Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (122,410)

Search Parameters:
Keywords = critical

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 13178 KiB  
Article
Fault Diagnosis for CNC Machine Tool Feed Systems Based on Enhanced Multi-Scale Feature Network
by Peng Zhang, Min Huang and Weiwei Sun
Lubricants 2025, 13(8), 350; https://doi.org/10.3390/lubricants13080350 - 5 Aug 2025
Abstract
Despite advances in Convolutional Neural Networks (CNNs) for intelligent fault diagnosis in CNC machine tools, bearing fault diagnosis in CNC feed systems remains challenging, particularly in multi‑scale feature extraction and generalization across operating conditions. This study introduces an enhanced multi-scale feature network (MSFN) [...] Read more.
Despite advances in Convolutional Neural Networks (CNNs) for intelligent fault diagnosis in CNC machine tools, bearing fault diagnosis in CNC feed systems remains challenging, particularly in multi‑scale feature extraction and generalization across operating conditions. This study introduces an enhanced multi-scale feature network (MSFN) that addresses these limitations through three integrated modules designed to extract critical fault features from vibration signals. First, a Soft-Scale Denoising (S2D) module forms the backbone of the MSFN, capturing multi-scale fault features from input signals. Second, a Multi-Scale Adaptive Feature Enhancement (MS-AFE) module based on long-range weighting mechanisms is developed to enhance the extraction of periodic fault features. Third, a Dynamic Sequence–Channel Attention (DSCA) module is incorporated to improve feature representation across channel and sequence dimensions. Experimental results on two datasets demonstrate that the proposed MSFN achieves high diagnostic accuracy and exhibits robust generalization across diverse operating conditions. Moreover, ablation studies validate the effectiveness and contributions of each module. Full article
(This article belongs to the Special Issue Advances in Tool Wear Monitoring 2025)
15 pages, 4160 KiB  
Article
Evaluation of the Stress-Shielding Effect of a PEEK Knee Prosthesis. A Finite Element Study
by Mario Ceddia, Arcangelo Morizio, Giuseppe Solarino and Bartolomeo Trentadue
Osteology 2025, 5(3), 24; https://doi.org/10.3390/osteology5030024 (registering DOI) - 5 Aug 2025
Abstract
Background: The long-term success of total knee arthroplasty (TKA) is often compromised by stress shielding, which can lead to bone resorption and even implant loosening. This study employs finite element analysis (FEA) to compare the stress-shielding effects of a knee prosthesis made from [...] Read more.
Background: The long-term success of total knee arthroplasty (TKA) is often compromised by stress shielding, which can lead to bone resorption and even implant loosening. This study employs finite element analysis (FEA) to compare the stress-shielding effects of a knee prosthesis made from polyether ether ketone (PEEK) with a traditional titanium Ti6Al4V implant on an osteoporotic tibial bone model. Methods: Stress distribution and the stress-shielding factor (SSF) were evaluated at seven critical points in the proximal tibia under physiological loading conditions. Results: Results indicate that the PEEK prosthesis yields a more uniform stress transmission, with von Mises stress levels within the optimal 2–3 MPa range for bone maintenance and consistently negative or near-zero SSF values, implying minimal stress shielding. Conversely, titanium implants exhibited significant stress shielding with high positive SSF values across all points. Additionally, stress concentrations on the polyethylene liner were lower and more evenly distributed in the PEEK model, suggesting reduced wear potential. Conclusions: These findings highlight the biomechanical advantages of PEEK in reducing stress shielding and preserving bone integrity, supporting its potential use to improve implant longevity in TKA. Further experimental and clinical validation are warranted. Full article
(This article belongs to the Special Issue Advances in Bone and Cartilage Diseases)
Show Figures

Figure 1

23 pages, 918 KiB  
Review
Advances in Graphite Recycling from Spent Lithium-Ion Batteries: Towards Sustainable Resource Utilization
by Maria Joriza Cañete Bondoc, Joel Hao Jorolan, Hyung-Sub Eom, Go-Gi Lee and Richard Diaz Alorro
Minerals 2025, 15(8), 832; https://doi.org/10.3390/min15080832 (registering DOI) - 5 Aug 2025
Abstract
Graphite has been recognized as a critical material by the United States (US), the European Union (EU), and Australia. Owing to its unique structure and properties, it is utilized in many industries and has played a key role in the clean energy sector, [...] Read more.
Graphite has been recognized as a critical material by the United States (US), the European Union (EU), and Australia. Owing to its unique structure and properties, it is utilized in many industries and has played a key role in the clean energy sector, particularly in the lithium-ion battery (LIB) industries. With the projected increase in global graphite demand, driven by the shift to clean energy and the use of EVs, as well as the geographically concentrated production and reserves of natural graphite, interest in graphite recycling has increased, with a specific focus on using spent LIBs and other waste carbon material. Although most established and developing LIB recycling technologies are focused on cathode materials, some have started recycling graphite, with promising results. Based on the different secondary sources and recycling paths reported, hydrometallurgy-based treatment is usually employed, especially for the purification of graphite; greener alternatives are being explored, replacing HF both in lab-scale research and in industry. This offers a viable solution to resource dependency and mitigates the environmental impact associated with graphite production. These developments signal a trend toward sustainable and circular pathways for graphite recycling. Full article
(This article belongs to the Special Issue Graphite Minerals and Graphene, 2nd Edition)
Show Figures

Graphical abstract

22 pages, 14608 KiB  
Article
Temporal and Spatial Evolution of Gross Primary Productivity of Vegetation and Its Driving Factors on the Qinghai-Tibet Plateau Based on Geographical Detectors
by Liang Zhang, Cunlin Xin and Meiping Sun
Atmosphere 2025, 16(8), 940; https://doi.org/10.3390/atmos16080940 (registering DOI) - 5 Aug 2025
Abstract
To investigate the spatiotemporal evolution characteristics and primary driving factors of Gross Primary Productivity (GPP) on the Qinghai-Tibet Plateau, we employed an enhanced MODIS-PSN model. Utilizing the fifth-generation global climate reanalysis dataset (ECMWF ERA5), we generated GPP remote sensing products by integrating six [...] Read more.
To investigate the spatiotemporal evolution characteristics and primary driving factors of Gross Primary Productivity (GPP) on the Qinghai-Tibet Plateau, we employed an enhanced MODIS-PSN model. Utilizing the fifth-generation global climate reanalysis dataset (ECMWF ERA5), we generated GPP remote sensing products by integrating six natural factors. Through correlation analysis and geographical detector modeling, we quantitatively analyzed the spatiotemporal dynamics and key drivers of vegetation GPP across the Qinghai-Tibet Plateau from 2001 to 2022. The results demonstrate that GPP changes across the Qinghai-Tibet Plateau display pronounced spatial heterogeneity. The humid northeastern and southeastern regions exhibit significantly positive change rates, primarily distributed across wetland and forest ecosystems, with a maximum mean annual change rate of 12.40 gC/m2/year. In contrast, the central and southern regions display a decreasing trend, with the minimum change rate reaching −1.61 gC/m2/year, predominantly concentrated in alpine grasslands and desert areas. Vegetation GPP on the Qinghai-Tibet Plateau shows significant correlations with temperature, vapor pressure deficit (VPD), evapotranspiration (ET), leaf area index (LAI), precipitation, and radiation. Among the factors analyzed, LAI demonstrates the strongest explanatory power for spatial variations in vegetation GPP across the Qinghai-Tibet Plateau. The dominant factors influencing vegetation GPP on the Qinghai-Tibet Plateau are LAI, ET, and precipitation. The pairwise interactions between these factors exhibit linear enhancement effects, demonstrating synergistic multifactor interactions. This study systematically analyzed the response mechanisms and variations of vegetation GPP to multiple driving factors across the Qinghai-Tibet Plateau from a spatial heterogeneity perspective. The findings provide both a critical theoretical framework and practical insights for better understanding ecosystem response dynamics and drought conditions on the plateau. Full article
Show Figures

Figure 1

18 pages, 6413 KiB  
Article
A Recognition Method for Marigold Picking Points Based on the Lightweight SCS-YOLO-Seg Model
by Baojian Ma, Zhenghao Wu, Yun Ge, Bangbang Chen, He Zhang, Hao Xia and Dongyun Wang
Sensors 2025, 25(15), 4820; https://doi.org/10.3390/s25154820 - 5 Aug 2025
Abstract
Accurate identification of picking points remains a critical challenge for automated marigold harvesting, primarily due to complex backgrounds and significant pose variations of the flowers. To overcome this challenge, this study proposes SCS-YOLO-Seg, a novel method based on a lightweight segmentation model. The [...] Read more.
Accurate identification of picking points remains a critical challenge for automated marigold harvesting, primarily due to complex backgrounds and significant pose variations of the flowers. To overcome this challenge, this study proposes SCS-YOLO-Seg, a novel method based on a lightweight segmentation model. The approach enhances the baseline YOLOv8n-seg architecture by replacing its backbone with StarNet and introducing C2f-Star, a novel lightweight feature extraction module. These modifications achieve substantial model compression, significantly reducing the model size, parameter count, and computational complexity (GFLOPs). Segmentation efficiency is further optimized through a dual-path collaborative architecture (Seg-Marigold head). Following mask extraction, picking points are determined by intersecting the optimized elliptical mask fitting results with the stem skeleton. Experimental results demonstrate that SCS-YOLO-Seg effectively balances model compression with segmentation performance. Compared to YOLOv8n-seg, it maintains high accuracy while significantly reducing resource requirements, achieving a picking point identification accuracy of 93.36% with an average inference time of 28.66 ms per image. This work provides a robust and efficient solution for vision systems in automated marigold harvesting. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

25 pages, 4069 KiB  
Article
Forest Volume Estimation in Secondary Forests of the Southern Daxing’anling Mountains Using Multi-Source Remote Sensing and Machine Learning
by Penghao Ji, Wanlong Pang, Rong Su, Runhong Gao, Pengwu Zhao, Lidong Pang and Huaxia Yao
Forests 2025, 16(8), 1280; https://doi.org/10.3390/f16081280 - 5 Aug 2025
Abstract
Forest volume is an important information for assessing the economic value and carbon sequestration capacity of forest resources and serves as a key indicator for energy flow and biodiversity. Although remote sensing technology is applied to estimate volume, optical remote sensing data have [...] Read more.
Forest volume is an important information for assessing the economic value and carbon sequestration capacity of forest resources and serves as a key indicator for energy flow and biodiversity. Although remote sensing technology is applied to estimate volume, optical remote sensing data have limitations in capturing forest vertical height information and may suffer from reflectance saturation. While LiDAR data can provide more detailed vertical structural information, they come with high processing costs and limited observation range. Therefore, improving the accuracy of volume estimation through multi-source data fusion has become a crucial challenge and research focus in the field of forest remote sensing. In this study, we integrated Sentinel-2 multispectral data, Resource-3 stereoscopic imagery, UAV-based LiDAR data, and field survey data to quantitatively estimate the forest volume in Saihanwula Nature Reserve, located in Inner Mongolia, China, on the southern part of Daxing’anling Mountains. The study evaluated the performance of multi-source remote sensing features by using recursive feature elimination (RFE) to select the most relevant factors and applied four machine learning models—multiple linear regression (MLR), k-nearest neighbors (kNN), random forest (RF), and gradient boosting regression tree (GBRT)—to develop volume estimation models. The evaluation metrics include the coefficient of determination (R2), root mean square error (RMSE), and relative root mean square error (rRMSE). The results show that (1) forest Canopy Height Model (CHM) data were strongly correlated with forest volume, helping to alleviate the reflectance saturation issues inherent in spectral texture data. The fusion of CHM and spectral data resulted in an improved volume estimation model with R2 = 0.75 and RMSE = 8.16 m3/hm2, highlighting the importance of integrating multi-source canopy height information for more accurate volume estimation. (2) Volume estimation accuracy varied across different tree species. For Betula platyphylla, we obtained R2 = 0.71 and RMSE = 6.96 m3/hm2; for Quercus mongolica, R2 = 0.74 and RMSE = 6.90 m3/hm2; and for Populus davidiana, R2 = 0.51 and RMSE = 9.29 m3/hm2. The total forest volume in the Saihanwula Reserve ranges from 50 to 110 m3/hm2. (3) Among the four machine learning models, GBRT consistently outperformed others in all evaluation metrics, achieving the highest R2 of 0.86, lowest RMSE of 9.69 m3/hm2, and lowest rRMSE of 24.57%, suggesting its potential for forest biomass estimation. In conclusion, accurate estimation of forest volume is critical for evaluating forest management practices and timber resources. While this integrated approach shows promise, its operational application requires further external validation and uncertainty analysis to support policy-relevant decisions. The integration of multi-source remote sensing data provides valuable support for forest resource accounting, economic value assessment, and monitoring dynamic changes in forest ecosystems. Full article
(This article belongs to the Special Issue Mapping and Modeling Forests Using Geospatial Technologies)
Show Figures

Figure 1

25 pages, 482 KiB  
Article
The Influence of Managers’ Safety Perceptions and Practices on Construction Workers’ Safety Behaviors in Saudi Arabian Projects: The Mediating Roles of Workers’ Safety Awareness, Competency, and Safety Actions
by Talal Mousa Alshammari, Musab Rabi, Mazen J. Al-Kheetan and Abdulrazzaq Jawish Alkherret
Safety 2025, 11(3), 77; https://doi.org/10.3390/safety11030077 (registering DOI) - 5 Aug 2025
Abstract
Improving construction site safety remains a critical challenge in Saudi Arabia’s rapidly growing construction sector, where high accident rates and diverse labor forces demand evidence-based managerial interventions. This study investigated the influence of Managers’ Safety Perceptions and Practices (MSP) on Workers’ Safety Behaviors [...] Read more.
Improving construction site safety remains a critical challenge in Saudi Arabia’s rapidly growing construction sector, where high accident rates and diverse labor forces demand evidence-based managerial interventions. This study investigated the influence of Managers’ Safety Perceptions and Practices (MSP) on Workers’ Safety Behaviors (WSB) in the Saudi construction industry, emphasizing the mediating roles of Workers’ Safety Awareness (WSA), Safety Competency (WSC), and Safety Actions (SA). The conceptual framework integrates these three mediators to explain how managerial attitudes and practices translate into frontline safety outcomes. A quantitative, cross-sectional design was adopted using a structured questionnaire distributed among construction workers, supervisors, and project managers. A total of 352 from 384 valid responses were collected, and the data were analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM) via SmartPLS 4. The findings revealed that MSP does not directly influence WSB but has significant indirect effects through WSA, WSC, and SA. Among these, WSC emerged as the most powerful mediator, followed by WSA and SA, indicating that competency is the most critical driver of safe worker behavior. These results provide robust empirical support for a multidimensional mediation model, highlighting the need for managers to enhance safety behaviors not merely through supervision but through fostering awareness and competency, providing technical training, and implementing proactive safety measures. Theoretically, this study contributes a novel and integrative framework to the occupational safety literature, particularly within underexplored Middle Eastern construction contexts. Practically, it offers actionable insights for safety managers, industry practitioners, and policymakers seeking to improve construction safety performance in alignment with Saudi Vision 2030. Full article
(This article belongs to the Special Issue Safety Performance Assessment and Management in Construction)
Show Figures

Figure 1

17 pages, 5201 KiB  
Article
Construction Scheme Effects on Deformation Controls for Open-Top UBITs Underpassing Existing Stations
by Yanming Yao, Junhong Zhou, Mansheng Tan, Mingjie Jia and Honggui Di
Buildings 2025, 15(15), 2762; https://doi.org/10.3390/buildings15152762 - 5 Aug 2025
Abstract
Urban rail transit networks’ rapid expansions have led to increasing intersections between existing and new lines, particularly in dense urban areas where new stations must underpass existing infrastructure at zero distance. Deformation controls during construction are critical for maintaining the operational safety of [...] Read more.
Urban rail transit networks’ rapid expansions have led to increasing intersections between existing and new lines, particularly in dense urban areas where new stations must underpass existing infrastructure at zero distance. Deformation controls during construction are critical for maintaining the operational safety of existing stations, especially in soft soil conditions where construction-induced settlement poses significant risks to structural integrity. This study systematically investigates the influence mechanisms of different construction schemes on base plate deformation when an open-top UBIT (underground bundle composite pipe integrated by transverse pre-stressing) underpasses existing stations. Through precise numerical simulation using PLAXIS 3D, the research comparatively analyzed the effects of 12 pipe jacking sequences, 3 pre-stress levels (1116 MPa, 1395 MPa, 1674 MPa), and 3 soil chamber excavation schemes, revealing the mechanisms between the deformation evolution and soil unloading effects. The continuous jacking strategy of adjacent pipes forms an efficient support structure, limiting maximum settlement to 5.2 mm. Medium pre-stress level (1395 MPa) produces a balanced deformation pattern that optimizes structural performance, while excavating side chambers before the central chamber effectively utilizes soil unloading effects, achieving controlled settlement distribution with maximum values of −7.2 mm. The optimal construction combination demonstrates effective deformation control, ensuring the operational safety of existing station structures. These findings enable safer and more efficient urban underpassing construction. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 3150 KiB  
Article
Research on the Influence Mechanism of Thermal Load on the Au-Sn Sealing Weld State on Three-Dimensional DPC Substrates
by Heran Zhao, Lihua Cao, ShiZhao Wang, He Zhang and Mingxiang Chen
Materials 2025, 18(15), 3678; https://doi.org/10.3390/ma18153678 - 5 Aug 2025
Abstract
Direct copper-plated ceramic (DPC) substrates have emerged as a favored solution for power device packaging due to their unique technical advantages. AuSn, characterized by its high hermeticity and environmental adaptability, represents the optimal sealing technology for DPC substrates. Through the application of vacuum [...] Read more.
Direct copper-plated ceramic (DPC) substrates have emerged as a favored solution for power device packaging due to their unique technical advantages. AuSn, characterized by its high hermeticity and environmental adaptability, represents the optimal sealing technology for DPC substrates. Through the application of vacuum sintering techniques and adjustment of peak temperatures (325 °C, 340 °C, and 355 °C), the morphology and composition of interfacial compounds were systematically investigated, along with an analysis of their formation mechanisms. A gradient aging experiment was designed (125 °C/150 °C/175 °C × oxygen/argon dual atmosphere × 600 h) to elucidate the synergistic effects of environmental temperature and atmosphere on the growth of intermetallic compounds (IMCs). The results indicate that the primary reaction in the sealing weld seam involves Ni interacting with Au-Sn to form (Ni, Au)3Sn2 and Au5Sn. However, upon completion of the sealing process, this reaction remains incomplete, leading to a coexistence state of (Ni, Au)3Sn2, Au5Sn, and AuSn. Additionally, Ni diffuses into the weld seam center via dendritic fracture and locally forms secondary phases such as δ(Ni) and ζ’(Ni). These findings suggest that the weld seam interface exhibits a complex, irregular, and asymmetric microstructure comprising multiple coexisting compounds. It was determined that Tpeak = 325 °C to 340 °C represents the ideal welding temperature range, where the weld seam morphology, width, and Ni diffusion degree achieve optimal states, ensuring excellent device hermeticity. Aging studies further demonstrate that IMC growth remains within controllable limits. These findings address critical gaps in the understanding of the microstructural evolution and interface characteristics of asymmetric welded joints formed by multi-material systems. Full article
Show Figures

Graphical abstract

22 pages, 2053 KiB  
Article
Enhanced Real-Time Method Traffic Light Signal Color Recognition Using Advanced Convolutional Neural Network Techniques
by Fakhri Yagob and Jurek Z. Sasiadek
World Electr. Veh. J. 2025, 16(8), 441; https://doi.org/10.3390/wevj16080441 - 5 Aug 2025
Abstract
Real-time traffic light detection is essential for the safe navigation of autonomous vehicles, where timely and accurate recognition of signal states is critical. YOLOv8, a state-of-the-art object detection model, offers enhanced speed and precision, making it well-suited for real-time applications in complex driving [...] Read more.
Real-time traffic light detection is essential for the safe navigation of autonomous vehicles, where timely and accurate recognition of signal states is critical. YOLOv8, a state-of-the-art object detection model, offers enhanced speed and precision, making it well-suited for real-time applications in complex driving environments. This study presents a modified YOLOv8 architecture optimized for traffic light detection by integrating Depth-Wise Separable Convolutions (DWSCs) throughout the backbone and head. The model was first pretrained on a public traffic light dataset to establish a strong baseline and then fine-tuned on a custom real-time dataset consisting of 480 images collected from video recordings under diverse road conditions. Experimental results demonstrate high detection performance, with precision scores of 0.992 for red, 0.995 for yellow, and 0.853 for green lights. The model achieved an average mAP@0.5 of 0.947, with stable F1 scores and low validation losses over 80 epochs, confirming effective learning and generalization. Compared to existing YOLO variants, the modified architecture showed superior performance, especially for red and yellow lights. Full article
Show Figures

Figure 1

20 pages, 3614 KiB  
Article
Gum Acacia–Dexamethasone Combination Attenuates Sepsis-Induced Acute Kidney Injury in Rats via Targeting SIRT1-HMGB1 Signaling Pathway and Preserving Mitochondrial Integrity
by Fawaz N. Alruwaili, Omnia A. Nour and Tarek M. Ibrahim
Pharmaceuticals 2025, 18(8), 1164; https://doi.org/10.3390/ph18081164 - 5 Aug 2025
Abstract
Background/Objective: Sepsis-associated acute kidney injury (SA-AKI) is a substantial contributor to mortality in critically ill patients. This study aimed to investigate the impact of gum acacia (GA) and dexamethasone (DEX) combination on lipopolysaccharide (LPS)-induced SA-AKI in rats. Methods: Thirty-six male Sprague Dawley [...] Read more.
Background/Objective: Sepsis-associated acute kidney injury (SA-AKI) is a substantial contributor to mortality in critically ill patients. This study aimed to investigate the impact of gum acacia (GA) and dexamethasone (DEX) combination on lipopolysaccharide (LPS)-induced SA-AKI in rats. Methods: Thirty-six male Sprague Dawley rats were separated into six groups, including the control, GA group, LPS-induced AKI group, DEX + LPS group, GA + LPS group, and GA + DEX + LPS group. AKI was induced in rats using LPS (10 mg/kg, i.p.). GA was administered orally (7.5 g/kg) for 14 days before LPS injection, and DEX was injected (1mg/kg, i.p.) 2 h after LPS injection. Results: LPS injection significantly (p < 0.05, vs. control group) impaired renal function, as evidenced through increased levels of kidney function biomarkers, decreased creatinine clearance, and histopathological alterations in the kidneys. LPS also significantly (p < 0.05, vs. control group) elevated levels of oxidative stress markers, while it reduced levels of antioxidant enzymes. Furthermore, LPS triggered an inflammatory response, manifested by significant (p < 0.05, vs. control group) upregulation of Toll-like receptor 4, myeloid differentiation primary response 88, interleukin-1β, tumor necrosis factor-α, and nuclear factor-κB, along with increased expression of high-mobility group box 1. Administration of GA significantly ameliorated LPS-induced renal impairment by enhancing antioxidant defenses and suppressing inflammatory pathways (p < 0.05, vs. LPS group). Furthermore, GA-DEX-treated rats showed improved kidney function, reduced oxidative stress, and attenuated inflammatory markers (p < 0.05, vs. LPS group). Conclusions: The GA-DEX combination exhibited potent renoprotective effects against LPS-induced SA-AKI, possibly due to their antioxidant and anti-inflammatory properties. These results suggest that the GA-DEX combination could be a promising and effective therapeutic agent for managing SA-AKI. Full article
(This article belongs to the Section Pharmacology)
43 pages, 2199 KiB  
Article
Hydroprocessed Ester and Fatty Acids to Jet: Are We Heading in the Right Direction for Sustainable Aviation Fuel Production?
by Mathieu Pominville-Racette, Ralph Overend, Inès Esma Achouri and Nicolas Abatzoglou
Energies 2025, 18(15), 4156; https://doi.org/10.3390/en18154156 - 5 Aug 2025
Abstract
Hydrotreated ester and fatty acids to jet (HEFA-tJ) is presently the most developed and economically attractive pathway to produce sustainable aviation fuel (SAF). An ongoing systematic study of the critical variables of different pathways to SAF has revealed significantly lower greenhouse gas (GHG) [...] Read more.
Hydrotreated ester and fatty acids to jet (HEFA-tJ) is presently the most developed and economically attractive pathway to produce sustainable aviation fuel (SAF). An ongoing systematic study of the critical variables of different pathways to SAF has revealed significantly lower greenhouse gas (GHG) reduction potential for the HEFA-tJ pathway compared to competing markets using the same resources for road diesel production. Moderate yield variations between air and road pathways lead to several hundred thousand tons less GHG reduction per project, which is generally not evaluated thoroughly in standard environmental assessments. This work demonstrates that, although the HEFA-tJ market seems to have more attractive features than biodiesel/renewable diesel, considerable viability risks might manifest as HEFA-tJ fuel market integration rises. The need for more transparent data and effort in this regard, before envisaging making decisions regarding the volume of HEFA-tJ production, is emphasized. Overall, reducing the carbon intensity of road diesel appears to be less capital-intensive, less risky, and several times more efficient in reducing GHG emissions. Full article
(This article belongs to the Special Issue Sustainable Approaches to Energy and Environment Economics)
14 pages, 263 KiB  
Essay
The TV Series Severance as Speculative Organizational Critique: Control, Consent, and Identity at Work
by Dag Øivind Madsen and Marisa Alise Madsen
Adm. Sci. 2025, 15(8), 305; https://doi.org/10.3390/admsci15080305 - 5 Aug 2025
Abstract
The Apple TV+ series Severance (2022–present) offers a dystopian portrayal of workplace life that intensifies real-world dynamics of control, boundary management, and identity regulation. This paper analyzes Severance as a speculative case study in organizational theory, treating the show’s fictional world as a [...] Read more.
The Apple TV+ series Severance (2022–present) offers a dystopian portrayal of workplace life that intensifies real-world dynamics of control, boundary management, and identity regulation. This paper analyzes Severance as a speculative case study in organizational theory, treating the show’s fictional world as a site for conceptual reflection. Drawing on critical management studies and labor process theory, we examine how mechanisms of control, the regulation of work–life boundaries, and the fragmentation of autonomy and subjectivity are depicted in extreme form. We argue that fiction—particularly speculative satire—can serve as a tool of theoretical production, not merely illustration. Rather than restating familiar critiques, Severance allows us to see workplace norms with renewed clarity, surfacing the moral and psychological consequences of surveillance, coercion, and instrumentalized consent. A methodological note outlines our interpretive approach to narrative fiction, and a discussion of implications situates the analysis within broader debates about organizational ethics, resilience, and critique. Full article
28 pages, 1146 KiB  
Article
Uncovering Hidden Risks: Non-Targeted Screening and Health Risk Assessment of Aromatic Compounds in Summer Metro Carriages
by Han Wang, Guangming Li, Cuifen Dong, Youyan Chi, Kwok Wai Tham, Mengsi Deng and Chunhui Li
Buildings 2025, 15(15), 2761; https://doi.org/10.3390/buildings15152761 - 5 Aug 2025
Abstract
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, [...] Read more.
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, including hazardous species such as acetophenone, benzonitrile, and benzoic acid that are often overlooked in conventional BTEX-focused monitoring. The TAC concentration reached 41.40 ± 5.20 µg/m3, with half of the compounds exhibiting significant increases during peak commuting periods. Source apportionment using diagnostic ratios and PMF identified five major contributors: carriage material emissions (36.62%), human sources (22.50%), traffic exhaust infiltration (16.67%), organic solvents (16.55%), and industrial emissions (7.66%). Although both non-cancer (HI) and cancer (TCR) risks for all population groups were below international thresholds, summer tourists experienced higher exposure than daily commuters. Notably, child tourists showed the greatest vulnerability, with a TCR of 5.83 × 10−7, far exceeding that of commuting children (1.88 × 10−7). Benzene was the dominant contributor, accounting for over 50% of HI and 70% of TCR. This study presents the first integrated NTS and quantitative risk assessment to characterise ACs in summer metro environments, revealing a broader range of hazardous compounds beyond BTEX. It quantifies population-specific risks, highlights children’s heightened vulnerability. The findings fill critical gaps in ACs exposure and provide a scientific basis for improved air quality management and pollution mitigation strategies in urban rail transit systems. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

38 pages, 3649 KiB  
Article
Towards Smart Wildfire Prevention: Development of a LoRa-Based IoT Node for Environmental Hazard Detection
by Luis Miguel Pires, Vitor Fialho, Tiago Pécurto and André Madeira
Designs 2025, 9(4), 91; https://doi.org/10.3390/designs9040091 (registering DOI) - 5 Aug 2025
Abstract
The increase in the number of wildfires in recent years in different parts of the world has caused growing concern among the population, since the consequences of these fires go beyond the destruction of the ecosystem. With the growing relevance of the Internet [...] Read more.
The increase in the number of wildfires in recent years in different parts of the world has caused growing concern among the population, since the consequences of these fires go beyond the destruction of the ecosystem. With the growing relevance of the Internet of Things (IoT) industry, developing solutions for the early detection of fires is of critical importance. This paper proposes a low-cost network based on Long-Range (LoRa) technology to autonomously assess the level of fire risk and the presence of a fire in rural areas. The system consists of several LoRa nodes with sensors to measure environmental variables such as temperature, humidity, carbon monoxide, air quality, and wind speed. The data collected is sent to a central gateway, where it is stored, processed, and later sent to a website for graphical visualization of the results. In this paper, a survey of the requirements of the devices and sensors that compose the system was made. After this survey, a market study of the available sensors was carried out, ending with a comparison between the sensors to determine which ones met the objectives. Using the chosen sensors, a study was made of possible power solutions for this prototype, considering the expected conditions of use. The system was tested in a real environment, and the results demonstrate that it is possible to cover a circular area with a radius of 2 km using a single gateway. Our system is prepared to trigger fire hazard alarms when, for example, the signals for relative humidity, ambient temperature, and wind speed are below or equal to 30%, above or equal to 30 °C, and above or equal to 30 m/s, respectively (commonly known as the 30-30-30 rule). Full article
Back to TopTop