Dynamic Multi-Path Airflow Analysis and Dispersion Coefficient Correction for Enhanced Air Leakage Detection in Complex Mine Ventilation Systems
Abstract
1. Introduction
2. Materials and Methods
3. Theoretical Model
3.1. Mass Transfer Theory of Tracer Gas in Single Airway
3.2. Tracer Gas Concentration Resolution in Complex Airway Networks
4. Field Measurements
- Initial release: 18,841 mL SF6 at Point 5 as baseline signal;
- +3 min: 17,657 mL at point 3;
- +3 min: 21,098 mL at Point 2;
- +12 min: 20,265 mL at Point 1;
- Final release: 19,641 mL at Point 4.
5. Results and Discussion
5.1. Dynamic Tracer Response and Ventilation Pathway Coupling
5.2. Analysis of Deviation Between Theoretical and Measured Peak Arrival Times
- Release Point 1: 19.3 min to 33.7 min;
- Release Point 2: 6.6 min to 14.1 min;
- Release Point 3: 4.8 min to 12.2 min;
- Release Point 4: 4.6 min to 7.7 min;
- Release Point 5: 1.3 min.
- First peak (6.37 min): corresponds to Release Point 5, consistent with its theoretical arrival time (1.3 min), with minor temporal deviations attributable to turbulence-induced dispersion effects.
- Second peak (8.93 min): aligns with Release Point 3, falling within its calculated arrival time range (4.8–12.2 min).
- Third peak (10.98 min): matches the theoretical arrival time of Release Point 2, demonstrating close agreement with upper-bound predictions.
- Fourth peak interval (40.65–50.20 min): overlaps partially with the theoretical range of Release Point 1 (19.3–33.7 min), suggesting the presence of unmodeled leakage pathways or dynamic ventilation network interactions. Notably, Release Point 4’s predicted arrival time (4.6–7.7 min) precedes this interval, excluding it as a contributor.
- Fifth peak (61.65 min): exhibits no correspondence to any release point’s theoretical arrival window, potentially arising from unaccounted leakage sources, sensor noise, or secondary airflow recirculation.
- (1)
- Class A Deviation (ΔT ≤ 1.5 min)
- (2)
- Class B Deviation (1.5 min < ΔT ≤ 4 min)
- (3)
- Class C Deviation (ΔT > 4 min)
6. Conclusions
- (1)
- The study developed a ventilation model with dynamic dispersion correction to resolve >30% errors in conventional approaches. By decomposing networks into independent pathways and integrating real-time monitoring data, it corrects deviations from cross-sectional changes (12.3 m2 to 8.7 m2), velocity fluctuations, and localized turbulence.
- (2)
- Temporally isolated tracer releases at five points identified critical anomalies: a 23% residence time increase and a 7 min delay in Pathways 1–2 (Release Point 1), a 0.23 min transport reduction in Pathway 11 (Release Point 2), and concealed leakage between Nodes 1–4 detected at 61.65 min.
- (3)
- Wind speed deviation dominates peak timing errors; dispersion coefficient deviation governs peak amplitudes. Correction coefficients (v and k) improved simulation-measurement fit to >95%.
- (4)
- The method enables targeted leakage sealing (e.g., Nodes 1–4), reduces invalid airflow, and integrates with MIVENA for intelligent ventilation management.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Zheng, Q.; Zhang, H.; Zhang, X.; Dong, W.; Sugai, Y.; Sasaki, K. Dynamic Correlation between Surface Carbon Response and Underlying Emissions from Spontaneous Combustion Goaf: Field Study of an Abandoned Coal Mine. Geomech. Geophys. Geo-Energy Geo-Resour. 2024, 10, 148. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, P.; Wang, Y.; Vo Thanh, H.; Ngo, I.; Lu, X.; Yang, X.; Zhang, X.; Sasaki, K. Investigate on Spontaneous Combustion Characteristics of Lignite Stockpiles Considering Moisture and Particle Size Effects. Energy 2024, 309, 133193. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, R.; Lu, B.; Huang, G.; Qiao, L.; Liang, H. Study on the Characteristics of Secondary Oxidation and the Key Reactive Groups of Fire Area Coal by Different Cooling Rates. Case Stud. Therm. Eng. 2025, 69, 106014. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, R.; Lu, B.; Huang, G.; Fan, N.; Zou, J. Characterization of Oxidation Kinetics of Coals with Different Cooling Rates Based on FTIR and TG Experiments. J. Therm. Anal. Calorim. 2025, 150, 4305–4324. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, X. Multi-Physical Field Coupling Model for Thermal Evolution Analysis in Coal Mine Goaf: A Numerical Investigation. Appl. Therm. Eng. 2025, 273, 126551. [Google Scholar] [CrossRef]
- Sadeghi, S.; Aminossadati, S.M.; Kizil, M.; Leonardi, C. Numerical Analysis of Shearer Motion Impact on Longwall Ventilation Performance. J. Ind. Saf. 2025, 2, 99–116. [Google Scholar] [CrossRef]
- Bhukya, P.; Bhukya, K.N. An Advanced Approach for Cloud Enabled Energy Efficient Ventilation Control of Multiple Main Fans in Underground Coal Mines. Comput. Electr. Eng. 2025, 124, 110330. [Google Scholar] [CrossRef]
- Akram, M.W.; Guo, H.; Hu, W. Underground Plant Factory in a Mine Tunnel—Part 2: Passive Ventilation Integration and Economic Feasibility. Energy Built Environ. 2025, in press. [Google Scholar] [CrossRef]
- Amoah, N.A.; Xu, G.; Kumar, A.R.; Wang, Y. Calibration of Low-Cost Particulate Matter Sensors for Coal Dust Monitoring. Sci. Total Environ. 2023, 859, 160336. [Google Scholar] [CrossRef]
- Si, J. Dynamic Monitoring of Airflow Parameters and Air Quantity Regulation Optimization for Mine Ventilation System. Ph.D. Thesis, China University of Mining and Technology, Xuzhou, China, 2012. [Google Scholar]
- Yu, B. Research on Optimization and Control Methods for Complex Dynamic System; Liaoning Technical University: Fuxin, China, 2023. [Google Scholar]
- Li, Y.; Li, J.; Deng, C.; Liu, R. Improved Algorithm of Air Quantity Calculating Resistance Based on Diagonal Subnetwork. J. China Coal Soc. 2019, 4, 1147–1153. [Google Scholar]
- Liu, Y.; Wang, Z.; Huang, D. Identification of Stochastic Disturbance Sources of Air Doors in Mine Ventilation Systems. Adv. Eng. Inform. 2025, 65, 103356. [Google Scholar] [CrossRef]
- Geng, F.; Li, W.; Liu, Y.; Peng, R.; Li, Z.; Liu, H. Intelligent Equalizing Pressure Ventilation System for Coal Mine: A Case Study of the 104 Coal Mining Face in Shige Tai Mine. Energy Rep. 2025, 13, 4998–5005. [Google Scholar] [CrossRef]
- Shao, L.; Wang, Z.; Li, C. Optimization Algorithm of Mine Ventilation Based on SA-IPSO. Xitong Fangzhen Xuebao/J. Syst. Simul. 2021, 33, 2085–2094. [Google Scholar] [CrossRef]
- Chen, K.; Si, J.; Zhou, F.; Zhang, R.; Shao, H.; Zhao, H. Optimization of Air Quantity Regulation in Mine Ventilation Networks Using the Improved Differential Evolution Algorithm and Critical Path Method. Int. J. Min. Sci. Technol. 2015, 25, 79–84. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, Q.; Liu, J.; Deng, L.; Wang, D.; Li, G. Bayesian Optimized Deep Q-Network for Diagnosing Mine Ventilation Systems Windage Alteration Fault Targeting Imbalanced Data. Process. Saf. Environ. Prot. 2024, 191, 2543–2558. [Google Scholar] [CrossRef]
- Wang, D.; Liu, J.; Deng, L.; Cao, P.; Liu, L. Fast and Intelligent Measurement of the Ventilation Resistance Coefficient for the Whole Mine Based on Sparse Measurement Points. Eng. Appl. Artif. Intell. 2025, 151, 110713. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, Z.; Wang, K.; Han, Z.; Wei, L. Method for Adjusting Air Volume of Mine Ventilation Network Based on DE-GWO Algorithm. Zhongnan Daxue Xuebao (Ziran Kexue Ban)/J. Cent. South Univ. (Sci. Technol.) 2021, 52, 3981–3989. [Google Scholar] [CrossRef]
- Jia, T.; Ma, H.; Gao, K. Dynamic Calculation of the Heat-Flow Coupled Mine Ventilation Network with the Introduction of Air Volume Fluctuation Factor. J. China Coal Soc. 2024, 50, 2527–2539. [Google Scholar] [CrossRef]
- Zhang, J.; He, X.; Lin, G. Research on Intelligent Optimization of Air Quantity in Mine Based on IWOA Algorithm. Min. Saf. Environ. Protication 2024, 51, 177–184. [Google Scholar]
- Zhang, L.; Shuang, L.; Li, W.; Yanqing, L. Intelligent Decision-Making for Mine Airflow on Demand Based on the Improved Artificial Bee Colony Algorithm. J. Mine Autom. 2025, 51, 131–137. [Google Scholar] [CrossRef]
- Wu, X.; Han, Z.; Wei, L.; Zuo, Y.; Xu, J.; Li, A. Intelligent On-Demand Adjustment Algorithm and Key Technology of Mine Air Flow. J. China Univ. Min. Technol. 2021, 4, 725–734. [Google Scholar] [CrossRef]
- Walentek, A.; Janoszek, T.; Prusek, S.; Wrana, A. Influence of Longwall Gateroad Convergence on the Process of Mine Ventilation Network-Model Tests. Int. J. Min. Sci. Technol. 2019, 29, 585–590. [Google Scholar] [CrossRef]
- Wu, F.; Gao, Y.; Chang, X. Boundary Coupling Model and Solution Technology of Mine Ventilation Network and Gob Flow Field. Zhongnan Daxue Xuebao (Ziran Kexue Ban)/J. Cent. South Univ. (Sci. Technol.) 2020, 51, 2333–2342. [Google Scholar] [CrossRef]
- Lei, B.; He, B.; Zhao, Z.; Xu, G.; Wu, B. A Method for Identifying the Fire Status through Ventilation Systems Using Tracer Gas for Improved Rescue Effectiveness in Roadway Drivage of Coal Mines. Process. Saf. Environ. Prot. 2021, 151, 151–157. [Google Scholar] [CrossRef]
- Wang, Y.; Vo Thanh, H.; Zhang, H.; Rahimi, M.; Dai, Z.; Abualigah, L. Low-Carbon Advancement through Cleaner Production: A Machine Learning Approach for Enhanced Hydrogen Storage Predictions in Coal Seams. Renew. Energy 2025, 241, 122342. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Liang, H.; Bai, G.; Gao, F.; Lu, B.; Yu, C. Mechanistic Study on the Effect of Acid Leaching Treatment on the Microstructure Evolution of Different Coal Species and Their Macro-Oxidative Exothermic Properties. Thermochim Acta 2025, 747, 179975. [Google Scholar] [CrossRef]
- Xu, G.; Jong, E.C.; Luxbacher, K.D.; McNair, H.M. Effective Utilization of Tracer Gas in Characterization of Underground Mine Ventilation Networks. Process Saf. Environ. Prot. 2016, 99, 1–10. [Google Scholar] [CrossRef]
- Jensen, C.R.; Genereux, D.P.; Gilmore, T.E.; Solomon, D.K. Modified Tracer Gas Injection for Measuring Stream Gas Exchange Velocity in the Presence of Significant Temperature Variation. Water Resour. Res. 2023, 59, e2023WR034495. [Google Scholar] [CrossRef]
- Remion, G.; Moujalled, B.; El Mankibi, M. Review of Tracer Gas-Based Methods for the Characterization of Natural Ventilation Performance: Comparative Analysis of Their Accuracy. Build. Environ. 2019, 160, 106180. [Google Scholar] [CrossRef]
- Gao, N.; Wang, R.; Wu, Y.; Wu, Z. Study on Impact Factors of Tracer Gas Method in Investigations of Gaseous Pollutant Transport and Building Ventilation. Build Simul 2023, 16, 413–426. [Google Scholar] [CrossRef]
- Jia, K.; Zhou, L.; Gao, H.; Sun, Q. A Theoretical Framework for Identifying Ventilation Corridors in Megacity Building Clusters Using Coupled Least-Cost Path and A* Algorithms. Build. Environ. 2025, 276, 112890. [Google Scholar] [CrossRef]
- Johnson, M.H.; Zhai, Z.J.; Krarti, M. Performance Evaluation of Network Airflow Models for Natural Ventilation. HVAC R Res. 2012, 18, 349–365. [Google Scholar] [CrossRef]
- Wang, J.; Jia, M.; Bin, L.; Wang, L.; Zhong, D. Regulation and Optimization of Air Quantity in a Mine Ventilation Network with Multiple Fans. Arch. Min. Sci. 2022, 67, 179–193. [Google Scholar] [CrossRef]
- Wang, Q.; Fang, W.; de Richter, R.; Peng, C.; Ming, T. Effect of Moving Vehicles on Pollutant Dispersion in Street Canyon by Using Dynamic Mesh Updating Method. J. Wind. Eng. Ind. Aerodyn. 2019, 187, 15–25. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, S.; Dong, C.; Wang, S.; Guo, Y.; Gao, X.; Sun, B.; Chen, W.; Guo, C. Three-Stage Numerical Simulation of Tunnel Blasting Dust Diffusion Based on Field Monitoring and CFD. Tunn. Undergr. Space Technol. 2024, 150, 105830. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Tang, J.; Cui, Z.; Li, Y.; Zhou, H.; Zhang, G.; Yang, J. Optical Technology for Detecting the Decomposition Products of SF6: A Review. Opt. Eng. 2018, 57, 110901. [Google Scholar] [CrossRef]
- Huang, W.; Wang, W.; Chen, C.; Li, Y.; Wang, Z.; Li, Q.; Li, M.; Hou, K. Real-Time Monitoring Traces of SF6 in near-Source Ambient Air by Ion Mobility Spectrometry. Int. J. Environ. Anal. Chem. 2019, 99, 868–877. [Google Scholar] [CrossRef]
- Yang, B.; Yao, H.; Wang, F. A Review of Ventilation and Environmental Control of Underground Spaces. Energies 2022, 15, 409. [Google Scholar] [CrossRef]
- Diego, I.; Torno, S.; Toraño, J.; Menéndez, M.; Gent, M. A Practical Use of CFD for Ventilation of Underground Works. Tunn. Undergr. Space Technol. 2011, 26, 189–200. [Google Scholar] [CrossRef]
- Guo, J.; Li, A.; Zhang, C.; Li, J.; Che, J.; Xiong, J.; Jiao, X. Modeling Effective Heat Transfer and Ventilation in Deeply Buried Underground Tunnels. Int. J. Therm. Sci. 2023, 184, 107949. [Google Scholar] [CrossRef]
- Zhao, J.; Dong, J.; Gao, H.; Wang, Z.; Na, Y.; Jiang, C.; Liu, J. Study on Airflow Characteristics of Underground Transportation Buildings with Sunken Squares Using Particle Image Velocimetry Experiments in a Wind Tunnel. Build. Environ. 2023, 242, 110469. [Google Scholar] [CrossRef]
- Zhao, C.; Wu, B.; Wang, J.; Cao, H. Calculation Method of Roadway Ventilation Resistance Based on Fractal Characterization of Wall Roughness. Phys. Fluids 2025, 37, 035137. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, M.; Vo Thanh, H.; Zhang, H.; Liu, X.; Zheng, Q.; Zhang, X.; Daoud, M.S.; Abualigah, L. Advanced Machine Learning Schemes for Prediction CO2 Flux Based Experimental Approach in Underground Coal Fire Areas. J. Adv. Res. 2024, 70, 587–601. [Google Scholar] [CrossRef] [PubMed]
- Widiatmojo, A.; Sasaki, K.; Widodo, N.P.; Sugai, Y.; Sahzabi, A.Y.; Nguele, R. Predicting Gas Dispersion in Large Scale Underground Ventilation: A Particle Tracking Approach. Build. Environ. 2016, 95, 171–181. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, P.; Rahimi, M.; Vo Thanh, H.; Wang, Y.; Dai, Z.; Zheng, Q.; Cao, Y. Catalyzing Net-Zero Carbon Strategies: Enhancing CO2 Flux Prediction from Underground Coal Fires Using Optimized Machine Learning Models. J. Clean. Prod. 2024, 441, 141043. [Google Scholar] [CrossRef]
- Zhang, H.; Thanh, H.V.; Rahimi, M.; Al-Mudhafar, W.J.; Tangparitkul, S.; Zhang, T.; Dai, Z.; Ashraf, U. Improving Predictions of Shale Wettability Using Advanced Machine Learning Techniques and Nature-Inspired Methods: Implications for Carbon Capture Utilization and Storage. Sci. Total Environ. 2023, 877, 162944. [Google Scholar] [CrossRef]
Position | Time | Volume/mL |
---|---|---|
1 | 10:08 | 20,265 |
2 | 09:56 | 21,098 |
3 | 09:53 | 17,657 |
4 | 10:20 | 19,641 |
5 | 09:50 | 18,841 |
Recorded Time | Concentration (ppm) | Elapsed Time (min) |
---|---|---|
09:50:16 | 0.00 | 0.27 |
09:51:17 | 0.02 | 1.28 |
09:52:18 | 0.02 | 2.30 |
09:53:19 | 0.03 | 3.32 |
09:54:20 | 0.04 | 4.33 |
09:55:21 | 0.07 | 5.35 |
09:56:22 | 1.08 | 6.37 |
… | … | … |
Release Point No. | Number of Airway Branches |
---|---|
1 | 8 |
2 | 12 |
3 | 12 |
4 | 4 |
5 | 1 |
Airway No. | Release Time | Airway Length (m) | Airflow Speed (m/s) | Time (min) |
---|---|---|---|---|
1 | 10:08 | 3286 | 1.63 | 33.5 |
2 | 10:08 | 3281 | 1.62 | 33.7 |
3 | 10:08 | 3341 | 2.04 | 27.3 |
4 | 10:08 | 3336 | 2.03 | 27.4 |
5 | 10:08 | 2127 | 1.58 | 22.5 |
6 | 10:08 | 2122 | 1.56 | 22.6 |
7 | 10:08 | 2059 | 1.78 | 19.3 |
8 | 10:08 | 2063 | 1.77 | 19.4 |
Airway No. | Release Time | Airway Length (m) | Airflow Speed (m/s) | Time (min) |
---|---|---|---|---|
1 | 09:56 | 1872 | 2.86 | 10.9 |
2 | 09:56 | 1868 | 2.86 | 10.9 |
3 | 09:56 | 1760 | 2.08 | 14.1 |
4 | 09:56 | 1756 | 2.08 | 14.1 |
5 | 09:56 | 1822 | 3.13 | 9.7 |
6 | 09:56 | 1818 | 3.12 | 9.7 |
7 | 09:56 | 1710 | 2.24 | 12.7 |
8 | 09:56 | 1714 | 2.23 | 12.8 |
9 | 09:56 | 1512 | 3.15 | 8 |
10 | 09:56 | 1508 | 3.14 | 8 |
11 | 09:56 | 1462 | 3.69 | 6.6 |
12 | 09:56 | 1458 | 3.57 | 6.8 |
Airway No. | Release Time | Airway Length (m) | Airflow Speed (m/s) | Time (min) |
---|---|---|---|---|
1 | 09:53 | 1786 | 3.27 | 9.1 |
2 | 09:53 | 1782 | 3.26 | 9.1 |
3 | 09:53 | 1674 | 2.29 | 12.2 |
4 | 09:53 | 1670 | 2.28 | 12.2 |
5 | 09:53 | 1736 | 3.71 | 7.8 |
6 | 09:53 | 1732 | 3.70 | 7.8 |
7 | 09:53 | 1624 | 2.51 | 10.8 |
8 | 09:53 | 1628 | 2.47 | 11 |
9 | 09:53 | 1426 | 3.83 | 6.2 |
10 | 09:53 | 1422 | 3.82 | 6.2 |
11 | 09:53 | 1376 | 4.78 | 4.8 |
12 | 09:53 | 1372 | 4.67 | 4.9 |
Airway No. | Release Time | Airway Length (m) | Airflow Speed (m/s) | Time (min) |
---|---|---|---|---|
1 | 10:20 | 1368 | 4.96 | 4.6 |
2 | 10:20 | 1363 | 4.94 | 4.6 |
3 | 10:20 | 1251 | 2.71 | 7.7 |
4 | 10:20 | 1256 | 2.72 | 7.7 |
Airway No. | Release Time | Airway Length (m) | Airflow Speed (m/s) | Time (min) |
---|---|---|---|---|
1 | 09:50 | 632 | 8.10 | 1.3 |
Release Point | 1 | 2 | 3 | 4 | 5 |
k | 2.40 | 1.10 | 1.05 | 4.00 | 1.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Jia, S.; Guo, M.; Zhang, Y.; Wang, Y. Dynamic Multi-Path Airflow Analysis and Dispersion Coefficient Correction for Enhanced Air Leakage Detection in Complex Mine Ventilation Systems. Processes 2025, 13, 2214. https://doi.org/10.3390/pr13072214
Wang Y, Jia S, Guo M, Zhang Y, Wang Y. Dynamic Multi-Path Airflow Analysis and Dispersion Coefficient Correction for Enhanced Air Leakage Detection in Complex Mine Ventilation Systems. Processes. 2025; 13(7):2214. https://doi.org/10.3390/pr13072214
Chicago/Turabian StyleWang, Yadong, Shuliang Jia, Mingze Guo, Yan Zhang, and Yongjun Wang. 2025. "Dynamic Multi-Path Airflow Analysis and Dispersion Coefficient Correction for Enhanced Air Leakage Detection in Complex Mine Ventilation Systems" Processes 13, no. 7: 2214. https://doi.org/10.3390/pr13072214
APA StyleWang, Y., Jia, S., Guo, M., Zhang, Y., & Wang, Y. (2025). Dynamic Multi-Path Airflow Analysis and Dispersion Coefficient Correction for Enhanced Air Leakage Detection in Complex Mine Ventilation Systems. Processes, 13(7), 2214. https://doi.org/10.3390/pr13072214