu, Xinyao Zhang, Cheng Du, Kaixiang Di, Shiyi Xie, Huiying Tang, Jing Luo and Run Shu
Processes 2025, 13(7), 2278; https://doi.org/10.3390/pr13072278 - 17 Jul 2025
Viewed by 323
Abstract
In tight sandstone gas reservoirs, proppant flowback severely limits stable gas production. This study uses laboratory flowback experiments and field analyses of the ShaXimiao tight sandstone in the Wenxing gas area to investigate the mechanisms controlling sand production. The experiments show that displacing [...] Read more.
In tight sandstone gas reservoirs, proppant flowback severely limits stable gas production. This study uses laboratory flowback experiments and field analyses of the ShaXimiao tight sandstone in the Wenxing gas area to investigate the mechanisms controlling sand production. The experiments show that displacing fluid viscosity significantly affects the critical sand-flow velocity: with high-viscous slickwater (5 mPa·s), the critical velocity is 66% lower than with low-viscous formation water (1.15 mPa·s). The critical velocity for coated proppant is three times that of the mixed quartz sand and coated proppant. If the confining pressure is maintained, but the flow rate is further increased after the proppant flowback, a second instance of sand production can be observed. X-ray diffraction (XRD) tests were conducted for sand produced from practical wells to help find the sand production reasons. Based on experimental and field data analysis, sand production in Well X-1 primarily results from proppant detachment during rapid shut-in/open cycling operations, while in Well X-2, it originates from proppant crushing. The risk of formation sand production is low for both wells (the volumetric fraction of calcite tested from the produced sands is smaller than 0.5%). These findings highlight the importance of fluid viscosity, proppant consolidation, and pressure management in controlling sand production. Full article
(This article belongs to the Special Issue Advances in Enhancing Unconventional Oil/Gas Recovery, 2nd Edition)
Show Figures

Figure 1

20 pages, 1539 KiB  
Article
The Impact of Rock Morphology on Gas Dispersion in Underground Hydrogen Storage
by Tri Pham, Rouhi Farajzadeh and Quoc P. Nguyen
Energies 2025, 18(14), 3693; https://doi.org/10.3390/en18143693 - 12 Jul 2025
Viewed by 247
Abstract
Fluid dispersion directly influences the transport, mixing, and efficiency of hydrogen storage in depleted gas reservoirs. Pore structure parameters, such as pore size, throat geometry, and connectivity, influence the complexity of flow pathways and the interplay between advective and diffusive transport mechanisms. Hence, [...] Read more.
Fluid dispersion directly influences the transport, mixing, and efficiency of hydrogen storage in depleted gas reservoirs. Pore structure parameters, such as pore size, throat geometry, and connectivity, influence the complexity of flow pathways and the interplay between advective and diffusive transport mechanisms. Hence, these factors are critical for predicting and controlling flow behavior in the reservoirs. Despite its importance, the relationship between pore structure and dispersion remains poorly quantified, particularly under elevated flow conditions. To address this gap, this study employs pore network modeling (PNM) to investigate the influence of sandstone and carbonate structures on fluid flow properties at the micro-scale. Eleven rock samples, comprising seven sandstone and four carbonate, were analyzed. Pore network extraction from CT images was used to obtain detailed pore structure parameters and their statistical measures. Pore-scale simulations were conducted across 60 scenarios with varying average interstitial velocities and water as the injected fluid. Effluent hydrogen concentrations were measured to generate elution curves as a function of injected pore volumes (PV). This approach enables the assessment of the relationship between the dispersion coefficient and pore structure parameters across all rock samples at consistent average interstitial velocities. Additionally, dispersivity and n-exponent values were calculated and correlated with pore structure parameters. Full article
(This article belongs to the Special Issue Green Hydrogen Energy Production)
Show Figures

Figure 1

21 pages, 1682 KiB  
Article
Dynamic Multi-Path Airflow Analysis and Dispersion Coefficient Correction for Enhanced Air Leakage Detection in Complex Mine Ventilation Systems
by Yadong Wang, Shuliang Jia, Mingze Guo, Yan Zhang and Yongjun Wang
Processes 2025, 13(7), 2214; https://doi.org/10.3390/pr13072214 - 10 Jul 2025
Viewed by 380
Abstract
Mine ventilation systems are critical for ensuring operational safety, yet air leakage remains a pervasive challenge, leading to energy inefficiency and heightened safety risks. Traditional tracer gas methods, while effective in simple networks, exhibit significant errors in complex multi-entry systems due to static [...] Read more.
Mine ventilation systems are critical for ensuring operational safety, yet air leakage remains a pervasive challenge, leading to energy inefficiency and heightened safety risks. Traditional tracer gas methods, while effective in simple networks, exhibit significant errors in complex multi-entry systems due to static empirical parameters and environmental interference. This study proposes an integrated methodology that combines multi-path airflow analysis with dynamic longitudinal dispersion coefficient correction to enhance the accuracy of air leakage detection. Utilizing sulfur hexafluoride (SF6) as the tracer gas, a phased release protocol with temporal isolation was implemented across five strategic points in a coal mine ventilation network. High-precision detectors (Bruel & Kiaer 1302) and the MIVENA system enabled synchronized data acquisition and 3D network modeling. Theoretical models were dynamically calibrated using field-measured airflow velocities and dispersion coefficients. The results revealed three deviation patterns between simulated and measured tracer peaks: Class A deviation showed 98.5% alignment in single-path scenarios, Class B deviation highlighted localized velocity anomalies from Venturi effects, and Class C deviation identified recirculation vortices due to abrupt cross-sectional changes. Simulation accuracy improved from 70% to over 95% after introducing wind speed and dispersion adjustment coefficients, resolving concealed leakage pathways between critical nodes and key nodes. The study demonstrates that the dynamic correction of dispersion coefficients and multi-path decomposition effectively mitigates errors caused by turbulence and geometric irregularities. This approach provides a robust framework for optimizing ventilation systems, reducing invalid airflow losses, and advancing intelligent ventilation management through real-time monitoring integration. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

17 pages, 2854 KiB  
Article
Classification of Acoustic Characteristics of Bubble Flow and Influencing Factors of Critical Gas Flow Velocity
by Wenbin Zhou, Kunlong Yi, Guangyan Wang and Honghai Wang
Processes 2025, 13(7), 2055; https://doi.org/10.3390/pr13072055 - 28 Jun 2025
Viewed by 333
Abstract
To address the unclear coupling mechanism between bubble detachment behavior and acoustic characteristics in gas–liquid two-phase flow, this paper systematically studied bubble behavior and acoustic characteristics under different conditions by building a high-precision synchronous measurement system, combining acoustic signal analysis and bubble dynamics [...] Read more.
To address the unclear coupling mechanism between bubble detachment behavior and acoustic characteristics in gas–liquid two-phase flow, this paper systematically studied bubble behavior and acoustic characteristics under different conditions by building a high-precision synchronous measurement system, combining acoustic signal analysis and bubble dynamics observation. The influence mechanism of liquid surface tension, dynamic viscosity, and orifice diameter on the critical gas flow velocity of bubble flow transition was analyzed, and a flow pattern classification criterion system was established. The experimental results showed that the bubble flow state could be divided into three states according to the characteristics of the acoustic signals: discrete bubble flow, single-chain bubble flow, and dual-stage chain bubble flow. The liquid surface tension and dynamic viscosity had no significant effect on the critical gas flow velocity of the transition from discrete bubble flow to single-chain bubble flow, but significantly increased the critical gas flow velocity of the transition from single-chain bubble flow to dual-stage chain bubble flow. The increase in the orifice diameter reduced the critical gas flow velocity of the two types of flow transition. In addition, the Weber number (We) and Galileo number (Ga) were introduced to construct a quantitative classification system of flow pattern, which provided theoretical support for the optimization of industrial gas–liquid two-phase flow. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Figure 1

18 pages, 2521 KiB  
Article
A Doppler Frequency-Offset Estimation Method Based on the Beam Pointing of LEO Satellites
by Yanjun Song, Jun Xu, Chenhua Sun, Xudong Li and Shaoyi An
Electronics 2025, 14(13), 2539; https://doi.org/10.3390/electronics14132539 - 23 Jun 2025
Viewed by 354
Abstract
With the advancement of 5G-Advanced Non-Terrestrial Network (5G-A NTN) mobile communication technologies, direct satellite connectivity for mobile devices has been increasingly adopted. In the highly dynamic environment of low-Earth-orbit (LEO) satellite communications, the synchronization of satellite–ground signals remains a critical challenge. In this [...] Read more.
With the advancement of 5G-Advanced Non-Terrestrial Network (5G-A NTN) mobile communication technologies, direct satellite connectivity for mobile devices has been increasingly adopted. In the highly dynamic environment of low-Earth-orbit (LEO) satellite communications, the synchronization of satellite–ground signals remains a critical challenge. In this study, a Doppler frequency-shift estimation method applicable to high-mobility LEO scenarios is proposed, without reliance on the Global Navigation Satellite System (GNSS). Rapid access to satellite systems by mobile devices is enabled without the need for additional time–frequency synchronization infrastructure. The generation mechanism of satellite–ground Doppler frequency shifts is analyzed, and a relationship between satellite velocity and beam-pointing direction is established. Based on this relationship, a Doppler frequency-shift estimation method, referred to as DFS-BP (Doppler frequency-shift estimation using beam pointing), is developed. The effects of Earth’s latitude and satellite orbital inclination are systematically investigated and optimized. Through simulation, the estimation performance under varying minimum satellite elevation angles and terminal geographic locations is evaluated. The algorithm may provide a novel solution for Doppler frequency-shift compensation in Non-Terrestrial Networks (NTNs). Full article
Show Figures

Figure 1

17 pages, 4816 KiB  
Article
The Effects of Fiber Concentration, Orientation, and Aspect Ratio on the Frontal Polymerization of Short Carbon-Fiber-Reinforced Composites: A Numerical Study
by Aurpon Tahsin Shams, Easir Arafat Papon and Anwarul Haque
J. Compos. Sci. 2025, 9(6), 307; https://doi.org/10.3390/jcs9060307 - 17 Jun 2025
Viewed by 904
Abstract
The cure kinetics in frontal polymerization (FP) of short carbon-fiber-reinforced composites are investigated numerically, focusing on the influence of fiber aspect ratio, volume fraction, and orientation. A classical heat conduction equation is used in FP, where the enthalpic reaction generates heat. The heat [...] Read more.
The cure kinetics in frontal polymerization (FP) of short carbon-fiber-reinforced composites are investigated numerically, focusing on the influence of fiber aspect ratio, volume fraction, and orientation. A classical heat conduction equation is used in FP, where the enthalpic reaction generates heat. The heat generation term is expressed in terms of the rate of degree of cure (dα/dt) in thermoset resin. A rate equation of the degree of cure for epoxy is established in terms of a pre-exponential factor, activation energy, Avogadro’s gas constant, and temperature. The cure kinetics parameters for epoxy resin used in this study are determined using the Ozawa method. The numerical model was validated with experimental data. The results reveal that the aspect ratio of fibers has a minimal effect on the polymerization time. The volume percentage of fibers significantly influences the curing time and temperature distribution, with higher fiber volume fractions leading to faster curing due to enhanced heat transfer. Additionally, fiber orientation plays a critical role in cure kinetics, with specific angles facilitating more effective heat transfer, thereby influencing the curing rate and frontal velocity. The results offer valuable insights into optimizing the design and manufacturing processes for high-performance epoxy-based composites through FP, where precise control over curing is critical. Full article
Show Figures

Figure 1

14 pages, 1745 KiB  
Article
Investigation of Efficient Mixing Enhancement in a Droplet Micromixer with Short Mixing Length at Low Reynolds Number
by Yuanfang Qiu, Xueze Zhang, Mengzhen Hao, Xu Yin, Mengling Zhou, Shichao Ma, Yuanting Zhang, Naiqian Jiang, Li Xie, Xichen Yuan and Honglong Chang
Micromachines 2025, 16(6), 715; https://doi.org/10.3390/mi16060715 - 16 Jun 2025
Viewed by 484
Abstract
Rapid mixing is widely prevalent in the field of microfluidics, encompassing applications such as biomedical diagnostics, drug delivery, chemical synthesis, and enzyme reactions. Mixing efficiency profoundly impacts the overall performance of these devices. However, at the micro-scale, the flow typically presents as laminar [...] Read more.
Rapid mixing is widely prevalent in the field of microfluidics, encompassing applications such as biomedical diagnostics, drug delivery, chemical synthesis, and enzyme reactions. Mixing efficiency profoundly impacts the overall performance of these devices. However, at the micro-scale, the flow typically presents as laminar flow due to low Reynolds numbers, rendering rapid mixing challenging. Leveraging the vortices within a droplet of the Taylor flow and inducing chaotic convection within the droplet through serpentine channels can significantly enhance mixing efficiency. Based on this premise, we have developed a droplet micromixer that integrates the T-shaped channels required for generating Taylor flow and the serpentine channels required for inducing chaotic convection within the droplet. We determined the range of inlet liquid flow rate and gas pressure required to generate Taylor flow and conducted experimental investigations to examine the influence of the inlet conditions on droplet length, total flow rate, and mixing efficiency. Under conditions where channel dimensions and liquid flow rates are identical, Taylor flow achieves a nine-fold improvement in mixing efficiency compared to single-phase flow. At low Reynolds number (0.57 ≤ Re ≤ 1.05), the chip can achieve a 95% mixing efficiency within a 2 cm distance in just 0.5–0.8 s. The mixer proposed in this study offers the advantages of simplicity in manufacturing and ease of integration. It can be readily integrated into Lab-on-a-Chip devices to perform critical functions, including microfluidic switches, formation of nanocomposites, synthesis of oxides and adducts, velocity measurement, and supercritical fluid fractionation. Full article
(This article belongs to the Collection Micromixers: Analysis, Design and Fabrication)
Show Figures

Graphical abstract

21 pages, 14961 KiB  
Article
Unsteady Flow Analysis Inside an Electric Submersible Pump with Impeller Blade Perforation
by Siyuan Li, Yang Zhang, Jianhua Bai, Jinming Dai, Hua Zhang, Jian Wang and Ling Zhou
Water 2025, 17(12), 1790; https://doi.org/10.3390/w17121790 - 14 Jun 2025
Viewed by 402
Abstract
The electric submersible pump (ESP) is a critical component in subsurface resource extraction systems, yet the presence of gas in the working medium significantly affects its performance. To investigate the impact of impeller perforation on gas–liquid mixing and internal flow characteristics, unsteady numerical [...] Read more.
The electric submersible pump (ESP) is a critical component in subsurface resource extraction systems, yet the presence of gas in the working medium significantly affects its performance. To investigate the impact of impeller perforation on gas–liquid mixing and internal flow characteristics, unsteady numerical simulations were conducted based on the Euler–Euler multiphase flow model. The transient evolution of the gas phase distribution, flow behavior, and liquid phase turbulent entropy generation rate was analyzed under an inlet gas volume fraction of 5%. Results show that under part-load flow conditions, impeller perforation reduces the amplitude of dominant frequency fluctuations and enhances periodicity, thereby mitigating low-frequency disturbances. Under design flow conditions, it leads to stronger dominant frequencies and intensified low-frequency fluctuations. Gas phase distribution varies little under low and design flow rates, while at high flow rates, gas accumulations shift from the midsection to the outlet with rotor rotation. As the flow rate increases, liquid velocity rises, and flow streamlines become more uniform within the channels. Regions of high entropy generation coincide with high gas concentration zones: they are primarily located near the impeller inlet and suction side under low flow, concentrated at the inlet and mid-passage under design flow, and significantly reduced and shifted toward the impeller outlet under high flow conditions. The above results indicate that the perforation design of ESP impellers should be optimized according to operating conditions to improve gas dispersion paths and flow channel geometry. Under off-design conditions, perforations can enhance operational stability and transport performance, while under design conditions, the location and size of the perforations must be precisely controlled to balance efficiency and vibration suppression. Full article
(This article belongs to the Special Issue Hydraulics and Hydrodynamics in Fluid Machinery, 2nd Edition)
Show Figures

Figure 1

19 pages, 4650 KiB  
Article
Numerical Simulation of a Novel Secondary Separation Cyclone
by Jingyi Chen, Yanxin Chen, Leilei Zhang, Bo Zhao and Yongsheng Li
Processes 2025, 13(6), 1874; https://doi.org/10.3390/pr13061874 - 13 Jun 2025
Viewed by 540
Abstract
The low separation efficiency of conventional cyclone separators for sub-10 μm particles remains a critical challenge in Na2S production processes. Previous optimization attempts have failed to reconcile economic feasibility with effective fine particle capture requirements. To address this industrial bottleneck, we [...] Read more.
The low separation efficiency of conventional cyclone separators for sub-10 μm particles remains a critical challenge in Na2S production processes. Previous optimization attempts have failed to reconcile economic feasibility with effective fine particle capture requirements. To address this industrial bottleneck, we propose an innovative secondary separation cyclone design tailored for next-generation Na2S manufacturing systems. Our methodology synergizes computational fluid dynamics (CFD) simulations with experimental validation, achieving cost-effective development while ensuring numerical model reliability. Comparative analyses reveal significant improvements: under varying gas velocities, the novel design demonstrates 5.67–9.77% and 7.03–10.14% enhancements in 1–10 μm particle collection efficiency compared to standard and volute-type cyclones, respectively. Mechanistic investigations through flow field characterization elucidate the relationship between vortex dynamics and separation performance. This work provides a structurally optimized cyclone configuration with industrial applicability, as well as a validated hybrid experimental–computational framework that could inform solutions for fine particle separation across chemical processing industries. Full article
(This article belongs to the Topic Advances in Separation Engineering)
Show Figures

Figure 1

15 pages, 5081 KiB  
Article
Comparative Study of Water Flow in Nanopores with Different Quartz (101¯0) Surfaces via Molecular Dynamics Simulations
by Peng Zhou, Junyao Bao, Shiyuan Zhan, Xingjian Wang, Shaopeng Li, Baofeng Lan and Zhanbo Liu
Nanomaterials 2025, 15(12), 896; https://doi.org/10.3390/nano15120896 - 10 Jun 2025
Viewed by 347
Abstract
Dewatering and gas production are applied on a large scale in shale gas development. The fundamental mechanisms of water flow in shale nanoporous media are essential for the development of shale oil and gas resources. In this work, we use molecular dynamic simulations [...] Read more.
Dewatering and gas production are applied on a large scale in shale gas development. The fundamental mechanisms of water flow in shale nanoporous media are essential for the development of shale oil and gas resources. In this work, we use molecular dynamic simulations to investigate water flow in two different quartz surface ((101¯0)-α and (101¯0)-β) nanopores. Results show that the (101¯0)-β surface exhibits stronger water molecule structuring with a structure arranged in two layers and higher first-layer adsorption density (2.44 g/cm3) compared to the ((101¯0)-α surface (1.68 g/cm³). The flow flux under the (101¯0)-α surface is approximately 1.2 times higher than that under the (101¯0)-β surface across various pressure gradients. We developed a theoretical model dividing the pore space into non-flowing, adsorbed, and bulk water regions, with critical thicknesses of 0.14 nm and 0.27 nm for the non-flowing region, and 0.15 nm for the adsorbed region in both surfaces. This model effectively predicts velocity distributions and volumetric flow rates with errors generally below 5%. Our findings provide insights into water transport mechanisms in shale inorganic nanopores and offer practical guidance for numerical simulation of shale gas production through dewatering operations. Full article
(This article belongs to the Special Issue Nanomaterials and Nanotechnology for the Oil and Gas Industry)
Show Figures

Graphical abstract

22 pages, 6213 KiB  
Article
Mechanistic Insights into Ammonium Chloride Particle Deposition in Hydrogenation Air Coolers: Experimental and CFD-DEM Analysis
by Haoyu Yin, Haozhe Jin, Xiaofei Liu, Chao Wang, Wei Chen, Fengguan Chen, Shuangqing Xu and Shuangquan Li
Processes 2025, 13(6), 1816; https://doi.org/10.3390/pr13061816 - 8 Jun 2025
Cited by 1 | Viewed by 654
Abstract
The operational reliability of industrial cooling systems is critically compromised by the crystallization of ammonium chloride (NH4Cl) in the terminal sections of heat exchangers and at air-cooler inlets. This study systematically investigated the deposition characteristics of NH4Cl particles in [...] Read more.
The operational reliability of industrial cooling systems is critically compromised by the crystallization of ammonium chloride (NH4Cl) in the terminal sections of heat exchangers and at air-cooler inlets. This study systematically investigated the deposition characteristics of NH4Cl particles in hydrogenation air coolers, along with the factors influencing this process, using a combination of experimental analyses and CFD-DEM coupled simulations. Numerical simulations indicated that gas velocity is the primary factor that governs the NH4Cl deposition behavior, whereas the NH4Cl particle size significantly affects the deposition propensity. Under turbulent conditions, larger particles (>300 μm) exhibit a greater deposition tendency due to increased inertial effects. A power-law equation (R2 > 0.75) fitted to the experimental data effectively predicts the variations in the deposition rates across tube bundles. This study offers a theoretical foundation and predictive framework for optimizing anti-clogging design and maintenance strategies in industrial air coolers. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

19 pages, 3604 KiB  
Article
Research on a Sand-Carrying Model of Horizontal Sections of Deep Coalbed Methane Wells
by Longfei Sun, Weilin Qi, Wei Qi, Li Hao, Anda Tang, Lin Yang, Kang Zhang and Yun Zhang
Processes 2025, 13(6), 1810; https://doi.org/10.3390/pr13061810 - 6 Jun 2025
Viewed by 399
Abstract
Deep coalbed methane wells often encounter challenges such as inefficient sand transport and sand accumulation in the horizontal sections during drainage, which significantly impact the stability of gas production and the efficiency of the gas lift system. To investigate the sand-carrying mechanisms in [...] Read more.
Deep coalbed methane wells often encounter challenges such as inefficient sand transport and sand accumulation in the horizontal sections during drainage, which significantly impact the stability of gas production and the efficiency of the gas lift system. To investigate the sand-carrying mechanisms in the horizontal sections of deep coalbed methane wells, this study develops a theoretical model for critical sand-carrying velocity based on gravitational, buoyant, drag, and pressure gradient forces. Additionally, a visualized experimental system was constructed using a multiphase pipe flow platform. By varying parameters such as liquid flow rate, gas–liquid ratio, gravel particle size, and pipe inclination, the critical conditions for sand transport were examined, and the dominant factors influencing sand transport in horizontal wellbore sections were identified. The experimental results indicate that water flow rate and particle size are inversely correlated with the gas volume required for sand transport, whereas inclination angle is positively correlated. The proposed model was validated against experimental data, showing a prediction error within 15%, thereby confirming its accuracy and engineering applicability. These findings offer theoretical guidance and technical references for efficient drainage and stable gas production in horizontal wellbore sections of deep coalbed methane wells. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

Back to TopTop